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Abstract

Uncertainty quantification is critical for deploying deep neu-
ral networks (DNNs) in real-world applications. An Auxil-
iary Uncertainty Estimator (AuxUE) is one of the most ef-
fective means to estimate the uncertainty of the main task
prediction without modifying the main task model. To be
considered robust, an AuxUE must be capable of maintain-
ing its performance and triggering higher uncertainties while
encountering Out-of-Distribution (OOD) inputs, i.e., to pro-
vide robust aleatoric and epistemic uncertainty. However, for
vision regression tasks, current AuxUE designs are mainly
adopted for aleatoric uncertainty estimates, and AuxUE ro-
bustness has not been explored. In this work, we propose
a generalized AuxUE scheme for more robust uncertainty
quantification on regression tasks. Concretely, to achieve a
more robust aleatoric uncertainty estimation, different distri-
bution assumptions are considered for heteroscedastic noise,
and Laplace distribution is finally chosen to approximate
the prediction error. For epistemic uncertainty, we propose a
novel solution named Discretization-Induced Dirichlet pOs-
terior (DIDO), which models the Dirichlet posterior on the
discretized prediction error. Extensive experiments on age es-
timation, monocular depth estimation, and super-resolution
tasks show that our proposed method can provide robust un-
certainty estimates in the face of noisy inputs and that it can
be scalable to both image-level and pixel-wise tasks.

1 Introduction
Uncertainty quantification in deep learning has gained sig-
nificant attention in recent years (Blundell et al. 2015;
Kendall and Gal 2017; Lakshminarayanan, Pritzel, and
Blundell 2017; Abdar et al. 2021). Deep Neural Networks
(DNNs) frequently provide overconfident predictions and
lack uncertainty estimates, especially for regression models
outputting single point estimates, affecting the interpretabil-
ity and credibility of the prediction results.

There are two types of uncertainty in DNNs: unavoidable
aleatoric uncertainty caused by data noise, and reducible
epistemic or knowledge uncertainty due to insufficient train-
ing data (Hüllermeier and Waegeman 2021; Kendall and
Gal 2017; Malinin and Gales 2018). Disentangling and es-
timating them can better guide the decision-making based
on DNN predictions. Many seminal methods (Blundell
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et al. 2015; Gal and Ghahramani 2016; Lakshminarayanan,
Pritzel, and Blundell 2017; Kendall and Gal 2017; Wen,
Tran, and Ba 2020; Franchi et al. 2022) have been proposed
to capture these two types of uncertainty. However, these
methods require extensive modifications to the underlying
model structure or more computational cost. Furthermore,
since DNNs are often designed as task-oriented, obtaining
uncertainty estimates by changing the structure of DNNs
might reduce main task performance.

As one of the most effective methods, Auxiliary Un-
certainty Estimators (AuxUE) (Corbière et al. 2019; Yu,
Franchi, and Aldea 2021; Jain et al. 2021; Corbière et al.
2021; Besnier et al. 2021; Upadhyay et al. 2022; Shen et al.
2023) aim to obtain uncertainty estimates without affect-
ing the main task performance. AuxUEs are DNNs that
rely on the main task models used for estimating the un-
certainty of the main task prediction. They are trained us-
ing the input, output, or intermediate features of the pre-
trained main task model. In practice, the model inputs can
be distribution-shifted from the training set, such as samples
disturbed by noise (Hendrycks and Dietterich 2019), or even
Out-of-Distribution (OOD) data. The pre-trained main task
models mainly exhibit aleatoric uncertainty in the outputs
given the In-Distribution (ID) inputs. Meanwhile, higher
epistemic uncertainty is expected to be raised when OOD
data is fed. A robust AuxUE is required in this case to pro-
vide robust aleatoric uncertainty estimates when facing In-
Distribution (ID) inputs and epistemic uncertainty estimates
when encountering OOD inputs. This can help to make
effective decisions under anomalies and uncertainty (Guo
et al. 2022), such as in autonomous driving (Arnez et al.
2020). To achieve robustness, disentangling the two types
of uncertainty becomes a prerequisite, aiding in improved
epistemic uncertainty estimation and a more robust aleatoric
uncertainty estimation solution.

For vision regression tasks, basic AuxUE addresses only
aleatoric uncertainty estimation (Yu, Franchi, and Aldea
2021). Recent works (Upadhyay et al. 2022; Qu et al. 2022)
aim to improve the generalization ability of the basic Aux-
UEs. In DEUP (Jain et al. 2021), the authors propose to add a
density estimator based on normalizing flows (Rezende and
Mohamed 2015) in the AuxUE, yet challenging to apply on
pixel-wise vision tasks. In the current context, both the ro-
bustness analysis and modeling of epistemic uncertainty are
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underexplored for vision regression problems.
To further explore robust aleatoric and epistemic uncer-

tainty estimation in vision regression tasks, in this work,
we propose a novel uncertainty quantification solution based
on AuxUE. For estimating aleatoric uncertainty, we follow
the approach of previous works such as (Nix and Weigend
1994; Kendall and Gal 2017; Yu, Franchi, and Aldea 2021;
Upadhyay et al. 2022) and model the heteroscedastic noise
using different distribution assumptions. For epistemic un-
certainty quantification, we apply a discretization approach
to the continuous prediction errors of the main task. This
helps to mitigate the numerical impact of the training tar-
gets, which may be distributed in a long-tailed manner. With
the discretized prediction errors, we propose parameterizing
Dirichlet posterior (Sensoy, Kaplan, and Kandemir 2018;
Charpentier, Zügner, and Günnemann 2020; Joo, Chung,
and Seo 2020) for estimating epistemic uncertainty without
relying on OOD data during the training process.

In summary, our contributions are as follows: (1) We pro-
pose a generalized AuxUE solution for aleatoric and epis-
temic uncertainty estimation; (2) We propose Discretization-
Induced Dirichlet pOsterior (DIDO), a new epistemic uncer-
tainty estimation strategy for regression, which, to the best
of our knowledge, is the only existing work employing this
distribution for regression; (3) We demonstrate that assum-
ing the noise which affects the main task predictions to fol-
low Laplace distribution can help AuxUE achieve a more ro-
bust aleatoric uncertainty estimation; (4) We propose a new
evaluation strategy for the OOD analysis of pixel-wise re-
gression tasks based on systematically non-annotated pat-
terns. We show the robustness and scalability of the pro-
posed generalized AuxUE and DIDO on the age estimation,
super-resolution and monocular depth estimation tasks.

2 Related Works
Auxiliary uncertainty estimation Auxiliary uncertainty
estimation strategies can be divided into two categories: un-
supervised and supervised. For the former, Dropout layer
injection (Mi et al. 2022; Gal and Ghahramani 2016) sam-
ples the network by forward propagations, and (Hornauer
and Belagiannis 2022) proposed to use the gradients from
the back-propagation. For the latter, AuxUEs are applied
to obtain the uncertainty. In addition to regression-oriented
ones presented in Section 1, we here introduce classification-
oriented solutions. ConfidNet (Corbière et al. 2019) and
KLoS (Corbière et al. 2021) learn the true class probability
and evidence for the DNNs, respectively. Shen et al. (Shen
et al. 2023) apply evidential classification (Joo, Chung, and
Seo 2020) to their AuxUE. ObsNet (Besnier et al. 2021) uses
adversarial noise to provide more abundant training targets
in semantic segmentation task for their AuxUE.

Evidential deep learning and Dirichlet networks Evi-
dential deep learning (Ulmer 2021) (EDL) is a modern ap-
plication of the Dempster-Shafer Theory (Dempster 1968) to
estimate epistemic uncertainty with single forward propaga-
tion. In classification tasks, EDL is usually formed as param-
eterizing a prior (Malinin and Gales 2018, 2019) or a pos-
terior (Joo, Chung, and Seo 2020; Charpentier, Zügner, and

Günnemann 2020; Charpentier et al. 2022; Sensoy, Kaplan,
and Kandemir 2018) Dirichlet distribution. In regression,
EDL estimates parameters of the conjugate prior of Gaus-
sian distribution (Amini et al. 2020; Charpentier et al. 2022;
Malinin et al. 2020). Multi-task learning is also applied to
alleviate main task performance degradation (Oh and Shin
2022), yet using AuxUE will not affect main task perfor-
mance. Therefore, we apply EDL to our AuxUE. Moreover,
we are the first to apply the Dirichlet network to the regres-
sion tasks by discretizing the main task prediction errors.

Robustness of uncertainty estimation A robust uncer-
tainty estimator should show stable performance when en-
countering images perturbed to varying degrees (Michaelis
et al. 2019; Hendrycks and Dietterich 2019; Kamann and
Rother 2021). Similar studies are applied to evaluate the
robustness of uncertainty estimates (Yeo, Kar, and Zamir
2021; Franchi et al. 2022). Meanwhile, it should provide a
higher uncertainty when facing OOD data, such as in classi-
fication tasks (Hendrycks and Gimpel 2017; Liang, Li, and
Srikant 2018). In image-level regression, we can use the def-
inition of OOD from image classification (Techapanurak and
Okatani 2021) in, for example, age estimation task. But for
pixel-wise regression tasks, the notion of OOD data is ill-
defined. Typical OOD analysis estimates uncertainty on a
different dataset than the training dataset (Charpentier et al.
2022). Yet, image patterns that are rarely assigned ground
truth values in the training set can also be regarded as OOD.
In this work, we also provide a new evaluation strategy for
OOD patterns based on outdoor depth estimation to com-
pensate for this experimental shortfall.

3 Method
We define a training dataset D = {x(i), y(i)}Ni where N
is the number of images. We consider that x,y are drawn
from a joint distribution P (x,y). A pipeline for the main
task and auxiliary uncertainty estimation is shown in Fig. 1.
We define a main task DNN fω with trainable parameters
ω as shown in the blue area in Fig. 1. Similar to (Blundell
et al. 2015), we view fω as a probabilistic model P (y|x,ω)
which follows a Gaussian distribution N (y|µ, σ2) (Bishop
and Nasrabadi 2006). The variable σ2 represents the vari-
ance of the noise in the DNN’s prediction, and the variable
µ is the prediction ŷ = fω(x) in this case. The noise is con-
sidered here to be homoscedastic as all data have the same
noise. The parameter ω is optimized by maximizing the log-
likelihood: ω̂ = argmaxω log (P (D|ω)) which is often per-
formed by minimizing Negative Log Likelihood (NLL) loss
in practice. With the above-mentioned Gaussian assumption
on ŷ, the NLL loss optimizes with the same objective as the
Mean Square Error loss (Bishop and Nasrabadi 2006), thus,
only the prediction goal y is considered, and the uncertainty
modeling is absent in the main task model training objective.

AuxUE aims to obtain this missing uncertainty estima-
tion without modifying ω̂. We consider two DNNs σΘ1

and
σΘ2

in our generalized AuxUE with parameters Θ1 and Θ2,
i.e., the two DNNs in the orange area of the Fig. 1. σΘ1

is
for estimating aleatoric uncertainty ualea, and σΘ2 is for es-
timating epistemic uncertainty uepis. The backbone of σΘ1
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Figure 1: Pipeline of our proposed AuxUE solution. A generalized AuxUE is considered with two DNNs σΘ1
and σΘ2

for
estimating aleatoric and epistemic uncertainty, respectively. Presented notations are consistent with and described in Section 3.
The encoder parts of both DNNs can be shared, we compare the performance in Section 4.3. The input of AuxUE can be the
input, output, or intermediate features of fω̂ , we here simplify it to the image x(i) for brevity.

and σΘ2
are based on the basic AuxUEs such as Confid-

Net (Corbière et al. 2019), BayesCap (Upadhyay et al. 2022)
and SLURP (Yu, Franchi, and Aldea 2021) depending on the
tasks. The input of AuxUE can be the input, output, or inter-
mediate features of fω̂ and it depends on the design of the
basic AuxUEs, which is not the focus of this paper. We de-
tail the inputs for different experiments in Supplementary
material (Supp)1 Section A.

3.1 Aleatoric Uncertainty Estimation on AuxUE
Based on the preliminaries of the settings, we now start with
the first AuxUE σΘ1 , which addresses ualea estimation prob-
lem as in SLURP and BayesCap.

We consider the data-dependent noise (Goldberg,
Williams, and Bishop 1997; Bishop and Quazaz 1996; Nix
and Weigend 1994) follows N (0,σ2). Then we use the
DNN σΘ1

to estimate the heteroscedastic aleatoric uncer-
tainty ualea (Nix and Weigend 1994; Kendall and Gal 2017).
Θ̂1 and the loss function L(Θ1) are given by:

Θ̂1= argmax
Θ1

P (D|ω̂,Θ1)= argmax
Θ1

N∑
i=1

log(P (y(i)|x(i), ω̂,Θ1))

L(Θ1)=
1

N

N∑
i=1

[
1

2
log(σΘ1(x

(i)))+
(y(i)−fω̂(x(i)))2

2σΘ1(x
(i))

]
(1)

The top of the σΘ1 is an exponential or Softplus function to
maintain the output non-negative. The aleatoric uncertainty
estimation will be: û(i)alea = σΘ1

(x(i)). Minimizing L(Θ1)
is also equivalent to making σΘ1

correctly predict the main
task errors on the training set according to likelihood max-
imization. The errors set is denoted as ϵ = {ϵ(i)}Ni=1 =
{(y(i) − fω̂(x

(i)))2}Ni=1.
Given the fact that distribution assumption on the noise

affecting ŷ can be different than Gaussian, e.g., Lapla-
cian (Marks et al. 1978) and Generalized Gaussian distri-
bution (Nadarajah 2005; Upadhyay et al. 2022) also been
considered in this work, the corresponding loss functions
are provided in Supp Section B. The objective remains un-
changed: employing AuxUE to estimate and predict the

1Refer to: https://arxiv.org/abs/2308.09065

component associated with aleatoric uncertainty using var-
ious distribution assumptions. Perturbing input data in var-
ious ways with different types of noise makes it challeng-
ing to accurately identify the actual noise distribution. Re-
lying on a single distribution assumption and loss function
can affect the reliability of aleatoric uncertainty estimates.
In Section 4.3, we assess the impact of different distribution
assumptions and losses on the robustness of these estimates.

3.2 Epistemic Uncertainty Estimation on AuxUE
Modeling AuxUEs as formalized in Eq. 1 helps to estimate
aleatoric uncertainty for fω̂ . Yet, taking this uncertainty
prediction as an indicator for epistemic uncertainty is not
methodologically grounded. Evidential learning is consid-
ered to be an effective uncertainty estimation approach (Ul-
mer 2021). In regression tasks, DNN estimates parameters
of Gaussian distribution’s conjugate prior, like Normal In-
verse Gamma (NIG) distribution (Amini et al. 2020). The
training will make the model fall back onto a NIG prior for
the rare samples by attaching lower evidence to the samples
with higher prediction errors using a regularization term in
the loss function (Amini et al. 2020). Yet, long-tailed pre-
diction errors in standard AuxUE lead to assigning high evi-
dence to most data points, diminishing its ability to estimate
epistemic uncertainty, as confirmed by our experiments.

In contrast to previous works, which consider the numeri-
cal value of the prediction errors for both aleatoric and epis-
temic uncertainty estimation, we disentangle them and ap-
ply discretization to mitigate numerical bias from long-tailed
prediction errors. Specifically, σΘ1

focuses on aleatoric un-
certainty considering the numerical value of prediction er-
rors, while for epistemic uncertainty, σΘ2

will consider
the value-free categories of the prediction errors. Specifi-
cally, we propose Discretization-Induced Dirichlet pOsterior
(DIDO), involves discretizing prediction errors and estimat-
ing a Dirichlet posterior based on the discrete errors.

Discretization on prediction errors To mitigate numer-
ical bias due to imbalanced data in our prediction error
estimation, we employ a balanced discretization approach.
Discretization is widely applied in classification approaches
for regression (Yu, Franchi, and Aldea 2022). The popular
discretization methods can be generally divided into hand-
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crafted (Cao, Wu, and Shen 2017) and adaptive (Bhat, Al-
hashim, and Wonka 2021). The latter requires computation-
ally expensive components like mini-ViT (Dosovitskiy et al.
2021) to extract global features. Thus, we discretize predic-
tion errors in a handcrafted way.

For pixel-wise scenarios, discretization is applied using
per-image prediction errors, and for other cases, such as
image-level tasks and 1D signal estimation, we use per-
dataset prediction errors. Details and demo-code can be
found in Supp Section C.1 and C.2 respectively.

We divide the set of errors ϵ, denoted in Section 3.1, into
K subsets, where the kth subset is represented by the sub-
script k. To do this, we sort the errors in ascending order and
create a new set, denoted by ϵ′, with the same elements as ϵ.
Then we divide ϵ′ into K subsets of equal size, represented
by {ϵk}Kk=1. Each error value ϵ(i) is then replaced by the in-
dex of its corresponding subset k ∈ [1,K], and transformed
into a one-hot vector, denoted by ϵ̄(i), as the final training
target. Specifically, the one-hot vector is defined as:

ϵ̄(i) = [ϵ̄
(i)
1 . . . ϵ̄

(i)
k . . . ϵ̄

(i)
K ]T ∈ R

K (2)

where ϵ̄
(i)
k = 1 if ϵ(i) belongs to the kth subset, and 0

otherwise. Each subset or bin represents a class of error
severity. This process creates a new dataset, denoted by
D̄ = {x(i), ϵ̄(i)}Ni , consisting of discretized prediction er-
rors represented as one-hot vectors, which serves for training
the epistemic uncertainty estimator σΘ2 .

Modeling epistemic uncertainty using ϵ in AuxUE In a
Bayesian framework, given an input x, the predictive uncer-
tainty of a DNN is modeled by P (y|x,D). Since we have
a trained main task DNN, and as proposed in (Malinin and
Gales 2018), we assume a point-estimate ω̂ of ω:

P (ω|D) = δ(ω − ω̂) → P (y|x,D) ≈ P (y|x, ω̂) (3)

with δ being the Dirac function.
We follow the previous assumption, i.e., the prediction

is drawn from a Gaussian distribution N (y|µ, σ2) and ac-
cording to (Amini et al. 2020), we denote α as the pa-
rameters of the prior distributions of (µ, σ2) and we have
P (µ, σ2|α, ω̂) = P (µ|σ2,α, ω̂)P (σ2|α,ω∗). After intro-
ducing α and Eq. 3, we can approximate P (y|x,D) as:

P (y|x,D) =

∫∫
P (y|x, σ2)P (σ2|ω)P (ω|D)dσ2dω

=

∫
P (y|x, σ2)P (σ2|D)dσ2

≈
∫
P (y|x, σ2)P (σ2|x,α, ω̂)dσ2 (4)

Detailed derivation can be found in Supp Section C.3.
We can consider ϵ to be drawn from a continuous dis-

tribution parameterized by σ2. The discrepancy in vari-
ances P (σ2|D) can describe epistemic uncertainty of the
final prediction and the variational approach can be ap-
plied (Joo, Chung, and Seo 2020; Malinin and Gales 2018):
P (σ2|x,α, ω̂) ≈ P (σ2|D). After discretization, we can
transform the approximation to P (π|x,α, ω̂) ≈ P (π|D̄),
with D̄ defined above, π the parameters of a discrete distri-
bution and α re-defined as the prior distribution parameters
of this discrete distribution. In the next section, we omit ω̂
and x for the sake of brevity.

Dirichlet posterior for epistemic uncertainty Accord-
ing to the previous discussions on the epistemic uncertainty
modeling and error discretization, we model Dirichlet poste-
rior (Sensoy, Kaplan, and Kandemir 2018; Joo, Chung, and
Seo 2020; Charpentier et al. 2022) on the discrete errors ϵ̄ to
achieve epistemic uncertainty on the main task.

Intuitively, we consider each one-hot prediction error ϵ̄(i)

to be drawn from a categorical distribution, and π(i) =

(π
(i)
1 , . . . , π

(i)
K ) denotes the random variable over this dis-

tribution, where
∑K

k=1 π
(i)
k = 1 and π(i)

k ∈ [0, 1] for k ∈
{1, ...,K}. The conjugate prior of categorical distribution is
a Dirichlet distribution:

P (π(i)|α(i)) =
Γ(S(i))∏K

k=1 Γ(α
(i)
k )

K∏
k=1

π
(i)
k

α
(i)
k

−1
(5)

with Γ(·) the Gamma function, α(i) positive concentration
parameters of Dirichlet distribution and S(i) =

∑K
k=1 α

(i)
k

the Dirichlet strength.
To get access to the epistemic uncertainty, the cate-

gorical posterior P (π|D̄) is needed, yet it is untractable.
Approximating P (π|D̄) using Monte-Carlo sampling (Gal
and Ghahramani 2016) or ensembles (Lakshminarayanan,
Pritzel, and Blundell 2017) comes with an increased com-
putational cost. Instead, we adopt a variational way to learn
a Dirichlet distribution in Eq. 5 to approximate P (π|D̄) as
in (Joo, Chung, and Seo 2020). Here, σΘ2

outputs the con-
centration parameters α of P (π|α), and α update according
to the observed inputs. It can also be viewed as collecting the
evidence e as a measure for supporting the classification de-
cisions for each class (Sensoy, Kaplan, and Kandemir 2018),
akin to estimating the Dirichlet posterior.

Since the numbers of data points are identical for each
class in D̄, and no e(i) output before training, we set the
initial α as 1 so that the Dirichlet concentration parameters
can be formed as in (Sensoy, Kaplan, and Kandemir 2018;
Charpentier, Zügner, and Günnemann 2020): α(i) = e(i) +
1 = σΘ2

(x(i)) + 1, where e(i) is given by an exponential
function on the top of σΘ2

. Then we minimize the Kullback-
Leibler (KL) divergence between the variational distribution
P (π|x,Θ2) and the true posterior P (π|D̄) to achieve Θ̂2:

Θ̂2 = argmin
Θ2

KL[P (π|x,Θ2)||P (π|D̄)]

= argmin
Θ2

-EP (π|x,Θ2)[logP (D̄|π)]+KL[P (π|x,Θ2)||P (π)]

The loss function will be equivalent to minimizing the nega-
tive evidence lower bound (Jordan et al. 1999), considering
the prior distribution P (π) as Dir(1):

L(Θ2) =
1

N

N∑
i=1

K∑
k=1

[ϵ̄
(i)
k (ψ(S(i))− ψ(α

(i)
k ))]

+λKL(Dir(α(i))||Dir(1)) (6)

where ψ is the digamma function, λ is a positive hyperpa-
rameter for the regularization term and ϵ̄ is given by Eq. 2.

For measuring epistemic uncertainty, we consider using
the spread in the Dirichlet distribution (Shen et al. 2023;
Charpentier, Zügner, and Günnemann 2020), which is
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shown in (Shen et al. 2023) to outperform other metrics,
e.g. differential entropy. Specifically, the epistemic uncer-
tainty is inversely proportional to the Dirichlet strength:
û
(i)
epis = σΘ̂2

(x(i)) = K
S(i) . The class corresponding to the

maximum output from σΘ2
can also represent the aleatoric

uncertainty. Yet, this is a rough estimate due to quantization
errors and underperforming the other solutions. We provide
the corresponding results in Supp Tab. A14. Overall, we
take only σΘ1 output as the aleatoric uncertainty.

In conclusion, we propose a generalized AuxUE with two
components, namely σΘ1

and σΘ2
, to quantify the uncer-

tainty of main task model outputs. By assuming different
distributions on heteroscedastic noise in training data (Sec-
tion 3.1), σΘ1

is trained for aleatoric uncertainty estimation.
Meanwhile, applying the proposed DIDO on σΘ2 and mea-
suring the spread of the Dirichlet distribution (Section 3.2)
aids in estimating epistemic uncertainty. Overall, we inte-
grate the optimization for both uncertainty estimators, and
the final loss for training the generalized AuxUE is:

LAuxUE = L(Θ1) + L(Θ2) (7)

For L(Θ1), in addition to the Gaussian NLL, we will test
other NLL loss functions according to different distribution
assumptions in the experiment.

4 Experiments
In this section, we first show the feasibility of the proposed
generalized AuxUE on toy examples. Then, we demonstrate
the effectiveness of epistemic uncertainty estimation using
the proposed DIDO on age estimation and monocular depth
estimation (MDE) tasks, and investigate the robustness of
aleatoric uncertainty estimation on MDE task. Due to page
limitations, the experiments for an example of OOD detec-
tion in tabular data regression and the super-resolution task
are provided in Supp Section A.2 and A.4 respectively.

In the result tables, the top two performing methods are
highlighted in color. All the results are averaged by three
runs. The shar.enc. and sep.enc. denote respectively shared-
parameters for the encoders and separate encoders of σΘ1

and σΘ2
in the generalized AuxUE. For epistemic uncer-

tainty, we compare our proposed method with the solu-
tions based on modified main DNN: LDU (Franchi et al.
2022), Evidential learning (Evi.) (Amini et al. 2020; Joo,
Chung, and Seo 2020) and Deep Ensembles (DEns.) (Lak-
shminarayanan, Pritzel, and Blundell 2017).

The detailed implementations and the main task perfor-
mance for all experiments are provided in Supp Section A.

4.1 Toy Examples: Simple 1D Regression
We generate two toy datasets to illustrate uncertainty esti-
mates given by our proposed AuxUE, as shown in Fig. 2.
In both examples, a tight aleatoric uncertainty estimation is
provided on training data areas. For epistemic uncertainty,
in Fig. 2-A, DIDO provides small uncertainty until reach-
ing the unknown inputs x /∈ [−3, 3]. In Fig. 2-B, we re-
port the ‘in-between’ uncertainty estimates (Foong et al.
2019). On the in-between part x ∈ [−1, 3], DIDO can pro-
vide higher epistemic uncertainty than in training set regions
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Figure 2: Results on toy examples. Aleatoric and epistemic
uncertainty estimations given by our AuxUE are presented
respectively as the uncertainty interval and degree (0-1).

x ∈ [−3,−1] and x ∈ [3, 5]. In summary, the generalized
AuxUE provides reliable uncertainty estimates in regions
where training data is either present or absent.

4.2 Age Estimation and OOD Detection
Epistemic uncertainty estimation for age estimation is sim-
ilar to one for classification problems but has rarely been
discussed in previous works. We use (unmodified) official
ResNet34 (He et al. 2016) checkpoints from Coral (Cao,
Mirjalili, and Raschka 2020) as the main task models. Our
AuxUE is applied in a ConfidNet (Corbière et al. 2019) style
since it is more suitable for image-level tasks.

Evaluation settings and datasets We train the models
on AFAD (Niu et al. 2016) training set and choose AFAD
test set as the ID dataset for the OOD detection task. We take
CIFAR10 (Krizhevsky, Hinton et al. 2009), SVHN (Netzer
et al. 2011), MNIST (LeCun 1998), FashionMNIST (Xiao,
Rasul, and Vollgraf 2017), Oxford-Pets (Parkhi et al. 2012)
and Noise image generated by Pytorch (Paszke et al. 2019)
(FakeData) as the OOD datasets. We employ the Areas
Under the receiver operating Characteristic (AUC) and the
Precision-Recall curve (AUPR) (higher is better for both) to
evaluate OOD detection performance.

Results OOD detection results are shown in Tab. 1.
DIDO performs the best on most datasets. On the Pets
dataset, DIDO performs worse than DEns. and aleatoric un-
certainty estimation head σΘ1

. We argue that images of pets
provide features closer to facial information, resulting in
higher evidence estimates given by DIDO. While σΘ1 per-
forms better in this case, which can jointly make AuxUE
a better uncertainty estimator. Overall, we consider that us-
ing generalized AuxUE with DIDO is an alternative that can
better detect OOD inputs than ensembling-based solutions.

4.3 Monocular Depth Estimation Task
For the MDE task, we will evaluate both aleatoric and
epistemic uncertainty estimation performance based on the
AuxUE SLURP (Yu, Franchi, and Aldea 2021). Our gener-
alized AuxUE is also constructed using SLURP as the back-
bone. We use BTS (Lee et al. 2019) as the main task model
and KITTI (Geiger et al. 2013; Uhrig et al. 2017) Eigen-
split (Eigen, Puhrsch, and Fergus 2014) training set for train-
ing both BTS and AuxUE models.
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OOD sets Metrics σΘ1
σΘ2

(DIDO) LDU Evi. DEns.

CIFAR10 AUC ↑ 96.0 100 95.2 50.0 99.2
AUPR ↑ 91.7 100 88.3 23.4 95.1

SVHN AUC ↑ 98.3 100 94.8 50.0 99.2
AUPR ↑ 98.1 100 93.2 44.3 97.8

MNIST AUC ↑ 97.8 100 97.6 50.0 99.6
AUPR ↑ 93.9 100 93.8 23.4 97.2

Fashion
MNIST

AUC ↑ 97.7 100 95.6 50.0 99.1
AUPR ↑ 94.0 100 89.3 23.4 93.8

Oxford
Pets

AUC ↑ 82.9 55.9 31.5 50.1 56.1
AUPR ↑ 53.3 23.9 12.5 18.5 21.3

Fake
Data

AUC ↑ 67.0 80.8 70.0 50.0 33.2
AUPR ↑ 59.7 70.2 58.8 49.5 37.8

Table 1: OOD detection results on Age estimation task. ID
data is from the Asian Face Age Dataset (AFAD).

A B

C D

Figure 3: Illustrations on MDE. A: input image, green points
represent pixels with depth ground truth; B: depth predic-
tion; C and D: aleatoric and epistemic uncertainty estima-
tions. In B, C, and D, brighter pixels correspond to higher
values. The areas lacking depth ground truth, e.g. sky and
tramway, are assigned high uncertainty using DIDO.

Aleatoric uncertainty estimation In this section, the goal
is to analyze the fundamental performance and robustness
of aleatoric uncertainty estimation under different distribu-
tion assumptions. We choose simple Gaussian (Sgau) (Nix
and Weigend 1994), Laplacian (Lap), Generalized Gaussian
(Ggau) (Upadhyay et al. 2022) and Normal-Inverse-Gamma
(NIG) (Amini et al. 2020) distributions. We modify the loss
functions and the head of the SLURP to output the desired
parameters of the distributions.
Evaluation settings and datasets We first build Sparsifica-
tion curves (SC) (Bruhn and Weickert 2006): we achieve
predictive SC by computing the prediction error of the re-
maining pixels after removing a certain partition of pixels
(5% in our experiment) each time according to the highest
uncertainty estimations. We can also obtain an Oracle SC by
removing the pixels according to the highest prediction er-
rors. Then, we have the same metrics used in (Poggi et al.
2020): Area Under the Sparsification Error (AUSE, lower is
better), and Area Under the Random Gain (AURG, higher
is better). We choose absolute relative error (REL) and root
mean square error (RMSE) as the prediction error metrics.

We generate KITTI-C from KITTI Eigen-split validation
set using the code of ImageNet-C (Hendrycks and Dietterich
2019) to have different corruptions on the images to check
the robustness of the uncertainty estimation solutions. We

S Metrics Ggau Sgau NIG Lap sep.
enc. σΘ1

Lap shar.
enc. σΘ1

0

AUSE-REL ↓ 0.014 0.013 0.012 0.013 0.013
AUSE-RMSE ↓ 0.258 0.202 0.208 0.203 0.205
AURG-REL ↑ 0.023 0.023 0.024 0.023 0.023
AURG-RMSE ↑ 1.815 1.871 1.865 1.870 1.869

1

AUSE-REL ↓ 0.021 0.019 0.018 0.019 0.018
AUSE-RMSE ↓ 0.482 0.332 0.335 0.336 0.332
AURG-REL ↑ 0.029 0.031 0.032 0.031 0.032
AURG-RMSE ↑ 2.215 2.365 2.362 2.361 2.365

2

AUSE-REL ↓ 0.026 0.023 0.022 0.023 0.022
AUSE-RMSE ↓ 0.707 0.463 0.479 0.468 0.464
AURG-REL ↑ 0.035 0.039 0.039 0.038 0.039
AURG-RMSE ↑ 2.535 2.779 2.763 2.774 2.777

3

AUSE-REL ↓ 0.036 0.031 0.031 0.031 0.031
AUSE-RMSE ↓ 1.176 0.737 0.806 0.730 0.749
AURG-REL ↑ 0.044 0.049 0.049 0.049 0.049
AURG-RMSE ↑ 2.862 3.301 3.232 3.308 3.289

4

AUSE-REL ↓ 0.057 0.050 0.053 0.049 0.051
AUSE-RMSE ↓ 2.380 1.364 1.582 1.268 1.430
AURG-REL ↑ 0.051 0.058 0.054 0.059 0.056
AURG-RMSE ↑ 2.817 3.834 3.615 3.929 3.767

5

AUSE-REL ↓ 0.082 0.064 0.069 0.059 0.066
AUSE-RMSE ↓ 3.878 2.043 2.414 1.760 2.157
AURG-REL ↑ 0.045 0.063 0.057 0.067 0.061
AURG-RMSE ↑ 2.377 4.213 3.842 4.496 4.098

Table 2: Aleatoric uncertainty estimation results on MDE.
S = 0 represents original KITTI dataset and S > 0 repre-
sents KITTI-C datasets.

apply eighteen perturbations with five severities, including
Gaussian noise, shot noise, etc., and take it along with the
original KITTI for evaluation.
Results As shown in Tab. 2, the Laplace assumption is
more robust when the severity increases, while Gaussian
one works better when the noise severity is smaller. We
also check the proposed generalized AuxUE with a shared
encoder. It shows that the epistemic uncertainty estimation
branch affects the robustness of aleatoric uncertainty
estimation in this case, especially under stronger noise.

The next sections show epistemic uncertainty estimation
results based on different methods. Furthermore, in Supp
Tab. A15 and Tab. A16, we also verify whether aleatoric
uncertainty methods based on different distribution assump-
tions can generalize to the OOD data, i.e., provide high
uncertainty to the unseen patterns, even without explicitly
modeling epistemic uncertainty.

Robustness under dataset change This experiment will
explore the predictive uncertainty performance encountering
the dataset change. Supervised MDE is an ill-posed prob-
lem that heavily depends on the training dataset. In our case,
the main task model is trained on the KITTI dataset, so the
model will output meaningless results on the indoor data,
which should trigger a high uncertainty estimation. The re-
sults are shown in Tab. 3.
Evaluation settings and datasets We take AUC and AUPR
as evaluation metrics. We take all the valid pixels from the
KITTI validation set (ID) as the negative samples and the
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AuxUE with DIDO Modified main DNN

Metrics Ours σΘ2

sep. enc.
Ours σΘ2

shar. enc. LDU Evi. DEns.

AUC ↑ 98.1 98.4 58.1 70.6 62.1
AUPR ↑ 99.3 99.4 79.5 77.8 76.7

Table 3: Epistemic uncertainty estimation results encounter-
ing dataset change on MDE. The evaluation dataset here is
NYU indoor depth dataset.

AuxUE with DIDO Modified main DNN

S Metrics Ours σΘ2

sep. enc.
Ours σΘ2

shar. enc. LDU Evi. DEns.

0
AUC ↑ 100.0 99.9 96.5 76.7 93.5
AUPR ↑ 100.0 99.0 93.8 42.6 70.0
Sky-All ↓ 0.015 0.018 0.278 0.986 0.005

1
AUC ↑ 100.0 99.9 96.3 69.7 92.8
AUPR ↑ 99.9 98.9 93.5 37.4 68.0
Sky-All ↓ 0.016 0.018 0.277 0.988 0.005

2
AUC ↑ 99.9 99.9 95.9 65.4 92.3
AUPR ↑ 99.8 98.8 93.0 34.5 67.0
Sky-All ↓ 0.017 0.018 0.280 0.990 0.005

3
AUC ↑ 99.9 99.7 95.9 62.3 91.6
AUPR ↑ 99.7 98.1 92.8 32.8 65.7
Sky-All ↓ 0.018 0.020 0.283 0.992 0.005

4
AUC ↑ 99.6 99.5 96.1 58.8 91.8
AUPR ↑ 99.1 97.2 92.9 31.2 67.2
Sky-All ↓ 0.023 0.022 0.288 0.994 0.005

5
AUC ↑ 98.5 99.0 96.5 58.5 92.2
AUPR ↑ 97.1 96.1 93.7 32.8 70.4
Sky-All ↓ 0.035 0.026 0.295 0.996 0.005

Table 4: Epistemic uncertainty estimation results encounter-
ing unseen pattern on MDE. The evaluation datasets here are
KITTI Seg-Depth (S=0) and KITTI Seg-Depth-C (S>0).

valid pixels from the NYU (Nathan Silberman and Fergus
2012) validation set (OOD) as the positive samples.
Results Tab. 3 shows whether different uncertainty estima-
tors can give correct indications facing the dataset change.
The evidential learning method can provide competitive re-
sults, while our DIDO provides the best performance.

Robustness on unseen patterns during training This ex-
periment focuses on how uncertainty estimators behave on
unseen patterns during training. The unseen patterns are
drawn from the same dataset distribution as the patterns used
in training, and the outputs of the main task model for such
patterns may be reasonable. Still, they cannot be evaluated
and thus are unreliable. High uncertainty should be assigned
to these predictions. Since this topic is rarely considered in
MDE, we try to give a benchmark in this work.
Evaluation settings and datasets We select sky areas in
KITTI as OOD patterns. This setting is based on the follow-
ing reasons: due to the generalization ability of MDE DNNs,
it is inappropriate to treat all pixels without ground truth as
OOD. However, there is consistently no ground truth for the
sky parts since LIDAR is used in depth acquisition. Dur-
ing training, sky patterns are masked and never seen by the

DNNs (including the AuxUEs). Meanwhile, they are anno-
tated in KITTI semantic segmentation dataset (Alhaija et al.
2018) (200 images), thus can be used for evaluation.

Three metrics are applied for evaluating OOD detection
performance as shown in Tab. 4. AUC and AUPR: we se-
lect 49 images that are not in the training set and have both
depth and semantic segmentation annotations. For each im-
age, we take the sky pixels as the positive class and the pixels
with depth ground truth as the negative class. We use AUC
and AUPR to assess the uncertainty estimation performance.
Note that this metric does not guarantee that the uncertainty
of the sky is the largest in the whole uncertainty map. Thus,
we have Sky-All (lower is better): all 200 images with se-
mantic segmentation annotations are selected for evaluation.
The ground truth uncertainties are set as 1 for the sky ar-
eas. Then we normalize the predicted uncertainty, take the
sky areas ûsky from the whole uncertainty map and mea-
sure: mean((1 − ûsky)

2). For simplicity, we denote KITTI
Seg-Depth for both evaluation datasets. We also generate a
corruption dataset KITTI Seg-Depth-C using the same way
in the aleatoric uncertainty estimation section.
Results Fig. 3 shows a qualitative example of typical un-
certainty maps computed on KITTI images. More visual-
izations are presented in Supp Section E. In Tab. 4, Deep
Ensembles can better assign consistent and higher uncer-
tainty to the sky areas, but it is inadequate for identifying
the ID and OOD areas. As outlined in Section 3.2, DIDO
prioritizes rare patterns and then generalizes the uncertainty
estimation ability to the unseen patterns. This results in as-
signing higher uncertainty to some few-shot pixels that have
ground truth, making Sky-All results slightly worse. Yet, it
can achieve a balanced performance on all the metrics, and
at the same time, it maintains robust performance in the pres-
ence of noise.

4.4 Ablation Study
We conduct the ablation study in Supp Section D. Hyper-
parameters. We analyze the effect of the number of sets K
defined in Section 3.2 for discretization and the regulariza-
tion weight λ in Eq. 6. Necessity of using AuxUE. We also
apply DIDO on the main task model to check impacts on
main task performance. Effectiveness of Dirichlet model-
ing. We show the effectiveness of Dirichlet modeling instead
of using the normal Categorical modeling based on the dis-
cretized prediction errors. For the former, we apply classical
cross-entropy on the Softmax outputs given by the AuxUE.

5 Conclusion
In this paper, we propose a new solution for uncertainty
quantification on regression problems based on a general-
ized AuxUE. We design and implement the experiments
based on four different regression problems. By modeling
heteroscedastic noise using Laplace distribution, the pro-
posed AuxUE can achieve more robust aleatoric uncertainty.
Meanwhile, the novel DIDO solution in our AuxUE can pro-
vide better epistemic uncertainty estimation performance on
both image-level and pixel-wise tasks.
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