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Abstract

Multi-object tracking (MOT) in video sequences remains a
challenging task, especially in scenarios with significant cam-
era movements. This is because targets can drift consider-
ably on the image plane, leading to erroneous tracking out-
comes. Addressing such challenges typically requires sup-
plementary appearance cues or Camera Motion Compensa-
tion (CMC). While these strategies are effective, they also
introduce a considerable computational burden, posing chal-
lenges for real-time MOT. In response to this, we introduce
UCMCTrack, a novel motion model-based tracker robust to
camera movements. Unlike conventional CMC that computes
compensation parameters frame-by-frame, UCMCTrack con-
sistently applies the same compensation parameters through-
out a video sequence. It employs a Kalman filter on the
ground plane and introduces the Mapped Mahalanobis Dis-
tance (MMD) as an alternative to the traditional Intersection
over Union (IoU) distance measure. By leveraging projected
probability distributions on the ground plane, our approach
efficiently captures motion patterns and adeptly manages un-
certainties introduced by homography projections. Remark-
ably, UCMCTrack, relying solely on motion cues, achieves
state-of-the-art performance across a variety of challenging
datasets, including MOT17, MOT?20, DanceTrack and KITTI.
More details and code are available at https://github.com/
corfyi/UCMCTrack.

Introduction

At the core of tracking-by-detection paradigm of multi-
object tracking (MOT) is the accurate association of de-
tections with tracked objects. Motion cues are widely used
due to their effectiveness and simplicity. However, the ap-
plication of motion model in scenarios with frequent camera
movement is highly challenging. This issue is usually ad-
dressed by applying additional appearance cues or perform-
ing frame-by-frame Camera Motion Compensation (CMC)
on video captured by the moving camera. While effective,
these additional measures introduce a non-negligible com-
putational burden, posing a obstacle for real-time MOT.
Thus, a pertinent question arises: Is it possible to employ
motion cues in MOT that are robust to camera movement
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Figure 1: IDF1-HOTA-AssA comparisons of different track-
ers on the test set of MOT17. The horizontal axis is IDF1,the
vertical axis is HOTA, and the radius of circle is AssA.
Our UCMCTrack+ achieves 65.8 HOTA, 81.1 IDF1 on
MOT17 test, possessing significant competitiveness com-
pared to SOTA trackers. Details are given in Table 1.

without resorting to the cumbersome frame-by-frame CMC?
Our answer is YES. We have developed a pure motion
model-based multi-object tracker that is robust to camera
movement. For the same video sequence, it suffices to use
the same camera motion compensation parameters, rather
than computing the camera motion compensation parame-
ters for every frame as traditional CMC does. We choose to
model the target’s motion using a simple Kalman filter on the
ground plane, instead of on the imaging plane as most MOT
algorithms do, and effectively compensate the motion esti-
mation errors caused by camera movement through the pro-
cess noise parameters of the Kalman filter. We abandon the
commonly used Intersection over Union (IoU) , and instead
propose the Mapped Mahalanobis Distance (MMD). It com-
putes the projected probability distribution on the ground
plane, and utilizes the Mahalanobis distance to calculate the
matching costs between targets. It not only effectively lever-
ages the underlying motion patterns of the targets on the
ground plane but also efficiently handles the uncertainties
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caused by homography projection.

A deep dive into motion-based MOT highlights a signif-
icant challenge when employing motion cues in highly dy-
namic scenes. Historically, IoU has been the favored met-
ric for data association. On the surface, employing IoU on
the image plane appears to be a more direct approach. How-
ever, its application often leads to inaccurate tracking out-
comes, particularly in complex scenes marked by frequent
camera movements. Notably, in these settings, detection and
tracking boxes might completely fail to overlap, as shown
in Figure 3. This observation underscores an imminent ne-
cessity: a transition from exclusive reliance on the image
plane to harnessing the more robust motion patterns inher-
ent to the ground plane. Embracing such a paradigm shift
stands to effectively address challenges spawned by camera
movements, setting the stage for superior tracking accuracy.
Distinct from the vast majority of trackers relying IoU on
the image plane, ground plane-based association can effec-
tively considers camera movement as noise within the mo-
tion model. It minimizes the problems induced by camera
movements. This methodology is notably more direct, con-
venient, and efficient than compensating for camera motion
frame-by-frame via traditional CMC.

In light of these challenges, we introduce the Uniform
Camera Motion Compensation (UCMC) tracker. It is a pure
motion-based multi-object tracker that offers a holistic solu-
tion robust to camera jitter and motion, without any depen-
dency on IoU-based methodologies.

The main contributions of this paper are threefold:

¢ In the realm of multi-object tracking where IoU is con-
ventionally employed to capitalize on motion cues, our
work introduces an innovative non-IoU distance mea-
sure, singularly driven by motion cues, and manifests
state-of-the-art performance across multiple established
datasets, marking a significant departure from traditional
tracking techniques.

* In addressing the challenge of camera movements, we
propose a method that diverges from conventional cam-
era motion compensation techniques. Instead of com-
puting camera compensation parameters frame-by-frame
for video sequences, our approach uniformly applies
the same compensation parameters across the entire se-
quence, substantially reducing the computational burden
typically associated with camera motion adjustments.

* We introduce UCMCTrack, a simplistic yet efficacious
multi-object tracker that employs a novel, standalone
motion-based distance measure. This new measure has
the potential to complement commonly-used distance
metrics such as IoU and ReID. Remarkably, when pro-
vided with detections, UCMCTrack operates at a very
fast speed, exceeding 1000 FPS using just a single CPU.

Related Work
Distance Measures

Distance measures play key roles in MOT to associate tar-
gets in the current frame with those in previous frames. Cur-
rently, most algorithms employ the pixel-based Intersection
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over Union (IoU) technique (Du et al. 2023; Liu et al. 2020),
which calculates the intersecting area between the detection
box and the tracking box for target matching. However, in
cases of camera jitter or low sampling rates, the two boxes
may not intersect, rendering IoU ineffective. In contrast,
Generalized Intersection over Union (GIloU) (Rezatofighi
et al. 2019) not only focuses on the overlapping region but
also considers the non-overlapping area, thus improving the
computation of image overlap. Distance-IoU (DIoU) builds
upon GIoU by further incorporating geometric distance into
the calculation (Zheng et al. 2020). However, both these
methods do not adequately represent the similarity in aspect
ratios of the objects. Bidirectional Intersection over Union
(BIoU) and the Cascade-BloU (C-BloU) proposed to aug-
ment the IoU-based approach by introducing a linear av-
erage motion estimation model and expanding the search
region (Yang et al. 2023). Nevertheless, all these methods
operate in the image plane and cannot fully capture the ac-
tual motion patterns, leading to faulty tracking during cam-
era motion. Recently, some methods have considered dis-
tance measures based on the ground plane. SparseTrack (Liu
et al. 2023) goes beyond IoU and incorporates additional es-
timated pseudo-depth for supplementary metrics. Quo Vadis
(Dendorfer et al. 2022) employs homography transformation
to calculate the Euclidean distance in the bird’s-eye view and
combines it with IoU for target matching. Although these ap-
proaches utilize additional depth information, they still rely
on IoU and fail to account for the uncertainty in the projec-
tion of targets onto the ground plane.

Motion Models

Tracking-by-detection MOT algorithms (Wojke, Bewley,
and Paulus 2017; Cao et al. 2023; Maggiolino et al. 2023)
often favor motion models for their simplicity and effec-
tiveness. Among these, the Constant Velocity (CV) model,
which assumes unvarying target motion between frames, is
the most favored approach (Bewley et al. 2016; Zhang et al.
2022). Numerous studies have been dedicated to improv-
ing motion estimation accuracy, employing methods such
as Kalman filtering (Bewley et al. 2016; Zhang et al. 2022;
Zhou, Koltun, and Krihenbiihl 2020), optical flow (Xiao,
Wu, and Wei 2018), and displacement regression (Feichten-
hofer, Pinz, and Zisserman 2017; Held, Thrun, and Savarese
2016). However, current MOT algorithms (Du et al. 2021,
2023; Aharon, Orfaig, and Bobrovsky 2022) model the mo-
tion of tracking targets directly upon the image plane using
detected bounding boxes. This approach fails to reflect the
actual motion patterns of the targets on the ground plane,
leading to erroneous tracking results during camera motion.

To further leverage the inherent motion patterns of the
tracking targets, researchers (Liu, Wang, and Xu 2020;
Marinello, Proesmans, and Van Gool 2022) have employed
LSTM networks to predict target motion, while others
(Babaee, Li, and Rigoll 2019) have used RNN networks for
similar purposes. Additionally, transformer networks (Yang
et al. 2022) have also been utilized to capture object mo-
tion patterns. In contrast to employing neural networks to
explicitly predict target motion, the tracking-by-query prop-
agation (Zhang, Wang, and Zhang 2023) forces each query
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Figure 2: The pipeline of the proposed UCMCTrack.

to recall the same instance across different frames. Alterna-
tively, the approach based on a Graphs framework (Cetintas,
Brasé, and Leal-Taixé 2023) is used to model data associ-
ation. These methods use a learned network to implicitly
grasp the dynamics of target motion. While they achieve
promising results, their training process can be challenging,
requiring a substantial amount of annotated data and compu-
tational resources. Moreover, complex network designs may
not meet the real-time requirements on end devices.

Camera Motion Compensation

Camera Motion Compensation (CMC) is a prevalent method
to address dynamic scenes in the field of MOT (Bergmann,
Meinhardt, and Leal-Taixe 2019; Han et al. 2022; Khu-
rana, Dave, and Ramanan 2021). This is often achieved
by aligning frames through image registration, leveraging
techniques such as Enhanced Correlation Coefficient (ECC)
maximization (Evangelidis and Psarakis 2008a), or employ-
ing feature matching methods like ORB (Rublee et al. 2011).
In BOT-SORT (Aharon, Orfaig, and Bobrovsky 2022), im-
age key-points were extracted frame-by-frame, with sparse
optical flow subsequently applied. The affine transformation
matrix of background motion is calculated and obtained via
RANSAC (Fischler and Bolles 1981), and the affine ma-
trix is used to transform the prediction box from the (k-
1)-th frame coordinate system to the k-th frame coordinate
system. In (Yu, Kurnianggoro, and Jo 2019), the pyrami-
dal Lucas-Kanade optical flow is implemented to trace grid-
based feature points. The affine transformation matrix be-
tween two consecutive frames is calculated through match-
ing feature points, and the initial two frames and the back-
ground model are aligned with the current frame. In (Yeh
et al. 2017), a camera motion compensation framework is
proposed with utilization of temporal and spatial structure,
which depends on pre-provided background model for back-
ground elimination, thereby posing challenges for its adapta-
tion to new scenarios. However, when confronted with high-
resolution videos, current CMC techniques impose substan-
tial computational overhead and hinders the implementation
of real-time target tracking.

Method

UCMCTrack follows the tracking-by-detection paradigm,
with its pipeline detailed in Figure 2. We introduce sig-
nificant advancements across crucial dimensions: motion
model, distance measure, and process noise compensation.
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Together, these improvements bolster UCMCTrack, endow-
ing it with adaptability and efficiency across diverse tracking
challenges. For the pseudocode please refer to Appendix A.

Motion Modeling on Ground Plane

We model objects’ motion on the ground plane to better
capture the fundamental essence of their motion patterns.
Selecting the appropriate state vector x, observation vector
z, and determining the process noise Qi and measurement
noise Ry, are crucial in establishing the Kalman constant ve-
locity motion model. In order to make observation and cal-
culation more convenient, the choice was made to use the
midpoint coordinates of the bottom edge of the bounding
box in the image plane, projected onto the ground plane co-
ordinates x and y, as the observation vector. The state vec-
tor x is defined as x = [z, &, ¥, §]. According to the linear
camera model (Yu and McMillan 2004), the mapping rela-
tionship between the ground plane coordinates = and y, and
the image plane coordinates v and v, can be expressed as:

u 1 xr
i)
1 T1L1

Where 7 is the scale factor, and A represents the projection
matrix which is the product of camera intrinsic and extrinsic
parameters. Please refer to Appendix B for more details.

Correlated Measurement Distribution

In general, the measurement errors of detectors on the image
plane follow an independent normal distribution, and their
covariance matrix R}/ can be represented as:

(O'mwk)z

0 (am(;zk)z ]

Where: o, represents the detection noise factor as a hyper-
parameter, and wy and hj denote the detected width and
height from the detector.

If we express the inverse matrix of A in Eq. 1 as:

R;” = { 2)

L a1 Gi2 a3
A7 =] a1 az a3 3)
as1 a3z a33

This leads to the covariance matrix of measurement errors
in the ground plane as: (Please refer to Appendix B for a
detailed derivation)

R, = CRj*C" )
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Thus, we obtain the mapped measurement noise matrix Ry
in the ground plane. It’s important to highlight that the
mapped distribution exhibits a strong correlation since Ry
is non-diagonal. This allows for more accurate association
of targets on the ground plane.

Mapped Mahalanobis Distance

In image plane motion modeling, IoU is the most commonly
used distance measure for data association. However, when
objects are in high-speed motion or captured at low FPS or
in scenes with moving camera, the lack of overlap between
detection boxes and tracklets renders IoU ineffective. Con-
versely, by employing normalized Mahalanobis distance in
ground plane modeling, the issue of IoU inefficiency is ef-
fectively addressed, as depicted in Figure 3.

The calculation of mapped Mahalanobis distance between
track state and measurement involves three steps:

1. Calculate Residual:

(6)

Here, z is the mapped measurement on ground plane, X is
the predicted track state, and H is the observation matrix.

e=z— Hx

2. Compute Residual Covariance Matrix:
S = HPH' + R, (7
Here, P is the predicted covariance matrix, and R, is the
mapped measurement noise covariance matrix.
3. Calculate Normalized Mahalanobis Distance:

D=¢'S e+ n|S| 8)

Here, |S| represents the determinant of the matrix S, and
In is the natural logarithm.

As seen in Eq. 8, we employed the normalized Maha-
lanobis distance, incorporating the logarithm of the deter-
minant of the measurement covariance matrix. This ensures
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that data association decisions are not solely based on the
discrepancies between measurements and predictions, but
also holistically consider the accuracy and uncertainty of
measurements. Consequently, this will yield more robust
and reliable association decisions in object tracking.

Process Noise Compensation

In the context of MOT tasks, many previous works (Bewley
et al. 2016; Wojke, Bewley, and Paulus 2017; Zhang et al.
2022; Cao et al. 2023) have treated the target’s motion model
as a Constant Velocity (CV) model without considering the
noise impact caused by camera motion. However, camera
motion is quite common in MOT tasks and can introduce
significant noise that affects the tracking performance. As-
suming that the camera’s motion-induced acceleration is the
source of noise, we can represent it through the system mo-
tion model as follows:

(€))

where Az and Awv represent the changes in position and ve-
locity under the influence of noise, respectively. o denotes
the acceleration change due to camera motion, and At repre-
sents the time interval between two image frames. Express-
ing Eq. 9 in matrix form yields the matrix:

G- | At OAtz (10)
0 5=
0 At

It captures the relationship between the changes in position
and velocity caused by noise in each direction. For a two-
dimensional CV Model with a Kalman filter, the covariance
matrix of the process noise can be represented as follows:

(1)

where o, and o, denote the process compensation factors
along the = and y axes, handling the motion noise cause by
camera movements of tilt and rotation respectively.

Qi = G - diag(0,,0,) - GT
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Tracker MOT17 MOT20

appearance & motion: HOTAT IDF1T MOTAT AssAtT| HOTAT IDFIT MOTAT AssAt
FCG (Girbau, Marqués, and Satoh 2022) 62.6 77.7 76.7 63.4 573 69.7 68.0 58.1
Quo Vadis (Dendorfer et al. 2022) 63.1 77.7 80.3 62.1 61.5 75.7 77.8 59.9
GHOST (Seidenschwarz et al. 2023) 62.8 77.1 78.7 - 61.2 75.2 73.7 -
Bot-SORT (Aharon, Orfaig, and Bobrovsky 2022) | 65.0 80.2 80.5 65.5 63.3 71.5 77.8 62.9
StrongSORT (Du et al. 2023) 64.4 79.5 79.6 64.4 62.6 77.0 73.8 64.0
Deep OCSORT (Maggiolino et al. 2023) 64.9 80.6 79.4 65.9 63.9 79.2 75.6 65.7
motion only: HOTA1 IDF11T MOTAT AssAT| HOTA?T IDF11T MOTA?T AssAt
ByteTrack (Zhang et al. 2022) 63.1 77.3 80.3 62.0 61.3 75.2 77.8 59.6
C-BloU (Yang et al. 2023) 64.1 79.7 81.1 63.7 - - - -
MotionTrack (Xiao et al. 2023) 65.1 80.1 81.1 65.1 62.8 76.5 78.0 61.8
SparseTrack (Liu et al. 2023) 65.1 80.1 81.0 65.1 634 717.3 78.2 62.8
OCSORT (Cao et al. 2023) 63.2 717.5 78.0 63.4 62.4 76.3 75.7 62.5
UCMCTrack (Ours) 64.3 79.0 79.0 64.6 62.8 774 75.5 63.5
UCMCTrack+ (Ours) 65.8 81.1 80.5 66.6 62.8 77.4 75.7 63.4

Table 1: Results on MOT17 & MOT?20 test. The detection results were obtained from ByteTrack (Zhang et al. 2022).

Tracker HOTATIDF11T MOTATAssAT
appearance & motion:

FCG 487 465 899 299
GHOST 56.7 577 913 398
StrongSORT 55.6 552 91.1 38.6
Deep OCSORT 61.3 615 923 458
motion only:

ByteTrack 473 525 895 314
C-BloU 60.6 61.6 916 454
MotionTrack 582 586 913 417
SparseTrack 555 583 913 391
OCSORT 551 549 922 404
UCMCTrack (Ours) 634 650 888 51.1
UCMCTrack+ (Ours) | 63.6 650 889 513

Table 2: Results on DanceTrack-test. The detection results
were obtained from ByteTrack (Zhang et al. 2022).

Experiments
Setting

Datasets We conducted a fair evaluation of UCMCTrack
on multiple publicly available datasets, including MOT17
(Milan et al. 2016), MOT20 (Dendorfer et al. 2020), Dance-
Track (Sun et al. 2022), and KITTI (Geiger et al. 2013). Both
MOT17 and MOT20 are pedestrian tracking datasets, and
their motion is mostly linear. It is worth noting that MOT20
has a significantly higher density of pedestrians, making it
a challenging dataset for tracking. The primary task of the
DanceTrack (Sun et al. 2022) is to track dancers, who not
only have similar appearances but also perform a large num-
ber of irregular movements.The KITTI (Geiger et al. 2013)
is an autonomous driving dataset, and we only utilized the
left color camera images for the visual vehicle and pedes-
trian tracking task. Compared to other datasets, KITTI has a
lower frame rate, only 10 FPS, and the camera’s motion is
more intense.
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Metrics We employ the CLEAR metrics (Bernardin and
Stiefelhagen 2008) which include MOTA, FP, FN, and oth-
ers, along with IDF1 (Ristani et al. 2016) and TA (Luiten
et al. 2021), to evaluate the tracking performance compre-
hensively in various aspects. MOTA emphasizes the detec-
tor’s performance, while IDF1 measures the tracker’s ability
to maintain consistent IDs. We also emphasize the use of
AssA to evaluate the association performance. On the other
hand, HOTA achieves a balance between detection accuracy,
association accuracy, and localization accuracy, making it an
increasingly important metric for evaluating trackers.

Implementation Details For fair comparison, we directly
used the existing baseline object detection method YOLOX
(Ge et al. 2021). The weight files for MOT17, MOT20 and
DanceTrack were obtained from ByteTrack (Zhang et al.
2022). For KITTI, we used the detection results from Per-
maTrack (Tokmakov et al. 2021). We applied the Enhanced
Correlation Coefficient maximization (ECC) (Evangelidis
and Psarakis 2008b) model for camera motion compensa-
tion, which is consistent with strongSORT (Du et al. 2023).
For MOT17, MOT20, and DanceTrack datasets, we manu-
ally estimated the camera parameters since they are not pub-
licly accessible. In contrast, KITTI dataset readily furnishes
the requisite camera parameters.

Benchmark Evaluation

Here, we present the benchmark results for multiple
datasets. 1/| indicate that higher/lower is better, respec-
tively. The highest scores for each group are highlighted in
bold, and the highest score for the motion group is marked
in underline. "UCMCTrack+” denotes the enhancement of
UCMCTrack with the additional incorporation of CMC.

MOT17 and MOT20 Our UCMCTrack results on
MOT17 and MOT?20 datasets are presented in Table 1, re-
spectively. We used a private detector to generate the de-
tection results and ensured fairness by aligning the de-
tections with OC-SORT (Cao et al. 2023) and ByteTrack
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Tracker Car Pedestrain
appearance & motion: HOTAT MOTAT AssAT | HOTAT MOTA?T AssAfT
QD-3DT (Hu et al. 2022) 72.8 85.9 72.2 41.1 51.8 38.8
TuSimple (Choi 2015; He et al. 2016) 71.6 86.3 71.1 459 57.6 47.6
StrongSORT (Du et al. 2023) 77.8 90.4 78.2 54.5 67.4 57.3
motion only: HOTAT MOTAT AssAT | HOTAT MOTAT AssAt
CenterTrack (Zhou, Koltun, and Krahenbiihl 2020) 73.0 88.8 71.2 40.4 53.8 36.9
TrackMPNN (Rangesh et al. 2021) 72.3 87.3 70.6 394 52.1 35.5
OCSORT (Cao et al. 2023) 76.5 90.3 76.4 54.7 65.1 59.1
UCMCTrack (Ours) 77.1 90.4 77.2 55.2 67.4 58.0
UCMCTrack+ (Ours) 74.2 90.2 71.7 54.3 67.2 56.3

Table 3: Results on KITTI-test.The detection results were obtained from PermaTrack (Tokmakov et al. 2021).

(Zhang et al. 2022). UCMCTrack+ has attained state-of-the-
art (SOTA) performance, notably on the MOT17 dataset,
surpassing the SOTA methods by 0.9 in HOTA, 0.5 in IDF1,
and 0.7 in AssA. It even surpasses leading algorithms that
leverage both motion and appearance features at a consid-
erable margin, highlighting its effective use of motion in-
formation to enhance the robustness and efficiency of the
tracking.

DanceTrack To demonstrate UCMCTrack’s performance
under irregular motion scenarios, we present the test set re-
sults on DanceTrack in Table 2. UCMCTrack+ outperforms
the SOTA methods with an improvement of 2.3 in HOTA,
3.4 in IDF1, and 5.5 in AssA. This highlights the effective-
ness of our tracker in handling targets with irregular motions
and further validates its SOTA performance.

KITTI In Table 3, we present the results of UCMCTrack
on the KITTI dataset. It’s noteworthy that the addition of
CMC on the KITTI dataset did not yield favorable re-
sults. We believe that this might be due to the inaccura-
cies present in the CMC parameters. This observation indi-
cates that UCMC demonstrates stronger generalization ca-
pabilities than CMC, particularly in complex scenarios.The
performance of UCMCTrack in the KITTI dataset demon-
strates its effectiveness in addressing challenges posed by
high-speed motion and low frame-rate detections.

Ablation Studies on UCMC

The ablation experiments of UCMCTrack were conducted
on the validation sets of MOT17 and DanceTrack. For
MOT17, the validation set was split following the prevail-
ing conventions (Zhou, Koltun, and Krihenbiihl 2020). The
baseline is chosen as ByteTrack (Zhang et al. 2022).

Component Ablation We undertook a comprehensive
validation of UCMCTrack’s key components: Mapped Ma-
halanobis Distance (MMD), Correlated Measurement Dis-
tribution (CMD), and Process Noise Compensation (PNC),
testing on both MOT17 and DanceTrack datasets. As
demonstrated in Table 4, each component of UCMCTrack
plays a crucial role in enhancing its overall efficacy. A note-
worthy observation is the decline in performance when tran-
sitioning from IoU to MMD. This can be attributed to the
IoU’s consideration of both position and height informa-
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Method IoU MMD CMD PNC IDF11 HOTA?1
MOT17 Validation Set

baseline v - - - 77.10 68.43

UCMCTrack-vl - VvV - - 75.88 68.09

UCMCTrack-v2 - v - 79.68 70.44

UCMCTrack-v3 - V v v 8220 71.96

DanceTrack Validation Set

baseline v - - - 47.27 4793
UCMCTrack-vl - - - 4376 46.32
UCMCTrack-v2 - V v - 53.93 55.06
UCMCTrack-v3d - VvV Ve v 62.64 60.42

Table 4: Ablation of UCMCTrack components.

Method CMC UCMC IDF1T HOTA?T
MOT17 Validation Set
baseline - - 77.10 68.43
baseline+CMC v - 81.07 70.97
UCMCTrack - v 82.20 71.96
UCMCTrack+ v v 84.05 72.97
DanceTrack Validation Set
baseline - - 47.27 47.93
baseline+CMC v - 46.74 47.55
UCMCTrack - v 62.64 60.42
UCMCTrack+ v v 62.52 59.18

Table 5: CMC ablation.

tion, whereas MMD solely focuses on position, leading to
the observed decline in outcomes. However, when CMD is
applied post MMD, it better utilizes the distribution informa-
tion, thus surpassing the performance of the IoU-based base-
line. This observation also underscores the potential bene-
fits of integrating height information into MMD for future
research. Lastly, the incorporation of PNC effectively mit-
igates the motion noise introduced by camera movements,
elevating the tracking performance to state-of-the-art levels.

CMC Ablation To explore the impact of CMC on UCM-
CTrack, we conducted ablation experiments on MOT17 and
DanceTrack validation datasets, as shown in Table 5. In
MOT17, employing UCMC results in a greater performance
enhancement compared to using the baseline combined with
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Figure 4: In-depth analysis of key parameters and robustness in UCMCTrack.

CMC, underscoring the effective role of UCMC in compen-
sating for camera motion. Furthermore, a subsequent appli-
cation of CMC to UCMC yields an additional performance
boost, consistent with the results observed on the MOT17
test set. Interestingly, upon employing CMC on DanceTrack,
the performance of the baseline and UCMC algorithm actu-
ally deteriorated. This can be attributed to the fact that most
video sequences on DanceTrack don’t exhibit pronounced
viewpoint shifts. After employing CMC, minor detection
offsets for overlapping targets might result in matching with
an incorrect trajectory, culminating in a mild performance
setback. In contrast, the use of UCMC resulted in a sig-
nificant performance boost, suggesting its effectiveness in
scenes with only minor camera jitters.

Influence of Process Compensation Factor In order to
further investigate the impact of the process compensation
factors on the performance of UCMCTrack, we divided
the MOT17 validation sequences into dynamic and static
scenes. The horizontal axis represents the natural logarithm
of the compensation factor, with both o, and o, set to
o as per Eq. 11, and the vertical axis represents the dif-
ference in HOTA compared to the baseline. As illustrated
in Figure 4a, the influence of the compensation factor on
dynamic and static scenes exhibits two distinct patterns.
This divergence underscores the necessity of tailoring the
compensation parameters separately for each scene type.
Adapting these parameters specific to the scene’s nature en-
sures that the tracker operates at its optimum performance.
This distinction also highlights the role of the compensa-
tion factor in mitigating the effects of camera movements.
For static scenes, a smaller compensation factor is recom-
mended, while for dynamic scenes, a larger compensation
factor is essential to counteract the impact of camera mo-
tion, thus enhancing the tracking performance.

Influence of Detector Noise Factor We conducted abla-
tion studies on the hyperparameter o, in Eq. 2 to explore its
impact on UCMCTrack. As shown in Figure 4b, the tracker’s
performance varies with different ,,,. When the o, is set to
0.05, the HOTA and IDF1 metrics reach their highest values.
It is evident that the influence of the o,,, on HOTA and IDF1
remains relatively minor within the range of 0.04 to 0.1. This

6708

indicates that our UCMCTrack is not sensitive to o,,.

Robustness to Camera Parameters Error Our method,
UCMCTrack, relies on the camera parameters to project tar-
gets from the image plane to the ground plane. However,
in scenarios where camera parameters are not provided, we
manually estimate them. This means that the estimated cam-
era parameters may not be accurate. We conducted separate
ablation experiments for the camera extrinsics errors along
the X, Y, and Z axes, and the results are shown in Figure
4c. We observed that errors in the Y axis have a minor im-
pact on performance. On the other hand, errors in the X and
Z axes have more significant effects. This is due to the Y-
axis corresponding to the yaw direction, variations in this
direction have a less impact on the deformation of the es-
timated ground plane. However, When there are substantial
errors in the estimated camera extrinsics along the X and
Y axes, the performance of UCMCTrack notably degrades.
This can be attributed to significant deformations in the esti-
mated ground plane. Under such circumstances, adjustments
to the camera parameters are required to ensure that the es-
timated ground plane aligns closely with the actual terrain.

Conclusion

In this work, we presented UCMCTrack, a state-of-the-
art multi-object tracker demonstrating superior performance
across a variety of datasets. UCMCTrack employs a novel
distance measure based on normalized mahalanobis distance
on mapped ground plane, marking a significant departure
from the conventional reliance on IoU. This innovation en-
ables the tracker to adeptly handle the challenges introduced
by camera movements, using only a consistent set of com-
pensation parameters across a single video sequence. How-
ever, an inherent limitation of UCMCTrack is its assump-
tion that targets reside on a singular ground plane. Looking
forward, there is considerable potential to enhance UCMC-
Track’s effectiveness by integrating it with well-established
distance measures such as IoU and ReID. We believe that
this will lay the groundwork for subsequent advancements
in the future research of motion-based multi-object tracking.
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