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Abstract

We consider the task of generating diverse and realistic videos
guided by natural audio samples from a wide variety of se-
mantic classes. For this task, the videos are required to be
aligned both globally and temporally with the input audio:
globally, the input audio is semantically associated with the
entire output video, and temporally, each segment of the in-
put audio is associated with a corresponding segment of that
video. We utilize an existing text-conditioned video genera-
tion model and a pre-trained audio encoder model. The pro-
posed method is based on a lightweight adaptor network,
which learns to map the audio-based representation to the in-
put representation expected by the text-to-video generation
model. As such, it also enables video generation conditioned
on text, audio, and, for the first time as far as we can ascertain,
on both text and audio. We validate our method extensively on
three datasets demonstrating significant semantic diversity of
audio-video samples and further propose a novel evaluation
metric (AV-Align) to assess the alignment of generated videos
with input audio samples. AV-Align is based on the detection
and comparison of energy peaks in both modalities. In com-
parison to recent state-of-the-art approaches, our method gen-
erates videos that are better aligned with the input sound, both
with respect to content and temporal axis. We also show that
videos produced by our method present higher visual qual-
ity and are more diverse. Code and samples are available at:
https://pages.cs.huji.ac.il/adiyoss-lab/TempoTokens/.

Introduction
Neural generative models have changed the way we create
and consume digital content. From generating high-quality
images and videos (Ho, Jain, and Abbeel 2020; Rombach
et al. 2022), speech and audio (Wang et al. 2023a; Sheffer
and Adi 2023; Copet et al. 2023; Kreuk et al. 2022; Hassid
et al. 2023), through generating long textual spans (Touvron
et al. 2023a,b; Brown et al. 2020), these models have shown
impressive results.

In the context of video generation, progress has been more
elusive, with recent work making progress in generating
short videos conditioned on text (Singer et al. 2022; Ho et al.
2022). Although audio is tightly connected to videos (e.g.,
providing important cues for motion in a scene), most of the
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Figure 1: Generated video frames (above) and input audio
signal (below the frames) employing our technique. The in-
put to our model is an audio recording from which a rep-
resentation is extracted. This representation maintains cru-
cial temporal attributes and is then mapped into a text-
based latent space representation incorporating both local
and global audio context. Subsequently, this latent represen-
tation is fed into a pre-trained text-to-video diffusion gener-
ative model, ensuring the synchronized generation of video
which is closely aligned with the input audio.

prior work did not consider audio in the generation process.
For instance, the action of ‘playing drums’ or the ‘motion of
waves’ can be distinctively associated with a naturally oc-
curring sound. Moreover, audio is comprised of structural
components such as pitch and envelope that provide impor-
tant cues for the type of scene and motion depicted.

We tackle the problem of generating diverse and realis-
tic videos guided by natural audio samples. Our generated
videos capture diverse and real-life settings from a wide va-
riety of semantic classes and are aligned both globally and
temporally with the input audio. Globally, the input audio
is semantically associated with the entire output video, and
temporally, each segment of the input audio is associated
with a corresponding segment of that video. An example
generation video can be seen in Figure 1.

Prior work on audio-guided video generation was mainly
focused on either global information in the videos (i.e., cap-
turing the semantic class) or specific scenes (e.g., speech).
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(Mama et al. 2021; Park et al. 2022; Kumar et al. 2020)
generate talking heads conditioned on speech, but these are
limited to videos of human faces and are conditioned on
speech and not natural audio. More closely related to our
setting, given an input video and an audio sample, Chatter-
jee and Cherian (2020) generate a continuation of the video
that is aligned with the audio. Our method, however, gen-
erates videos from audio-only. Ge et al. (2022) proposed a
method for generating aligned videos conditioned on audio.
While impressive, generated videos are highly limited in di-
versity. Other works such as Chen et al. (2017); Hao, Guan,
and Zhang (2022); Ruan et al. (2023) generate videos that
are globally aligned to the semantic class of the input audio
sample (e.g., dancing, drums, etc.) but are unable to generate
videos in which every segment is temporally aligned to each
segment in the input audio sample.

In contrast to the above methods, our approach enables
the generation of diverse and realistic videos associated and
aligned with the input audio from a wide variety of seman-
tic classes. Our work utilizes a pre-trained text-conditioned
video generation engine and converts the input audio to a
sequence of pseudo tokens. Given an input audio sample,
we first encode it using an audio encoder, producing a latent
representation of the audio signal. To capture local-to-global
information, we construct the representation considering the
i-th segment as well as neighboring segments. In particular,
we use windows of varying sizes and average the embed-
dings corresponding to audio segments in these windows.
Next, to produce the N -th video frame, we divide the audio
embedding into N consecutive segments. We then train an
adapter network to map each of these segments to a set of
pseudo-tokens. Lastly, to produce the corresponding video,
we feed the output of the audio mapping module into the
pretrained text-to-video generation model.

Intuitively, we learn a mapping between the audio repre-
sentation obtained by the pre-trained audio encoder, to the
textual tokens’ representation used for conditioning the pre-
trained text-to-video model. By that, extending the possi-
ble video conditioning to audio tokens. To validate our ap-
proach, we consider a number of datasets that exhibit a di-
verse set of videos and input audio samples. We consider the
Landscape dataset (Lee et al. 2022), which captures land-
scape videos. The AudioSet-Drums dataset (Gemmeke et al.
2017) which captures drums videos, and the VGGSound
dataset (Chen et al. 2020) which consists of a diverse set
of real-world videos from 309 different semantic classes.

We compare our method to state-of-the-art approaches,
both in terms of objective evaluation and human study. We
evaluate the audio-video alignment as well as video quality
and diversity. To capture temporal alignment, we devise a
new metric based on detecting energy peaks in both modal-
ities separately and measuring their alignment. Further, we
provide an ablation study where we consider alternative ap-
proaches to condition the video model.
Our contributions: (i) A state-of-the-art audio-to-video
generation model which captures diverse and naturally oc-
curring real-life settings from a wide variety of input videos
of different semantic classes; (ii) We present a method that is
based on a lightweight adapter, which learns to map audio-

based tokens to pseudo-text tokens. As such, it also allows
video generation conditioned on text, audio, or both text and
audio. As far as we are aware, our method is the first to en-
able video generation conditioned both on audio and text;
and (iii) Our method can generate natural videos aligned
with the input sound, both globally and temporally. To vali-
date this, we present a novel evaluation function to measure
audio-video alignment. Since, as far as we can ascertain, we
are the first to generate diverse and natural videos guided by
audio inputs, such an evaluation function is critical to mak-
ing progress in the field.

Related Work
Audio-to-image generation. Text-to-image generation has
seen great advances recently, using either autoregressive
methods (Ramesh et al. 2021; Gafni et al. 2022; Yu et al.
2022) or diffusion based models (Nichol et al. 2022; Ramesh
et al. 2022; Saharia et al. 2022; Rombach et al. 2022;
Ramesh et al. 2022; Rombach et al. 2022). This inspired
a new line of work concerning audio-to-image genera-
tion. Żelaszczyk and Mańdziuk (2022); Wan, Chuang, and
Lee (2019) proposed to generate images based on audio
recordings using a GANŻelaszczyk and Mańdziuk (2022).
Żelaszczyk and Mańdziuk (2022) present results for gen-
erating MNIST digits only and did not generalize to gen-
eral audio sounds, while Wan, Chuang, and Lee (2019) gen-
erate images from general audio. In Wav2Clip Wu et al.
(2022b), the authors learn a Contrastive Language-Image
Pre-Training (CLIP) (Radford et al. 2021) like a model for
learning joint representation for audio-image pairs. Later
on, such representation can be used to generate images us-
ing VQ-GAN (Esser, Rombach, and Ommer 2021) under
the VQ-GAN CLIP (Crowson et al. 2022) framework. The
most relevant related work to ours is AudioToken (Yariv
et al. 2023), in which the authors learn an audio token while
adapting a diffusion-based text-to-image model to generate
images using audio inputs.
Text-to-video generation. Early attempts to establish a con-
nection between text and video relied on conditioned re-
trieval methods (Ali et al. 2022). Later, Wu et al. (2021)
introduces the novel integration of 2D VQVAE and sparse
attention in text-to-video generation, facilitating the gener-
ation of highly realistic scenes. Wu et al. (2022a) extends
GODIVA and presents a unified representation for various
generation tasks in a multitask learning scheme. Later on,
CogVideo (Hong et al. 2022) is built on top of a frozen
text-to-image model by adding additional temporal atten-
tion modules. Singer et al. (2022) further improves gener-
ation quality following a similar modeling paradigm. Video
Diffusion Models (He et al. 2022) uses a space-time fac-
torized U-Net with joint image and video data training.
Other approaches, such as Villegas et al. (2022) and Ville-
gas et al. (2022) and (Yu et al. 2023) proposed transformer-
based approaches to generate long videos or for multi-task-
learning. The most relevant prior work to ours is Wang
et al. (2023b), which proposed ModelScope. ModelScope is
a latent diffusion-based text-to-video generation model with
spatiotemporal blocks. By that, ModelScope enables consis-
tent frame generation and smooth movement transitions.
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Figure 2: An illustration of the proposed model architecture and method. The input audio is first passed through a pre-trained
audio encoder model (BEATs). Then, the resulting representations are fed into a trainable MLP layer, establishing a mapping
between audio and text tokens. These text-based representations are then used to condition each frame via a temporal audio-
conditioned sequence. This sequence effectively takes into account both local and global audio segments. Furthermore, an
attentive token (ãatten) is included to learn the identification of significant audio signals using a pooling attention layer. Lastly,
the conditioned components are utilized to generate frames through a pre-trained video generator. Notably, optimization is only
applied to the MLP within the AudioMapper model and the pooling attention module.

Audio-to-video generation models can be roughly divided
into two: (i) speech-to-video generation (talking heads); and
(ii) general audio-to-video. Under the speech-to-video gen-
eration, Mama et al. (2021) proposed learning a discrete la-
tent representation of the video signal using VQ-VAE, which
will be later modeled via an auto-encoder conditioned on
speech spectrogram. Park et al. (2022) generates talking
face focusing a piece of phonetic information via Audio-Lip
Memory module, while (Kumar et al. 2020) proposed a one-
shot approach for fast speaker adaptation.

When considering general audio-to-video generation,
Chatterjee and Cherian (2020) first proposed a method of
generating aligned videos conditioned on both audio and
video prompts. Ge et al. (2022) introduced a transformer-
based approach for generating videos conditioned on either
audio or textual features. Although providing impressive
generations, their videos are not diverse and were demon-
strated on drum generation only. Chen et al. (2017) suggest
using separate frameworks for audio-to-image and image-
to-audio generation. Hao, Guan, and Zhang (2022) also
suggest modeling both audio-to-image and image-to-audio
using bidirectional transformers, however, using a unified
framework. The authors prove it is better than two separate
ones. Lastly, Ruan et al. (2023), follows the same modeling
paradigm, however, using latent diffusion models.

Method
The proposed method is composed of three main compo-
nents: (i) an AudioMapper; (ii) multiple audio-conditioned
temporal sequences; and (iii) a text-to-video generation
module. As our goal in this study is to enrich video gen-
eration models using audio inputs, we leverage a pre-trained
diffusion-based text-to-video model and augment it with au-
dio conditioning capabilities. A visual description of the pro-
posed method can be seen in Figure 2.

In contrast to converting audio to image, transforming au-
dio to video presents two additional challenges: (i) ensuring
the creation of coherent frames and (ii) synchronization be-

tween the audio and video components. For example, con-
sider the scenario of having an audio recording of a dog
barking. In the resulting video, it is crucial not only for the
dog’s appearance to remain consistent across all frames but
also for the match between the timing of the barking sound
and the dog’s motion. In this work, we focus on item (ii) by
temporally conditioning the generation of each of the video
frames by a contextualized representation of the input audio.

Formally, we are interested in the generation of a video,
denoted as v = (v(1), . . . , v(L)), where v(i) ∈ R3×H×W

is an output frame, driven by a corresponding audio con-
dition a = (a1, . . . , aR), where ai ∈ [−1, 1] is an audio
sample at a given sampling rate in the time domain. We seek
to establish a conditional probabilistic model, pθ(v|a), en-
compassing the entire frame-set, where each frame v(i) is
conditioned on a, which denotes the audio condition.

Note that the conditioning of each frame considers the en-
tire audio input but is built differently for each frame. More
details can be found in the paragraph on Audio-conditioned
temporal sequence.
AudioMapper maps the audio representation obtained from
a pre-trained audio encoder to pseudo-tokens compatible
with the pre-trained text-to-video model. We denote the out-
put of the AudioMapper as TEMPOTOKENS.

Formally, the model gets as input embedded audio, which
originates from a pre-trained audio encoder h : [−1, 1]R →
RR′×H×d, where H is the number of layers the represen-
tation is collected from, d is the inner dimension of the en-
coder, and R′ is the segment length that h operates on. To
force both audio and video latent representations to have the
same dimension, we fix R′ = L by employing a pooling
layer. Specifically, we use the BEATs model (Chen et al.
2022) as the audio encoder h. Different layers encapsulate
a range of specificity levels. Representations derived from
BEATs’ final layers are strongly tied to class-related at-
tributes, whereas earlier layers encompass low-level audio
features (Gat et al. 2022; Adi et al. 2019). We embed an au-
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dio segment into a token representation using a non-linear
neural network g : RL×H×d → RL×H×dt :

ã(i) = g
(
h(a)(i)

)
, (1)

where ã(i) ∈ RL×H×dt , and dt is the embedding dimen-
sion of the text-conditioned tokens of the video generation
process. The network g consists of four sequential linear lay-
ers with GELU non-linearity between them. We denote ã(i)

as TEMPOTOKENS. Subsequently, we generate a temporal
conditioning sequence for each video frame using TEMPO-
TOKENS. We provide a detailed description of the process
in the following paragraph.
Audio-conditioned temporal sequence. Next, to better
capture the local context around each video frame, we apply
an expanding context window technique over the obtained
TEMPOTOKENS. This approach captures the surrounding
sound signals of the i-th frame as follows:

c(i) =
(
ãmax(1,i−j),min(i+j,K) | j = 2k

)logK

k=0
, (2)

where

ãl,r =
1

r − l

r∑
s=l

ã(s). (3)

This context window expands exponentially with increasing
temporal distance from the target position, facilitating con-
sideration of a wider local-to-global audio context range.
The exponential expansion effectively balances local and
global contexts, encompassing important distant audio com-
ponents that can provide valuable insights into the audio
class and close temporal changes needed for audio-video
alignment. Figure 3 visually describes the audio-conditioned
temporal sequence. Finally, we consider a context window
that encompasses all audio signals. We substitute average
operation with a trainable attentive pooling layer (Schwartz
et al. 2019). Thus,

ãatten =
L∑

u=1

p(u)ã(u), (4)

where p(u)≥0 ∀u is a probability distribution (i.e.,∑L
u=1 p(u) = 1) over the audio components. The proba-

bility distribution takes the form:

p(u) ∝ exp (αlθl(u) + αcθc(u)) . (5)

The local potential is θl(u) = v⊤l relu(Vlau), and the cross
potential between the audio components is:

θc(u) =
L∑

i=1

((
W1ã

(u)

||W1ã(u)||

)⊤(
W2ã

(i)

||W2ã(i)||

))
. (6)

The trainable parameters are (i) Vl,W1,W2, which re-
embed the data to tune the attention, (ii) vl ∈ R(L·H·dt)×1

that scores the sound component (iii) αl, αc that calibrates
the local and cross potentials. The attention mechanism en-
ables learning the significance of the audio components.
Text-to-video. Lastly, we leverage a pre-trained latent dif-
fusion text-to-video model to learn the aforementioned tem-
poral audio tokens, c = {c(i)}Li=1.

Figure 3: Illustration of the audio-conditioned temporal se-
quence for the case of 24 audio components. For the i-th
frame, the window sizes grow exponentially, considering lo-
cal audio details to aid in aligning audio and video, as well as
the broader global information that enhances the differentia-
tion of video classes. Additionally, we introduce a token that
encompasses all audio components and identifies the signif-
icant ones through an attention pooling layer (ãatten).

Diffusion models are a family of generative models de-
signed to learn the data distribution p(x). This is done by
learning the reverse Markov process of length T . Given a
timestamp t ∈ [0, 1], the denoising function ϵθ : Rd → Rd

learns to predict a clean version of the perturbed xt from
the training distribution. The generative process can be con-
ditioned on a given input, i.e., modeling p(x|y) where y
is a condition vector. In that case, the objective function is
LCLDM ≜,

E(v,a)∼S,t∼U(0,1),ϵ∼N (0,I)

[
∥ϵ− ϵθ(f (vt, c) , t)∥22

]
, (7)

where each video frame, v(i), is conditioned on a dedicated
condition vector c(i).

Specifically, in this work, we set ϵθ to be a state-of-the-
art text-to-video model, ModelScope, which is comprised
of a 3D-UNet integrated with a temporal attention layer as
outlined in Wang et al. (2023b). ModelScope was trained
on ∼10M text-video pairs and ∼2B text-image pairs (Wang
et al. 2023b). Notice the proposed framework is not limited
to ModelScope and can be used over any differentiable text-
to-video model.
Model optimization. We optimize the AudioMapper and
the attentive pooling layer only and backpropagate gradi-
ents through ϵθ while keeping its parameters unchanged.
Optimization minimizes the loss LCLDM for reconstructing
a frame v(i) conditioned on c(i) (see Equation (7)), with an
added weight decay regularization for the encoded TEMPO-
TOKENS. Overall, we optimize the following loss function:

L = LCLDM +
λl1

L

logL∑
u=1

ã(u), (8)

where λl1 is a trade-off hyper-parameter between the loss
term and the regularization.

Evaluation Metrics
We evaluate our method on three main axes: video quality
and diversity, audio-video alignment, and a human study.
Video quality and diversity. We report standard evaluation
metrics in the domain of video generation for assessing qual-
ity and diversity. We utilize the following metrics: (i) Frechet
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Video Distance (FVD) metric, which quantifies the visual
disparity between feature embeddings extracted from gen-
erated and reference videos (Unterthiner et al. 2019) and is
used to assess quality and diversity; (ii) Inception Score (IS),
which is computed with a trained C3D model (Tran et al.
(2015)) on UCF-101 (Soomro, Zamir, and Shah 2012) and
assesses video quality.
Audio-video alignment. We distinguish between two types
of audio-video alignment: (i) Semantic (or global) align-
ment, in which the semantic class (e.g., playing drums) of
the input audio is depicted by the output video (e.g., a video
of people playing drums). To this end, we consider the CLIP
Similarity (CLIPSIM) metric (Wu et al. 2021), which gauges
the alignment between generated video content and its corre-
sponding audio label; (ii) Temporal alignment, in which we
consider if each input audio segment is synchronized with
its corresponding generated video segment. To measure this
type of alignment, we introduce a novel evaluation metric.

The new metric is based on detecting energy peaks in
both modalities separately and measuring their alignment.
The premise behind this metric is that fast temporal energy
changes in the audio signal often correspond to an object
movement producing this sound. For instance, consider an
audio waveform of fireworks. A successful audio-video tem-
poral alignment would ensure that the video frames portray-
ing the fireworks exhibit a noticeable change synchronously.
Conversely, when the video exhibits a significant change, a
corresponding peak should be observed in the audio wave-
form at that precise moment.

Our audio-video alignment metric operates as follows.
We first detect candidate alignment points by considering
each modality separately. We detect audio peaks using an
Onset Detection algorithm (Böck and Widmer 2013), pin-
pointing instances of heightened auditory intensity. To detect
the changes within the video, we calculate the mean of the
Optical Flow (Horn and Schunck 1981) magnitude for each
frame and identify rapid changes over time. Then, for each
peak in one modality, we validate whether a pick was also
detected in the other modality within a three-frame temporal
window and vice-versa.

Finally, we normalize by the number of peaks to derive the
alignment score ranging between zero and one. Such a met-
ric reflects the model’s proficiency in synchronizing audio
and video. More formally, given A and V , audio and video
peaks were obtained from the onset detection algorithms and
optical flow, respectively. The alignment score is defined as:

AV-Align =
1

2|A ∪ V|

(∑
a∈A

1[a ∈ V ] +
∑
v∈V

1[v ∈ A]

)
, (9)

where we consider a valid peak if placed within a window
of three frames in the other modality. The above metric can
be interpreted as the Intersection-over-Union metric.

To facilitate comprehension, Figure 4 illustrates the align-
ment process visually, depicting audio peaks and corre-
sponding video changes, emphasizing the interplay between
the auditory and visual domains.
Human study. We perform Mean Opinion Scores (MOS)
experiments considering both quality and audio-video align-
ment. In this setup, human raters are presented with several
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Figure 4: Audio-Video alignment metric illustration. The
first row presents four frames from a generated video fea-
turing a dog. The second row depicts the mean magnitude
of optical flow for each frame, capturing video changes. The
bottom row shows the amplitude of the audio waveform. The
vertical line in the middle and the bottom graphs marks the
onset of the waveform, while the peak of video change is
also indicated.

short video samples and are instructed to evaluate their qual-
ity and alignment on a scale between 1–5 with increments
of 1.0. Specifically, we ask raters to evaluate the videos con-
sidering overall quality, global alignment to the audio file,
and local alignment between the visual and sound of the
video files. We evaluate 20 videos per method and enforce
ten raters per sample. The full questionnaire we asked the
raters can be found in the supplemental material.

Experimental Setup
Implementation details. The proposed method contains
∼35M trainable parameters. We optimized the model us-
ing two A6000 GPUs for 10K iterations. We use AdamW
optimizer with learning rate of 1e-05 using constant learn-
ing rate scheduler. Each batch comprises 8 videos with 24
frames per video, sampled randomly for one-second granu-
larity. To enhance training efficiency and mitigate memory
consumption, we integrated gradient checkpointing into the
training process of the 3D U-net architecture. Code and pre-
trained models will be publicly available upon acceptance.
Datasets. We utilize the VGGSound dataset (Chen et al.
2020), derived from YouTube videos containing ∼180K
clips of 10 seconds duration, annotated across 309 classes.
To enhance data quality, we filtered ∼60K videos in which
audio-video alignment is weak. During this filtering proce-
dure, we utilized a pre-trained audio classifier to categorize
sound events present in each clip. Simultaneously, a pre-
trained image classifier was employed to classify the middle
frame of every video clip. We then computed the CLIP (Rad-
ford et al. 2021) score by comparing the predicted labels
from both classifiers. Then, filtering is done by removing
videos that do not pass a pre-defined threshold. Our ex-
ploration of alternative filtering criteria, focusing on frames
with maximum similarity to text labels rather than uniformly
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Model FVD (↓) CLIPSIM (↑) IS (↑) AV-Align (↑)

VGGSound

ModelScope Text2Vid 801 0.69 15.55 0.27
ModelScope Random 1023 0.47 6.32 0.26

Ours 923 0.57 11.04 0.35

AudioSet-Drums

TATS 303 0.69 2.10 0.28

Ours 299 0.70 2.78 0.61

Landscape

MM-Diffusion 922 0.53 2.85 0.41

Ours 784 0.57 4.49 0.54

Table 1: Automatic video generation results. We report
FVD, CLIPSIM, IS, and Alignment (‘align’) scores for both
the proposed method (Ours) and the baselines. For a fair
comparison, we compare our method to TATS (Ge et al.
2022) and to MM-Diffusion (Ruan et al. 2023) using the
benchmarks reported by the authors in the original paper.

choosing the middle frame, reveals minimal differences (ap-
proximately 0.01) in CLIPSIM (Wu et al. 2021), IS (Tran
et al. 2015), and AV-Align scores, leading us to use the mid-
dle frame.

Additionally, to have a fair comparison with prior work,
we experimented with two additional datasets. (i) The Land-
scape dataset (Lee et al. 2022), which contains 928 nature
videos divided into 10-second clips, covering nine distinct
scenes; (ii) The AudioSet-Drum dataset (Gemmeke et al.
2017), contains ∼7k videos of drumming. We used the same
split as proposed by Ge et al. (2022), where ∼6k is used as
the training set while the rest serves as a test set.

Baselines. We compare the proposed method to previous
state-of-the-art models generating videos conditioned on au-
dio inputs. Ge et al. (2022) proposed Time Sensitive Trans-
former (TATS) model, which projects audio latent embed-
dings onto video embeddings, enabling cross-modal align-
ment. Ruan et al. (2023) recently proposed MM-Diffusion,
which employs coupled denoising auto-encoders to generate
joint audio and video content. Each of the above-mentioned
baselines, i.e., TATS and MM-Diffusion, were originally
evaluated using different benchmarks, i.e., AudioSet-Drums
and Landscape, respectively. For a fair comparison, we eval-
uate the proposed method using each of the datasets sug-
gested in the original papers.

Moreover, we consider two naive baselines based on text-
to-video models. In the first one, we generate videos from
text description and retrieve random audio from the train-
ing set which corresponds to the same class as the gener-
ated video, denoted as ModelScope Text-To-Video. For the
second one, denoted as ModelScope Random, we gener-
ate videos unconditionally (i.e., without any specific tex-
tual conditions), and match it with a random audio segment.
For both baselines, we use the pre-trained publicly available
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Figure 5: Human study. We consider the MOS score for
three metrics: (i). Semantic alignment, where we ask users
to rate how well the video matches the input audio semantic
label, (ii). Temporal alignment, where we ask users to rate
how well each input audio segment is aligned with the gen-
erated video segments, and (iii) Video quality, where we ask
users to rate the generated video quality. On the LHS, we
consider video models trained on AudioSet-Drum, and on
the RHS, we consider video models trained on Landscape.

zeroscope-v2 model 1.

Results
We start by presenting results for audio-to-video generation
considering both objective metrics presented above and hu-
man study. Next, we empirically demonstrate how the pro-
posed method can be used to generate videos conditioned on
both text and audio modalities, thus enhancing text-to-video
generations. Lastly, we conduct an ablation study to under-
stand better the effect of our audio conditioning technique
on generation quality and alignment. Visual results are pro-
vided in the supplementary.

Audio-to-Video Generation
Objective evaluation. As can be seen in Tab. 1, our method
outperforms the baselines on all metrics for the AudioSet-
Drums and Landscape datasets. Specifically, our method im-
proves both the quality of the generated videos (FVD and IS
scores) together with the audio-video alignment (AV-Align
and CLIPSIM scores). As expected, the gap between the
methods is larger when considering the alignment scores.

Notice the alignment scores changed significantly when
considering different benchmarks. Sound events can also be
produced by objects not seen in the video; this is especially
noticeable in the VGGSound benchmark, in which the AV-
Align score of the original videos is 0.51.

Next, we compare our method to the original ModelScope
model, both text-condition (ModelScope Text2Vid) and un-
conditionally (ModelScope Random). As we do not mod-
ify the model, we consider the text-condition setup as a
top-line in terms of video quality metrics. Recall the au-
dio in both models is retrieved from our training set, us-
ing either the video class for ModelScope Text2Vid or ran-

1we use the zeroscope-v2 576w as can be found in the following
link: https://huggingface.co/cerspense/zeroscope v2 576w
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Cond. FVD (↓) CLIPSIM (↑) IS (↑) AV-Align (↑)

Text 801 0.69 15.55 0.27

Audio 923 0.57 11.04 0.35

Text+Audio 859 0.58 11.66 0.36

Table 2: Results of the proposed method using different
modalities as conditioning. We report results for Text, Au-
dio, and Text+Audio modalities as model conditioning.

"A video
of <TemporalAudioTokens>

in Abstract Colors"

Fi
re

W
at

er

"A video of
<TemporalAudioTokens>,

 on the moon"

"A video of
<TemporalAudioTokens>, with
vibrant red and orange foliage"

Figure 6: Examples of added text tokens for altering the out-
put video. We show results for fire and flowing water audio.

domly ModelScope Random. As expected, our model out-
performs ModelScope Random considering all metrics. The
ModelScope Text2Vid is superior to our model for video
quality. However, when considering audio-video alignment,
our method is significantly better.
Human study. We present results using a human study
considering both video quality and alignment (both seman-
tic and temporal). Results are depicted in Figure 5. As
can be seen for both the AudioSet-Drum and Landscape
datasets, users found our videos significantly more tempo-
rally aligned. For semantic alignment, our method improves
on both TATS and MM-Diffusion, with a significant gap to
MM-Diffusion on the Landscape dataset. Finally, on video
quality, users found our videos significantly superior.

Joint Audio-Text to Video Generation
Utilizing text and audio together to guide generation in-
volves adding text tokens for conditioning. In Tab. 2, we
show results using “A video of <class>” for text condition-
ing and “A video of <TemporalAudioAtokens> <class>”
for Text+Audio. Combining text and audio conditioning out-
performs audio-only in all metrics, especially FVD. Text-
only provides the highest video quality but lacks alignment.

In Fig. 6, we present how we merge text tokens to tem-
poral audio tokens, which enables style manipulation. For
example, for the sound of a river, we can depict it flowing
over the moon by using the prompt “on the moon”.

Ablation Study
Recall our method consists of using context windows of
varying sizes to capture a local-to-global context of the in-
put audio. In Tab. 3, we assess the effect of using different
windows of size K ∈ {1, 2, 3, 4} denoted as win. (K-res.).
Note in practice, the window size is determined by logK;

Cond. FVD (↓) CLIPSIM (↑) IS (↑) AV-Align (↑)

vec. 948 0.57 10.12 0.29

win. (1-res.) 998 0.56 9.22 0.36
win. (2-res.) 965 0.56 9.87 0.35

win. (3-res.) 972 0.56 10.01 0.34

win. (4-res.) 950 0.56 10.13 0.35

win. (5-res.) 923 0.57 11.04 0.35

Table 3: An ablation study exploring the different audio con-
ditioning. We report FVD, CLIPSIM, IS, and Alignment
scores on VGGSound (Chen et al. 2020) considering single-
vector conditioning (vec.), time-dependent condition using
one window size (win. (1-res.), and different windows of
size k (win. (k-res.)).

we use K for readability. Using only the local context win-
dow (K = 1) results in a good alignment. As we increase
the global context (i.e., increasing K), the video quality is
improved while the alignment scores are comparable.

We additionally consider a single audio conditioning vec-
tor (vec) by averaging all the audio components. Despite
high video quality scores, the absence of local temporal in-
formation results in a notably worse AV-Align score.

Limitations
Our method, using a pre-trained text-to-video model, in-
volves adapting between text and audio tokens, posing chal-
lenges in mapping between their latent representations. Due
to hardware limitations, our method generates relatively
short video segments with temporal conditioning limited to
24 frames. Additionally, discrepancies can arise between vi-
sual and audio modalities, such as a video showing a dog
in a car while the audio only features a radio playing. This
limitation is not specific to our method but rather a general
challenge in the domain.

Conclusion
We introduced a state-of-the-art audio-to-video generation
model that generates diverse and realistic videos aligned
to input audio samples. Leveraging a lightweight adapter
for mapping between audio and text representations enables
conditioning video generation on both audio and text for the
first time. Our expanding context window technique cap-
tures local and global context, and we propose the AV-Align
metric for assessing temporal alignment.

Future work aims to explore incorporating additional
modalities like depth, images, or IMU alongside audio and
text for video generation.
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