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Abstract

Recently, video object segmentation (VOS) referred by multi-
modal signals, e.g., language and audio, has evoked increas-
ing attention in both industry and academia. It is challenging
for exploring the semantic alignment within modalities and
the visual correspondence across frames. However, existing
methods adopt separate network architectures for different
modalities, and neglect the inter-frame temporal interaction
with references. In this paper, we propose MUTR, a Multi-
modal Unified Temporal transformer for Referring video ob-
ject segmentation. With a unified framework for the first time,
MUTR adopts a DETR-style transformer and is capable of
segmenting video objects designated by either text or audio
reference. Specifically, we introduce two strategies to fully ex-
plore the temporal relations between videos and multi-modal
signals. Firstly, for low-level temporal aggregation before the
transformer, we enable the multi-modal references to cap-
ture multi-scale visual cues from consecutive video frames.
This effectively endows the text or audio signals with tem-
poral knowledge and boosts the semantic alignment between
modalities. Secondly, for high-level temporal interaction after
the transformer, we conduct inter-frame feature communica-
tion for different object embeddings, contributing to better
object-wise correspondence for tracking along the video. On
Ref-YouTube-VOS and AVSBench datasets with respective
text and audio references, MUTR achieves +4.2% and +8.7%
J&F improvements to state-of-the-art methods, demonstrat-
ing our significance for unified multi-modal VOS. Code is
released at https://github.com/OpenGVLab/MUTR.

Introduction
Multi-modal video object segmentation (VOS) aims to track
and segment particular object instances across the video
sequence referred by a given multi-modal signal, includ-
ing referring video object segmentation (RVOS) with lan-
guage reference, and audio-visual video object segmentation
(AV-VOS) with audio reference. Different from the vanilla
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VOS (Xu et al. 2018; Yan et al. 2023) with only visual in-
formation, the multi-modal VOS is more challenging and in
urgent demand, which requires a comprehensive understand-
ing of different modalities and their temporal correspondence
across frames.

There exist two main challenges in multi-modal VOS.
Firstly, it requires to not only explore the rich spatial-temporal
consistency in a video, but also align the multi-modal seman-
tics among image, language, and audio. Current approaches
mainly focus on the visual-language or visual-audio modal
fusion within independent frames, simply by cross-modal
attention (Chen et al. 2019; Hu et al. 2020; Shi et al. 2018) or
dynamic convolutions (Margffoy-Tuay et al. 2018) for feature
interaction. This, however, neglects the multi-modal temporal
information across frames, which is significant for consistent
object segmentation and tracking along the video. Secondly,
for the given references of two modalities, language and au-
dio, existing works adopt different architecture designs and
training strategies to separately tackle their modal-specific
characteristics. Therefore, a powerful and unified framework
for multi-modal VOS still remains an open question.

To address these challenges, we propose MUTR, a Multi-
modal Unified Temporal transformer for Referring video ob-
ject segmentation. Our approach, for the first time, presents a
generic framework for both language and audio references,
and enhances the interaction between temporal frames and
multi-modal signals. In detail, we adopt a DETR-like (Carion
et al. 2020) encoder-decoder transformer, which serves as the
basic architecture to process visual information within differ-
ent frames. On top of this, we introduce two attention-based
modules respectively for low-level multi-modal temporal
aggregation (MTA), and high-level multi-object temporal in-
teraction (MTI). Firstly before the transformer, we utilize the
encoded multi-modal references as queries to aggregate infor-
mative visual and temporal features via the MTA module. We
concatenate the visual features of adjacent frames and adopt
sequential attention blocks for multi-modal tokens to progres-
sively capture temporal visual cues of different image scales.
This contributes to better low-level cross-modal alignment
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and temporal consistency. Then, we regard the multi-modal
tokens after MTA as object queries and feed them into the
transformer for frame-wise decoding. After that, we apply
the MTI module to conduct inter-frame object-wise interac-
tion, and maintain a set of video-wise query representations
for associating objects across frames inspired by (Heo et al.
2022). Such a module enhances the instance-level temporal
communication and benefits the visual correspondence for
segmenting the same object in a video. Finally, we utilize
a segmentation head following previous works (Wu et al.
2022, 2021) to output the final object mask referred by multi-
modality input.

To evaluate our effectiveness, we conduct extensive exper-
iments on several popular benchmarks for multi-modal VOS.
RVOS with language reference (Ref-YouTube-VOS (Seo,
Lee, and Han 2020) and Ref-DAVIS 2017 (Khoreva,
Rohrbach, and Schiele 2019)), and one benchmark for AV-
VOS with audio reference (AVSBench (Zhou et al. 2022)).
On Ref-YouTube-VOS (Seo, Lee, and Han 2020) and Ref-
DAVIS 2017 (Khoreva, Rohrbach, and Schiele 2019) with
language references, MUTR surpasses the state-of-the-art
method ReferFromer (Wu et al. 2022) by +4.2% and +4.1%
J&F scores, respectively. On AV-VOS (Zhou et al. 2022)
with audio references, we also outperform Baseline (Zhou
et al. 2022) by +8.7% J&F score.

Overall, our contributions are summarized as follows:

• For the first time, we present a unified transformer ar-
chitecture, MUTR, to tackle video object segmentation
referred by multi-modal inputs, i.e., language and audio.

• To better align the temporal information with multi-modal
signals, we propose two attention-based modules, MTA
and MTI, respectively for low-level multi-scale aggre-
gation and high-level multi-object interaction, achieving
superior cross-modal understanding in a video.

• On benchmarks of two modalities, our approach both
achieves state-of-the-art results, e.g., +4.2 % and +4.1%
J&F for Ref-YouTube-VOS and Ref-DAVIS 2017,
+8.7% J&F for AV-VOS. This fully indicates the sig-
nificance and generalization ability of MUTR.

Related Work
Referring video object segmentation (R-VOS). R-VOS
introduces the language expression for target object tracking
and segmentation, following the trend of vision-language
learning (Zhang et al. 2022, 2023b; Zhu et al. 2023; Fang
et al. 2023). Existing R-VOS methods can be broadly clas-
sified into three categories. One of the most straightforward
ideas is to apply referring image segmentation methods (Ding
et al. 2021; Yang et al. 2022; Wang et al. 2022) independently
to video frames, such as RefVOS (Bellver et al. 2020). Obvi-
ously, it disregards the temporal information, which makes
it difficult to process common video challenges like object
disappearance in reproduction. Another approach involves
propagating the target mask detected from key frame and se-
lecting the object to be segmented based on a visual ground-
ing model (Kamath et al. 2021; Luo et al. 2020). Although it
applies the temporal information to some extent, its complex
multi-stage training approach is not desirable. The recent

work MTTR (Botach, Zheltonozhskii, and Baskin 2022) and
ReferFormer (Wu et al. 2022) have employed query-based
mechanisms. Nevertheless, they are end-to-end frameworks,
they perform R-VOS task utilizing image-level segmentation.
Constrastly, our unified framework fully explores video-level
visual-attended language information for low-level temporal
aggregation.

Audio-visual video object segmentation (AV-VOS). In-
spired by recent multi-modality efforts (Zhang et al. 2023a;
Gao et al. 2023; Lin et al. 2023; Wang et al. 2023; Guo
et al. 2023; Han et al. 2023b,a), AV-VOS is proposed for
predicting pixel-level individual positions based on a given
sound signal. There is little previous work on audio-visual
video object segmentation. Until recently (Zhou et al. 2022)
proposed the audio-visual video object segmentation dataset.
Different from it, (Mo and Tian 2023) is based on the recent
visual foundation model Segment Anything Model (Kirillov
et al. 2023; Zhang et al. 2023c) to achieve audio-visual seg-
mentation. However, all of them lack the temporal alignment
between multi-modal information.

Method
In this section, we illustrate the details of our MUTR for
multi-modal video object segmentation. We first describe the
overall pipeline in Section . Then, in Section and Section , we
respectively elaborate on the proposed designs of the multi-
scale temporal aggregation module (MTA), and multi-object
temporal interaction module (MTI).

Overall Pipeline
The overall pipeline of MUTR is shown in Figure 1. We adopt
a DETR-based (Carion et al. 2020) transformer as our basic
architecture, including a visual backbone, a visual encoder
and a decoder, on top of which, two modules MTA and MTI
are proposed for temporal multi-modal interaction. In this
section, we successively introduce the pipeline of MUTR for
video object segmentation.

Feature Backbone. Given an input video-text/audio pair,
we first sample T frames from the video clip, and utilize
the visual backbone and a pre-trained text/audio backbone
to extract the image and multi-modal features. Specifically,
we utilize ResNet (He et al. 2016) or Swin Transformer (Liu
et al. 2021) as the visual backbone, and obtain the multi-
scale visual features of the 2nd, 3rd, 4th stages. Concurrently,
for the text reference, we employ an off-the-shelf language
model, RoBERTa (Liu et al. 2019), to encode the linguistic
embedding tokens. For the audio reference, we first process
it as a spectrogram transform via a short-time Fourier Trans-
form and then feed it into a pre-trained VGGish (Hershey
et al. 2017) model. After the text/audio encoding, a linear
projection layer is adopted to align the multi-modal feature
dimension with the visual features. Note that, following pre-
vious work (Wu et al. 2022), we adopt an early fusion module
in the visual backbone to inject preliminary text/audio knowl-
edge into visual features.

MTA Module. On top of feature extraction, we feed the
visual and text/audio features into the multi-scale temporal
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Figure 1: The Overall Pipeline of MUTR for referring video object segmentation. We present a unified transformer architecture
to tackle video object segmentation referred by multi-modal inputs. We propose MTA module and MTI module for low-level
multi-scale aggregation and high-level multi-object interaction, respectively.

aggregation module (MTA). We concatenate the visual fea-
tures of adjacent frames, and adopt cascaded cross-attention
blocks to enhance the multi-scale and multi-modal feature
fusion, which is specifically described in Section .

Visual Encoder-decoder Transformer. The basic trans-
former consists of a visual encoder and a visual decoder,
which processes the video in a frame-independent manner to
focus on the feature fusion within a single frame. In detail, the
visual encoder adopts vanilla self-attention blocks to encode
the multi-scale visual features. The visual decoder regards the
encoded visual features as the key and value, and the output
references from the MTA module as learnable object queries
for decoding. Unlike the randomly initialized queries in tradi-
tional DETR (Carion et al. 2020), ours are input-conditioned
ones obtained via MTA module, which contains video-level
multi-modal prior knowledge. With the visual decoder, the
object queries gain rich instance information, which provides
effective cues for the final segmentation process.

MTI Module. After the visual transformer, a multi-object
temporal interaction (MTI) module is proposed for object-
wise interaction, which is described in Section . In detail, we
utilize an MTI encoder to communicate temporal features
of the same object in different views. Then an MTI decoder
is proposed to grasp information into a set of video-wise
query representations for associating objects across frames,
inspired by (Heo et al. 2022).

Segmentation Head and Loss Function. On top of the
components introduced above, we obtain the final mask pre-
dictions from the extracted multi-modal features via a seg-
mentation head. We follow previous works (Wu et al. 2022,

2021) to design the segmentation head that contains a bound-
ing box head, a classification head, and a mask head. Then,
we find the best assignment from the predictions of MUTR
by using Hungarian Matching (Carion et al. 2020). During
training, we calculate three losses in MUTR, which are focal
loss (Lin et al. 2017) Lcls on the predictions of referred object
sequence, Lbox on the bounding box of predicted instance,
and Lmask on the predicted object masks. In detail, Lbox is
the combination of L1 loss and GIoU loss (Rezatofighi et al.
2019), and Lmask is the summation of the Dice (Milletari,
Navab, and Ahmadi 2016) and binary focal loss. The whole
loss function is formulated as

L = λcls Lcls + λbox Lbox + λmask Lmask , (1)

where λcls, λbox and λmask denote the weights for Lcls, Lbox

and Lmask.

Multi-scale Temporal Aggregation
To boost both the multi-modal and multi-frame feature fusion,
we introduce Multi-scale Temporal Aggregation module for
low-level temporal aggregation. The proposed MTA module
generates a set of object queries that contain multi-modal
knowledge for subsequent transformer decoding.

Multi-scale Temporal Transform. As shown in Figure ??,
the MTA module take the text/audio features Fr, and multi-
scale visual features as input, i.e., the extracted features of
2nd, 3rd, 4th stages from the visual backbone. We first utilize
linear projection layers on the multi-scale features to trans-
form them into the same dimension. Specifically, we sepa-
rately utilize 1 × 1 convolution layers on the 2nd, 3rd, 4th
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Figure 2: Multi-scale Temporal Aggregation. For low-level
multi-modal temporal aggregation, we propose MTA mod-
ule for inter-frame interaction, which generates tokens with
multi-modal knowledge as the input queries for transformer
decoding.

scale features, and an additional 3× 3 convolution layer on
the 4th stage features to obtain the 5th scale features. We de-
note the projected features as {F i

vj}, where 2 ≤ i ≤ 5, 1 ≤
j ≤ T represent the stage number and frame number. After
that, we concatenate the visual features of adjacent frames
for each scale, formulated as

F i
v = Concat(F i

v1, F
i
v2, ..., F

i
vj , ..., F

i
vT ), (2)

where 2 ≤ i ≤ 5, 1 ≤ j ≤ T , F i
vj represents the pro-

jected jth frame features of ith scale, and {F i
v}5i=2 is the

final transformed multi-scale visual feature. Then, the result-
ing multi-modal temporal features are regarded as the key
and value in the following cross-attention blocks.

Multi-modal Cross-attention. On top of this, we adopt se-
quential cross-attention mechanisms for multi-modal tokens
to progressively capture temporal visual cues of different
image scales. We adopt four cross-attention blocks that are
assigned to each scale respectively for multi-scale temporal
feature extracting. In each attention block, the text/audio fea-
tures serve as the query, while the multi-scale visual features
serve as the key and value. We formulate it as

Ff = Blocki−1(Fr, F
i
v, F

i
v), 2 ≤ i ≤ 5, (3)

where Block represents the sequential cross-attention blocks
in MTA module, Ff is the output multi-modal tokens that
contain the multi-modal information.

After that, we simply repeat the class token of Ff for
T × N times, where T is the frame number and N is the
query number. We adopt them as the initialized queries fed
into the visual transformer for frame-wise decoding. With the
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Figure 3: Multi-object Temporal Interaction. We introduce
MTI module for inter-frame object-wise interaction, and
maintain a set of video-wise query representations for as-
sociating objects across frames.

MTA module, the pre-initialized input queries obtain prior
multi-scale knowledge and temporal information for better
multi-modal alignment during subsequent decoding.

Multi-object Temporal Interaction
As the visual transformer adopts a frame-independent man-
ner and fails to interact information among multiple frames,
we further introduce a Multi-object Temporal Interaction
module to conduct inter-frame object-wise interaction. This
module enhances the high-level temporal communication of
objects, and benefits the visual correspondence for effective
segmentation. The details of MTI are shown in Figure ??,
which consists of an MTI encoder and an MTI decoder.

MTI Encoder. We obtain the object query outputs P of
each frame from the transformer decoder, and feed them
into the MTI encoder, which contains a self-attention layer
to conduct object-wise interaction across multiple frames,
and a feed-forward network layer for feature transformation.
To achieve more efficient implementation, we adopt shifted
window-attention (Liu et al. 2021) with linear computational
complexity in the self-attention layer. The process of MTI
encoder is formulated as

P ′ = MTI_Encoder(P ) (4)

where MTI_Encoder denotes the MTI encoder, and P ′ is
the outputs of MTI encoder.

MTI Decoder. Based on the MTI encoder, we maintain
a set of video-wise query Q for associating objects across
frames, which are randomly initialized. We regard the outputs
from MTI encoder as the key and value, and feed them and
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Method Backbone Ref-YouTube-VOS Ref-DAVIS 2017
J&F J F J&F J F

CMSA (Ye et al. 2019)

ResNet-50

34.9 33.3 36.5 34.7 32.2 37.2
URVOS (Seo, Lee, and Han 2020) 47.2 45.3 49.2 51.5 47.3 56.0
LBDT-4 (Ding et al. 2022b) 48.2 50.6 49.4 - - -
YOFO (Li et al. 2022) 48.6 47.5 49.7 53.3 48.8 57.9
ReferFormer (Wu et al. 2022) 58.7 57.4 60.1 61.1 58.0 64.1
MUTR 61.9 60.4 63.4 65.3 62.4 68.2

CITD (Liang et al. 2021)
ResNet-101

56.4 54.8 58.1 - - -
ReferFormer (Wu et al. 2022) 59.3 58.1 60.4 61.0 58.1 63.8
MUTR 63.6 61.8 65.4 65.3 61.9 68.6

ReferFormer (Wu et al. 2022) Swin-L 64.2 62.3 66.2 63.9 60.8 67.0
MUTR 68.4 66.4 70.4 68.0 64.8 71.3

MTTR (Botach, Zheltonozhskii, and Baskin 2022)

Video-Swin-T

55.3 54.0 56.6 - - -
MANet (Chen et al. 2022) 55.6 54.8 56.5 - - -
ReferFormer (Wu et al. 2022) 62.6 59.9 63.3 62.8 60.8 67.0
MUTR 64.0 62.2 65.8 66.5 63.0 70.0

VLT (Ding et al. 2022a)
Video-Swin-B

63.8 61.9 65.6 61.6 58.9 64.3
ReferFormer (Wu et al. 2022) 64.9 62.8 67.0 64.3 60.7 68.0
MUTR 67.5 65.4 69.6 66.4 62.8 70.0

Table 1: Performance of MUTR on Ref-YouTube-VOS and Ref-DAVIS 2017 Datasets. We report the results of MUTR and prior
works on multiple backbones, where our MUTR shows the state-of-the-art performance on all datasets.

video-wise queries Q into MTI decoder for video-wise de-
coding. The MTI decoder consists of a cross-attention layer,
a self-attention layer, and a feed-forward network layer. We
formulate them as

Q′ = MTI_Decoder(Q, P ′, P ′) (5)
where MTI_Decoder represents the MTI decoder, Q′ is the
outputs of MTI decoder. In this way, the proposed MTI mod-
ule promotes high-level temporal fusion and enhances the
connection and interaction of the same objects in different
frames, which further contributes to effective segmentation.

Joint Training for Multi-modality
As a unified VOS framework for multi-modality, MUTR has
the potential to segment video objects referred by either text
or audio reference. To achieve this, we conduct joint training
by combining both text- and audio-referred datasets. Specifi-
cally, to balance the data amount of two modalities, the joint
training data is composed of partial Ref-YouTube-VOS (Seo,
Lee, and Han 2020) (text reference) and the entire AVSBench
S4 (Zhou et al. 2022) (audio reference). We sample a subset
of Ref-YouTube-VOS for training (10,093 clips (5 frames per
clip) out of 72,920), for which we utilize only one description
for videos with multiple text descriptions, and filter out half
of the instances based on odd-index positions for training.

For text or audio reference, we accordingly switch to their
respective encoders for feature encoding, i.e., RoBERTa for
text and VGGish for audio. Then, they share the same sub-
sequent network modules, i.e., MTA, visual encoder, visual
decoder, MTI, and segments head. By our temporal and cross-
modality interaction modules, the jointly trained MUTR can
obtain superior performance on either of the two modalities.

Experiments
Quantitative Results
Ref-YouTube-VOS. As shown in Table 1, MUTR outper-
forms the previous state-of-the-art methods by a large mar-
gin under on all datasets. On Ref-YouTube-VOS, MUTR
with a lightweight backbone ResNet-50 achieves the supe-
rior performance with overall J&F of 61.9%, an improve-
ment of +3.2% than the previous state-of-the-art method
Referformer. By adopting a more powerful backbone Swin-
Transformer (Liu et al. 2021), MUTR improves the perfor-
mance to J&F 68.4%, which is +4.2% than the previous
method ReferFormer (Wu et al. 2022). Using a more strong
backbone, our method has a higher percentage of improve-
ment, which better reflects the robustness of our method on
the scaled-up model size. To reflect the powerful temporal
modeling capability of MUTR, we therefore adopt the video
Swin transformer (Liu et al. 2022) as the backbone, which
is a spatial-temporal encoder that can effectively capture the
spatial and temporal cues simultaneously, to compensate for
the temporal limitations of the ReferFormer as discussed
in (Hu et al. 2022). It can be observed that our method sig-
nificantly outperforms the ReferFormer, which demonstrates
the effectiveness of the temporal consistency in our model.

Ref-DAVIS 2017. On the Ref-DAVIS 2017, our method
also achieves the best results under the same backbone setting.
Since ReferFormer (Wu et al. 2022) does not include the
resultson Ref-DAVIS 2017, we report its results using the
official pre-trained models provided by ReferFormer.

AV-VOS. Table 2 shows the performance of our MUTR on
the AVSBench dataset. MUTR significantly surpasses all the
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Method Backbone AVSBench S4 AVSBench MS3
J&F J F J&F J F

LVS (Chen et al. 2021) ResNet-18 44.5 37.9 51.0 31.3 29.5 33.0
SST (Duke et al. 2021) ResNet-50 73.2 66.3 80.1 49.9 42.6 57.2
LGVT (Zhang et al. 2021) Swin-B 81.1 74.9 87.3 50.0 40.7 59.3
Baseline (Zhou et al. 2022) ResNet-50 78.8 72.8 84.8 52.9 47.9 57.8
Baseline (Zhou et al. 2022) PvT-V2 83.3 78.7 87.9 59.3 54.0 64.5

MUTR

ResNet-50 83.0 78.6 87.3 61.6 57.0 66.1
ResNet-101 83.1 78.5 87.6 63.7 59.0 68.3

PvT-V2 85.1 80.7 89.5 67.9 63.7 72.0
Swin-L 85.7 81.5 89.8 69.0 65.0 73.0

Video-Swin-T 83.0 78.7 87.2 64.0 59.2 68.7
Video-Swin-S 84.1 79.8 88.3 67.3 62.7 71.8
Video-Swin-B 85.7 81.6 89.7 68.8 64.0 73.5

Table 2: Performance of MUTR on AVSBench Dataset. MUTR surpasses the state-of-the-art method.

Methods J&F J F
ReferFormer (Wu et al. 2022) 32.5 32.6 32.4
MUTR∗ 39.9 39.4 40.5
MUTR 41.3 40.6 42.0

Table 3: Performance of MUTR on Ref-YouTube-VOS by
Multi-modality Joint Training.

Methods J&F J F
Baseline (Zhou et al. 2022) 78.8 72.8 84.8
MUTR∗ 79.7 74.5 84.9
MUTR 81.4 76.8 85.9

Table 4: Performance of MUTR on AVSBench S4 by
Multi-modality Joint Training.

Components Block
Num.

J&F J F
Multi-scale Temporal

✓ - 1 61.3 59.7 62.7
- ✓ 1 60.4 58.9 61.9
✓ ✓ 1 61.9 60.4 63.4
✓ ✓ 2 60.7 59.3 62.2
✓ ✓ 3 60.4 59.1 61.7

Table 5: Ablation Study of MTA Module.

Components Block
Num.

J&F J F
Encoder Decoder

✓ - 3 60.3 58.8 61.9
- ✓ 3 61.2 60.0 62.6
✓ ✓ 3 61.9 60.4 63.4
✓ ✓ 2 61.1 59.5 62.6
✓ ✓ 1 60.8 59.3 62.3

Table 6: Ablation Study of MTI Module.

previous best competitors (J&F 83.0% VS 78.8%; 61.6%
VS 52.9%) with the same ResNet-50 backbone. We also
achieve a new state-of-the-art performance with Swin-L (Liu
et al. 2021) backbone. By employing a stronger backbone,
we observe consistent performance improvement of MUTR,
indicating the strong generalization of our approach.

Joint Training Datasets. We keep most training hyper-
parameters consistent with our previous text-referred video
object segmentation experiments, and adopt ResNet-50 as
the visual backbone. Table 3 and 4 present the performance
of MUTR by joint training on Ref-YouTube-VOS and AVS-
Bench S4, respectively. Therein, ReferFormer, the ‘Base-
line’, and MUTR∗ are all trained exclusively on text- or
audio-referred dataset, while MUTR is trained on the multi-
modality joint dataset. As shown, the single unified MUTR
by joint training can achieve even better performance than
their separate training. This indicates the effectiveness of
our proposed architecture to serve as a unified framework

simultaneously for text and audio input.

Qualitative Results

The first two columns of Figure 4 visualize some qualitative
results in comparison with ReferFormer (Wu et al. 2022),
which lacks inter-frame interaction in terms of temporal di-
mension. As demonstrated, along with multiple highly similar
objects in the video, ReferFormer (Wu et al. 2022) is easier
to misidentifies them. In contrast, MUTR can associate all
the objects in temporal, which can better track and segment
all targets accurately.

The last column of Figure 4 visualizes the audio-visual
result compared with Baseline (Zhou et al. 2022) on AVS-
Bbench S4. With temporal consistency, MUTR success-
fully tracks and segments challenging situations that are sur-
rounded or occluded by similar instances.
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Ref-YouTube-VOS Ref-DAVIS 2017 AVSBench

”A fire truck pulling out
with another behind it.”

References
“A man in a black jacket wearing glasses."

”A box in the hands of a man wearing glasses."
”A man in the center wearing a blue and black jacket."

Ambulance Siren

Figure 4: Qualitative Results of MUTR. We visualize the results between ReferFormer (Wu et al. 2022) and MUTR on R-VOS
benchmarks and between Baseline (Zhou et al. 2022) and MUTR on AV-VOS benchmark. Compared with ReferFormer, MUTR
performs better on temporal consistency when segmenting multiple similar objects, i.e., fire truck in Ref-YouTube-VOS and box
in Ref-DAVIS 2017. Also, compared with the baseline of AV-VOS (Zhou et al. 2022) that denoted as ‘Baseline’ in this figure,
MUTR can handle serve occlusion.

MTA MTI J&F J F FPS Parameters

- - 60.2 58.7 61.7 19.64 168.1M
- ✓ 60.8 59.3 62.2 19.53 176.4M
✓ - 61.5 60.1 63.0 19.44 169.3M
✓ ✓ 61.9 60.4 63.4 19.37 177.6M

Table 7: Ablation Study of the MTA and MTI Modules.

Ablation Studies
In this section, we perform experiments to analyze the main
components and hyper-parameters of MUTR. All the ex-
periments are conducted with the ResNet-50 backbone and
evaluate their impact by the Ref-YouTube-VOS performance.

Effectiveness of Main Componenets. Table 7 demon-
strates the effectiveness of MTA and MTI proposed in our
framework. The performance will be seriously degraded from
61.9% to 60.2% by removing MTA and MTI modules. Be-
sides, our MTA and MTI modules introduce a marginal in-
crease in inference latency, demonstrating favorable imple-
mentation and parameter efficiency.

Ablation Study on MTA. In Table 5, if either the single-
scale temporal aggregation or multi-scale aggregation at the
image level are adopted, the performance of MUTR would
significantly drop to 60.4% and 61.3%, respectively, which
demonstrates the necessity of the MTA module. We also
ablate the number of MTA blocks. As seen in Table 5, more
MTA blocks cannot bring further performance improvement,
since (1) not enough videos for training; (2) the embedding
space of visual and reference is only 256-dimensional, which
is difficult to optimize so many parameters.

Ablation Study on MTI. As shown in Table 6, the perfor-
mance of MUTR is improved by using more MTI blocks. A
possible reason is that the larger the MTI blocks, the more suf-
ficient temporal communication between instance-level can
be performed. Moreover, using only the encoder or decoder,
the performance of MUTR would both decline.

Conclusion
This paper proposes a MUTR, a Multi-modal Unified
Temporal transformer for Referring video object segmen-
tation. A simple yet and effective Multi-scale Temporal Ag-
gregation (MTA) is introduced for multi-modal references
to explore low-level multi-scale visual information in video-
level. Besides, the high-level Multi-object Temporal Interac-
tion (MTI) is designed for inter-frame feature communication
to achieve temporal correspondence between the instance-
level across the entire video. Aided by the MTA and MTI, our
MUTR achieves new state-of-the-art performance on three R-
VOS/AV-VOS benchmarks compared to previous solutions.
We hope the MTA and MTI will help ease the future study
of multi-modal VOS and related tasks (e.g., referring video
object tracking and video instance segmentation). We do not
foresee negative social impact from the proposed work.
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