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Abstract

Diabetic Retinopathy (DR), the leading cause of blindness in
diabetic patients, is diagnosed by the condition of retinal mul-
tiple lesions. As a difficult task in medical image segmenta-
tion, DR multi-lesion segmentation faces the main concerns
as follows. On the one hand, retinal lesions vary in location,
shape, and size. On the other hand, because some lesions oc-
cupy only a very small part of the entire fundus image, the
high proportion of background leads to difficulties in lesion
segmentation. To solve the above problems, we propose a
heterogeneous-aware convolutional network (HACDR-Net)
that composes heterogeneous cross-convolution, heteroge-
neous modulated deformable convolution, and optional near-
far-aware convolution. Our network introduces an adaptive
aggregation module to summarize the heterogeneous feature
maps and get diverse lesion areas in the heterogeneous recep-
tive field along the channels and space. In addition, to solve
the problem of the highly imbalanced proportion of focal ar-
eas, we design a new medical image segmentation loss func-
tion, Noise Adjusted Loss (NALoss). NALoss balances the
predictive feature distribution of background and lesion by
jointing Gaussian noise and hard example mining, thus en-
hancing awareness of lesions. We conduct the experiments
on the public datasets IDRiD and DDR, and the experimental
results show that the proposed method achieves better perfor-
mance than other state-of-the-art methods. The code is open-
sourced on github.com/xqh180110910537/HACDR-Net.

Introduction
Diabetic retinopathy (DR) is one of the most common mi-
crovascular complications of diabetes, which can cause a
series of fundus lesions. Therefore, DR multi-lesion seg-
mentation is crucial to diabetes diagnosis. Over the past few
years, Convolutional Neural Networks (CNNs) and Trans-
former Networks (Liu et al. 2023a,b) have greatly promoted
the development of DR multi-lesion segmentation (Wang
et al. 2022; Cui et al. 2023; Xu et al. 2022; Ling et al. 2023).
However, existing segmentation methods still face limita-
tions that hinder their performance in DR multi-lesion seg-
mentation. First, each type of lesion has a variable shape and
size in the fundus image. Secondly, the area occupied by
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Figure 1: Comparison of our model and other attention pat-
terns. (a) is a convolutional attention mechanism with very
large kernels. (b) is ViT’s (Dosovitskiy et al. 2020) global
attention mechanism. (c) is our heterogeneous convolutional
attention mechanism.

the lesions in the fundus picture is small. As a result, model
training is more likely to be biased toward the background
rather than the lesions. Existing methods improve segmenta-
tion accuracy in DR multi-lesion segmentation by obtaining
global position relationships through large receptive fields,
but small lesion features are negatively affected by large ir-
relevant areas.

In this paper, we propose a heterogeneous-aware convolu-
tional network for DR multi-lesion segmentation (HACDR-
Net). Heterogeneous convolution aims to aggregate the con-
volution features of different structures to obtain heteroge-
neous receptive fields. Compared with previous DR multi-
lesion segmentation methods, the heterogeneous receptive
field extracts the heterogeneous features of lesions, thereby
having a good segmentation effect on lesions of various sizes
and shapes. Furthermore, the heterogeneous convolutional
structure has space-adaptive capabilities to reduce pertur-
bance in large irrelevant regions.

Aggregating heterogeneous convolution information is
difficult, because features may conflict under heteroge-
neous receptive fields. To this end, inspired by Visual At-
tention Network (Guo et al. 2023) (VAN), we design a
heterogeneous-aware attention aggregation (HAAA) mod-
ule to summarize the heterogeneous feature maps. Differ-
ent from VAN, we aggregate the features of heterogeneous
convolution instead of a single large kernel convolution. In
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Fig. 1, the receptive field of (a) and (b) is too large, causing
the lesion to be easily perturbed by the background area; the
heterogeneous receptive field of (c) is easier to get diverse
lesion areas.

In addition, another difficulty is that the proportion of the
focal area is imbalanced, which will cause the features of
some lesions to be ignored during training. This is not al-
lowed. We found that adjusting the predicted pixel values
can change the distribution of predictive features. To this
end, we propose a novel loss function, Noise Adjusted Loss
(NALoss). NALoss balances the predictive feature distri-
bution by adjusting the pixel prediction. Gaussian noise is
added in the predicted pixels to perturb the background‘s
feature and enhance the lesion‘s feature. It is worth not-
ing that noise addition is not involved in the testing phase.
Experiments prove that NALoss can strengthen the feature
learning, and improves the segmentation performance. To
summarize, our contributions are as follows:

• We propose a novel heterogeneous-aware convolutional
network (HACDR-Net) for DR multi-lesion segmenta-
tion. The network has heterogeneous receptive fields and
spatial adaptability, which solves the segmentation prob-
lem caused by the different shapes and sizes of lesions.

• We propose a new loss function Noise Adjusted Loss
(NALoss) specially designed for fitting highly imbal-
anced segmentation. It balances the distributions of pre-
dictive features by jointing Gaussian noise and hard ex-
ample mining.

• HACDR-Net undergoes thorough testing on two datasets
and consistently achieves state-of-the-art results. Various
metrics have been significantly improved on the DDR
and IDRiD datasets.

Related Work
Approaches of DR Multi-Lesion Segmentation
In medical image segmentation, U-net and its family, such
as ResUnet (Diakogiannis et al. 2020), DenseUnet (Li et al.
2018), and Unet++ (Zhou et al. 2019b), were first widely
used. L-seg (Guo et al. 2019) first proposes an end-to-end
unified framework for multi-lesion segmentation of fun-
dus images. However, these performed poorly in DR multi-
lesion segmentation. Because the receptive field of tradi-
tional convolution is too small, it is not enough to grasp the
global relationship.

In recent years, segmentation models based on Trans-
former and CNN-Transformer, such as Transunet (Chen
et al. 2021) and Swinunet (Cao et al. 2022), have begun to
be applied to DR multi-lesion segmentation. Among them,
RTnet (Huang et al. 2022) proposed a relation transformer
network for diabetic retinopathy multi-lesion segmentation.
The segmentation network with Swin Transformer (Liu et al.
2022) and Twins-SVT (Chu et al. 2021) as the backbone
also achieved good results. PMCNet (He et al. 2022) im-
proves the accuracy through the combination of CNN and
Transformer. M2MRF (Liu et al. 2023c) is also a state-of-
the-art network in this task. These networks mainly improve
the segmentation effect by expanding the receptive field. But

they neglected the characteristics of lesions and appeared
helpless when facing sundry lesions.

Loss Function for Imbalanced Segmentation
Various segmentation loss functions for solving imbal-
anced medical image data problems have been widely used.
There are two types of loss functions. The first type aims
to balance the importance of samples. Examples include
Weighted Cross-Entropy (Ronneberger, Fischer, and Brox
2015), Diceloss (Li et al. 2020), Focalloss (Lin et al. 2017).
The second type aims to balance the number of samples, and
one method for achieving this is online hard example mining
(OHEM) (Wang et al. 2023).

Method
Overview of Our Work
The overall architecture of our proposed Heterogeneous-
Aware Convolutional Network (HACDR-Net) is illustrated
in Fig. 2, including HACDR-Net and Noise Adjusted Loss
(NALoss). The encoder comprises four stages, each with
downsampling rates Ri = [4, 8, 16, 32]. Each stage extracts
heterogeneous features through repeatedly Heterogeneous
Convolutional Attention (HCA) Blocks and downsamples
with modulated deformable convolution (MDConv). The
number of HCA Block iteration in the four stages respec-
tively are 3, 3, 5, and 2. The core of HCA Block is the
heterogeneous-aware attention aggregation (HAAA) mod-
ule. For the deformable feed-forward network (DFFN) mod-
ule in HCA block, we try to replace depth-wise convolution
(DWConv) with MDConv. The decoder adopts a U-shaped
structure like U-net (Ronneberger, Fischer, and Brox 2015).
All of the structures in our HACDR-Net are residuals. In
addition, we propose a new medical segmentation loss func-
tion NALoss for lesion-sample training, as shown in Fig. 4.
It adjusts the feature distribution of training predictions by
jointing Gaussian noise and hard example mining.

Encoder with HCA Block
As shown in Fig. 2, our encoder adopts a Transformer-
like architecture, including deformable convolutional down-
sampling and HCA Block. However, different from self-
attention and multi-head attention, we propose a novel het-
erogeneous convolutional attention to meet the require-
ments of lesion segmentation. In HCA Block, HAAA ob-
tains heterogeneous feature maps through multi-branch het-
erogeneous convolution and then aggregates these features
through an attention method. This mechanism of hetero-
geneous convolution can obtain diverse lesion areas in the
heterogeneous receptive field along the channels and space.
HCA Block widely uses MDConv. Moreover, a 3×3 MD-
Conv is also applied in the downsampling. MDConv can
grasp the details of various lesions and dynamically adapt
to heterogeneous features, compared with traditional convo-
lution. The MDConv is defined as follows:

F̃ (x, y) =
K∑

k=1

wkmk ∗ F (x+∆xk, y +∆yk), (1)
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Figure 2: An overview of HACDR-Net.

Figure 3: Visualization of the encoder’s features by Grad-
CAM (Selvaraju et al. 2017). (a) and (f) describes the
original image and ground truth, respectively. (b) to (e)
feature maps represent different branch structures and
their combinations. (b) represents DCC, (c) represents
MLKCC+ONFA, (d) represents DCC+MLKCC+ONFA,
and (e) represents DCC+MLKCC+ONFA through the atten-
tion aggregation module.

where F (x, y) represents the input features, and F̃ (x, y)
represents the deformed and enhanced features, where K
represents the total number of sampling points, and k enu-
merates the sampling points. wk represents the learnable
weight of the k-th sampling point, and mk represents the
scalar modulation of the k-th sampling point, normalized by
the sigmoid function. (x + ∆xk, y + ∆yk) represents the
offset coordinates of the sampling point. In this way, our
HACDR-Net enhances awareness of lesions.

HAAA Module. To solve the problem of segmentation
caused by various shapes and sizes of lesions, we use multi-
branch heterogeneous convolution to obtain heterogeneous
features, as shown in Fig. 2. Before extracting heteroge-
neous features, HAAA module uses 5×5 MDConv for fea-

ture dynamic adaptation.
We design three heterogeneous convolution branches,

including a multi-scale large-kernel cross-convolution
(MLKCC) branch, a deformable cross-convolution (DCC)
branch, and an optional near-far-aware (ONFA) branch. As
illustrated in Fig. 2, k×k cross-convolution is the convo-
lution of features sequentially through 1×k and k×1 axis-
convolutions. We use cross-convolution extensively here to
reduce the collision of large irrelevant areas while obtain-
ing and enlarging heterogeneous receptive fields. MLKCC
branch obtains multi-scale cross receptive fields to cap-
ture the long-range relationship of lesions. Obtaining only
a single-shaped cross receptive field cannot adapt to the
characteristics of various shapes and sizes of lesions. DCC
branch uses deformable cross-convolution to obtain dy-
namic local receptive fields. At the same time, DCC branch
and 5×5 MDConv constitute a deformable convolution
residual structure, which has a dynamic adaptive ability to
get lesion areas of different shapes. ONFA branch is com-
posed of k×k deformable cross-convolution, which can en-
hance network’s adaptability. We residually sum these fea-
tures to form a heterogeneous feature map.

Ultimately, an aggregation of heterogeneous feature chan-
nels is achieved through feature attention aggregation using
1×1 convolutions, culminating in an attention operation via
input and output matrix multiplication. HAAA can be de-
noted as:

HAAA(X) = Conv1×1(

2∑
i=0

LKCCki×ki(X
′)

+DCC3×3(X
′) +ONFAn×n(X

′)

+X ′)⊗X +X, (2)
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X ′ =MDConv5×5(X), (3)
LKCCki×ki(X) = DWConv1×ki(DWConvki×1(X)), (4)

DCC3×3(X) =MDConv1×3(MDConv3×1(X)), (5)
ONFAn×n(X) =MDConv1×n(MDConvn×1(X)). (6)

Among them, DWConv means depth-wise depth sep-
arable convolution, MDConv represents modulated de-
formable convolution, LKCC represents large-kernel cross-
convolution, DCC indicates deformable cross-convolution,
ONFA means optional near-far-aware convolution and their
subscripts indicate the size of the convolution. The opera-
tion ’⊗’ means element-wise matrix multiplication. We set
the scale of axis convolution ki to 7, 11, and 21.

Through multi-branch heterogeneous convolution and at-
tention aggregation, HAAA possesses heterogeneous re-
ceptive fields and dynamic adaptive perception capability.
HAAA reduces the feature collision of multi-branch and en-
hances awareness of various lesions. The three branches of
MLKCC, DCC, ONFA, and the attention aggregation mod-
ule are indispensable. As depicted in Fig. 3, the effect of het-
erogeneous convolution aggregation is significantly superior
to that of other single branches.

DFFN Module. This module mainly enhances the local
features of HAAA. As shown in Fig. 2, it adopts a residual
convolution structure and can choose the form of MDConv
and DWConv. It turns out that the two structures behave dif-
ferently on different datasets.

Decoder
According to the requirements of DR multi-lesion segmen-
tation, we choose the U-net structure network. We combine
the multi-scale features of the encoder to form a feature map
by channel fusion and upsampling. Finally, it is restored to a
mask map. The decoder based on U-net (Ronneberger, Fis-
cher, and Brox 2015) shows the best effect in DR multi-
lesion segmentation.

Loss Function
To solve the problem of the highly imbalanced proportion of
focal areas, we propose a loss function NALoss. As shown in
Fig. 4, by jointing Gaussian noise and hard example mining,
NALoss balances the predictive feature distribution of back-
ground and lesion to improve the feature representations.

First, during training, we add weighted Gaussian noise to
the predicted pixels. By adjusting the distribution of pre-
dicted values for each pixel, NALoss can balance the dis-
tribution of predictive features.

Each predicted pixel is a vector of c categories and each
mask pixel is the one-hot vector of c categories. We de-
note pi as the predicted pixel, gi as the mask pixel, and
pki , gki as the k-th category value of the pixel. zki denotes a
special vector of the form pki . wk denotes the loss weight
of category k. Adjusted Parameter can be denoted as α,
α = [α1, α2, . . . , αk], where αk denotes the most criti-
cal noise weight of the k-th category. N (0, σ2) is Gaussian
noise with mean 0 and variance σ2. Our loss formula for the

Figure 4: An overview of NALoss. The operation ’⊕’ means
add, and ’⊗’ denotes multiply. Pick pixel Pi as an illustra-
tion to depict the dual stages of NALoss: adding Gaussian
noise to balance the predictive distribution and hard exam-
ple mining.

first step can be denoted as LF :

Softmax(zki ) =
ez

k
i∑c

u=1 e
zu
i
, (7)

ξ = log(Softmax(pki +αkN (0, σ2))), (8)

LF = − 1

N

N∑
i=1

C∑
k=1

wkgki ξ. (9)

Determining suitable Adjusted Parameter α is the key to
NALoss. To enhance the robustness of prediction for dif-
ferent pixels (background and lesion pixels), we collect the
total number of pixels of different categories in the entire
training set, and design the Adjusted Parameter α, as shown
in the formula.

αk =
log

∑C
j=1 sj

sk∑C
i=1 log

∑C
j=1 sj

si

, (10)

where sk represents the total number of k-th category pixels
of all images in the training set,

∑C
j=1 sj represents the to-

tal number of pixels in all images from the training set. We
can see that Adjusted Parameter α is inversely proportional
to the number of categories, as shown in Fig. 4. That is to
say, we will increase the prediction probability of lesions to
achieve the effect of perturbing the background and increas-
ing the proportion of lesion-predictive feature distribution.

Gaussian noise can cause some random variation in pre-
dicted ranges. With appropriate Adjusted Parameter α, fluc-
tuating features can increase the difficulty of background
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Methods IoU Dice AUPR
mIoU EX SE HE MA mDice EX SE HE MA mAUPR EX SE HE MA

HED (Xie and Tu 2015) 46.66 64.74 47.43 50.38 24.07 62.18 78.60 64.33 67.00 38.81 63.94 80.81 66.41 68.09 40.45
PSPNet (Zhao et al. 2017) 41.70 57.78 43.71 45.81 19.50 57.38 73.24 60.81 62.83 32.63 58.73 75.21 63.36 63.65 32.71
DenseUNet (Li et al. 2018) 46.71 66.51 45.57 45.86 30.55 62.56 79.89 62.61 62.89 44.83 65.06 81.01 66.10 67.10 46.01

Deeplabv3+ (Chen et al. 2018) 45.21 66.10 44.90 44.39 25.45 60.90 79.60 61.96 61.48 40.57 63.19 81.93 64.66 63.04 43.14
L-seg (Guo et al. 2019) - - - - - - - - - - 65.15 79.45 63.74 71.13 46.27
DNL (Yin et al. 2020) 42.28 57.67 44.80 47.03 19.61 57.94 73.15 61.87 63.96 32.78 59.09 75.12 64.04 64.73 32.48

HRNetV2 (Wang et al. 2020) 47.52 66.57 45.56 50.99 26.98 63.14 79.93 62.58 67.53 42.49 64.93 82.09 65.50 68.38 43.76
Twins-SVT-B (Chu et al. 2021) 47.07 64.68 44.91 51.76 26.92 62.79 78.56 61.98 68.19 42.42 63.84 80.09 63.12 68.86 43.27
TransUnet (Chen et al. 2021) 46.49 67.76 47.33 46.46 24.42 62.74 79.89 62.47 64.02 44.57 63.23 80.01 66.91 62.85 43.10
Swin-Unet (Cao et al. 2022) 47.76 66.26 48.36 47.54 28.86 63.53 79.71 65.19 64.43 44.79 64.48 81.34 66.57 64.91 45.10
Swin-Tv2 (Liu et al. 2022) 48.09 67.22 49.33 45.26 30.55 62.99 80.12 65.71 62.25 43.90 64.86 83.11 68.20 65.12 43.02
PMCNet (He et al. 2022) 43.12 - - - - 56.02 - - - - 68.08 87.24 71.11 67.05 46.94

M2MRF (Liu et al. 2023c) 48.56 66.07 48.58 48.16 31.42 64.45 79.57 65.39 65.01 47.81 66.00 81.98 67.41 66.68 47.91
HACDR-Net (Ours) 49.12 64.61 56.21 47.35 28.31 64.71 78.50 71.96 64.27 44.12 68.79 86.90 76.73 68.50 43.02

Table 1: Comparison of our proposed HACDR-Net with the state-of-the-art methods on the IDRiD dataset. The best results are
highlighted in bold and the second best results are underlined. (Unit: %)

prediction, which also can strengthen the robustness of train-
ing.

Next, we propose a hard example mining of noise-adding
pixels. The training focuses on the pixels where the noise-
adding predictions are seriously wrong. The specific loss
function NALoss is as follows:

LNA = LF (LF < θ), (11)

where θ represents the threshold. By hard example min-
ing, NALoss significantly improves the segmentation per-
formance of lesions.

As for the reason that we use hard example mining on
noise-adding pixels, on the one hand, we found that the mi-
nor prediction loss caused by noise can be ignored. In this
way, HACDR-Net can both focus on those lesion errors with
low presence and reduce the negative impact of perturba-
tions on the background. On the other hand, if we simply
use hard example mining, the training will still be dominated
by background pixels, which cannot solve the problems of
training process. Attentively, we divide the training into two
stages. In the initial stage, we use the Cross-Entropy loss
function, and then employ NALoss for training.

Experiments
Datasets and Evaluation Metrics
Dataset. Two publicly available DR multi-lesion seg-
mentation datasets are adopted, i.e., the Indian Diabetic
Retinopathy Image Dataset (IDRiD), A General-purpose
High-quality Dataset for Diabetic Retinopathy Classifica-
tion, Lesion Segmentation and Lesion Detection (DDR).
These datasets consist of images with a background cate-
gory and four kinds of lesion categories. The four types of
lesions include hard exudates (EX), soft exudates (SE), mi-
croangiomas (MA), and hemorrhages (HE).

DDR: The DDR (Li et al. 2019) dataset contains 757 im-
ages of fundus lesions with pixel-level annotations, includ-
ing 383 images for training, 149 images for validation, and
225 images for testing. The resolution of the images in this
dataset ranges from 1088×1920 to 3456×5184 pixels.

IDRiD: The IDRiD (Porwal et al. 2018) dataset only
contains 81 images of fundus lesions with pixel-level an-
notations, including 54 images for training and 27 images
for testing. The resolution of the images in this dataset is
2848×4288 pixels.

Evaluation Metrics. We follow the protocol suggested by
DDR (Li et al. 2019) and IDRiD (Porwal et al. 2018) and
report standard metrics including Intersection over Union
(IoU) (Rezatofighi et al. 2019), mean Intersection over
Union (mIoU) (Rezatofighi et al. 2019), Dice coefficient
(Milletari, Navab, and Ahmadi 2016), mean Dice coefficient
(mDice) (Milletari, Navab, and Ahmadi 2016), the area un-
der precision-recall curve (AUPR) (Boyd, Eng, and Page
2013) and mean area under precision-recall curve (mAUPR)
(Boyd, Eng, and Page 2013). As multi-class segmentation
tasks, mDice, mAUPR, and mIoU are core metrics for eval-
uating performance.

Implementation Details
Our implementation is based on mmsegmentation (Contrib-
utors 2020) libraries. All models are trained on a node with
2 RTX 3090 GPUs. Following M2MRF (Liu et al. 2023c),
images in IDRiD are resized to 1440×960 pixels, and we re-
size the images of DDR to 1280×1280. To enhance the ro-
bustness of the model, we use three data augmentation tech-
niques: multiple scaling (0.5∼2.0), rotation (90°, 180°, and
270°), and flipping (horizontal and vertical). Before train-
ing, we preprocess the images by contrast, brightness ad-
justment, and image fusion as used in (Zhou et al. 2019a).
It can mitigate variation due to lighting conditions and res-
olution. The batch size is set to 1∼4 according to different
resolutions for these two datasets. AdamW (Loshchilov and
Hutter 2017) is applied to train our models. We set the initial
learning rate as 0.00006 and employ the poly-learning rate
decay policy.

Comparison with the State-of-the-Arts
Quantitative Comparison. We compare HACDR-Net
with other state-of-the-art methods on the DDR and IDRiD
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Methods IoU Dice AUPR
mIoU EX SE HE MA mDice EX SE HE MA mAUPR EX SE HE MA

HED (Xie and Tu 2015) 27.17 39.50 27.09 29.46 12.63 41.79 56.63 42.61 45.50 22.43 42.97 61.40 43.19 46.68 20.61
PSPNet (Zhao et al. 2017) 24.31 37.31 24.51 26.64 8.75 37.97 54.35 39.37 42.08 16.09 39.23 57.04 42.71 42.32 14.85
DenseUNet (Li et al. 2018) 31.58 41.25 37.58 32.73 14.76 47.02 58.41 54.63 49.32 25.73 48.29 62.00 55.01 51.11 25.05

Deeplabv3+ (Chen et al. 2018) 26.47 41.44 23.44 26.46 14.55 40.95 58.59 37.97 41.83 25.40 42.34 62.32 40.79 41.83 24.39
L-seg (Guo et al. 2019) - - - - - - - - - - 32.08 55.46 35.86 26.48 10.52
DNL (Yin et al. 2020) 24.33 36.39 27.15 25.33 8.46 38.02 53.36 42.71 40.40 15.60 40.14 56.05 47.81 42.01 14.71

HRNetV2 (Wang et al. 2020) 28.84 41.82 29.01 28.94 15.60 43.95 58.98 44.96 44.86 26.99 45.21 61.55 45.68 46.91 26.70
Twins-SVT-B (Chu et al. 2021) 29.28 39.70 29.08 36.24 12.07 44.15 56.83 45.04 53.19 21.54 46.11 59.71 49.96 52.72 21.54
TransUnet (Chen et al. 2021) 27.78 39.76 37.43 22.46 11.47 42.15 56.89 54.47 36.68 20.57 44.03 60.57 55.46 41.49 18.58
Swin-Unet (Cao et al. 2022) 30.07 42.64 33.82 30.62 13.19 45.10 59.79 50.53 46.77 23.31 46.72 62.71 54.39 46.12 23.67
Swin-Tv2 (Liu et al. 2022) 32.10 44.07 36.12 32.77 15.44 47.86 61.18 54.14 49.36 26.75 48.59 63.05 55.01 50.11 26.20
PMCNet (He et al. 2022) - - - - - - - - - - 36.44 54.30 31.64 31.64 19.94

M2MRF (Liu et al. 2023c) 30.41 43.06 30.56 32.08 15.95 45.77 60.20 46.81 48.58 27.51 49.42 63.88 55.47 50.01 28.33
HACDR-Net (Ours) 33.70 44.13 38.54 36.95 15.17 49.30 61.24 55.64 53.96 26.34 50.36 65.15 56.75 55.02 24.50

Table 2: Comparison of our proposed HACDR-Net with the state-of-the-arts methods on the DDR dataset. The best results are
highlighted in bold and the second best results are underlined. (Unit: %)

Figure 5: Visual Comparison of 4 methods on the DDR
dataset. The colored boxes show the main lesions. (a) Fun-
dus Image, (b) DenseUnet, (c) SwinV2, (d) M2MRF, (e)
HACDR-Net (Ours), (f) Ground Truth.

dataset. These compared methods are mainly divided
into three categories, including Convolutional networks,
Transformer-based networks, and previous DR multi-lesion
segmentation networks. Convolutional networks include
HED (Xie and Tu 2015), PSPNet (Zhao et al. 2017), Dense-
UNet (Li et al. 2018), Deeplabv3+ (Chen et al. 2018),
DNL (Yin et al. 2020), HRNetV2 (Wang et al. 2020).
Transformer-Based networks include Swin-T-base (Liu et al.
2021), Twins-SVT-B (Chu et al. 2021), TransUnet (Chen
et al. 2021), Swin-Unet (Cao et al. 2022), Swin-transformer
V2 (Swin-Tv2) (Liu et al. 2022). Previous DR multi-lesion
segmentation networks include L-seg (Guo et al. 2019), PM-
CNet (He et al. 2022), M2MRF (Liu et al. 2023c).

Table 1 lists the performance of different comparison
methods on the IDRiD dataset. Likewise, compared with the
previous best method M2MRF, our metrics mAUPR, mDice,
and mIoU improve respectively by 2.79%, 0.26%, and
0.56%. Table 2 lists the performance of different compari-
son methods on the DDR dataset. Our HACDR-Net shows
the best performance with all methods. Compared with
the previous best method M2MRF, our metrics mAUPR,
mDice, and mIoU improve respectively by 0.94%, 3.53%,
and 3.29%. In the two datasets, not only the mean metrics
but also the category metrics have improved. All in all, these

Methods mDice mIoU mAUPR

MD 46.55 31.04 46.50
Bα 47.35 32.01 48.01
Bθ 46.70 31.32 46.89

Bα +MD 48.02 32.75 48.50
Bθ +MD 48.45 33.04 49.21

Bα + Bθ + Bκ +MD 49.30 33.70 50.36
Bα + Bθ +MD 49.04 33.26 49.92

w/o HAAA 45.31 30.43 45.70
w/o DFFN 49.09 33.42 49.70

Table 3: Ablation study in HACDR-Net on the DDR dataset.
HACDR-Net overall is represented as ’Bα+Bθ+Bκ+MD’,
where ’Bα’, ’Bθ’, ’Bκ’, and ’MD’ indicate MLKCC branch,
DCC branch, ONFA branch, and the Modulated Deformable
Convolution respectively. ’w/o HAAA’ and ’w/o DFFN’ de-
note that HAAA and DFFN are removed from the overall
model, respectively. The best results are highlighted in bold.
(Unit: %)

quantitative results on two datasets substantiate the fine ro-
bustness of our HACDR-Net.

Visual Comparison. Fig. 5 shows the qualitative results
of different methods on the DDR dataset, including Dense-
Unet, M2MRF, Swin-transformer v2 (Swin-Tv2), and our
HACDR-Net. It demonstrates that our HACDR-Net can pre-
cisely segment lesions of different shapes and sizes com-
pared with other methods.

Ablation Study
Through experiments, we analyze the contributions of each
component in our model, detailed in Table 3. We as-
sess the model performance by removing HAAA, DFFN,
and NALoss components. Additionally, we employ T-SNE
(Van der Maaten and Hinton 2008) for feature visualiza-
tion and conduct a hyperparameter analysis. Ablation exper-
iments were conducted on two public datasets, with a focus
on the more representative DDR dataset due to its diverse
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Structure mDice mIoU mAUPR

ψ 48.55 32.71 49.10
τ 48.02 32.01 48.01
υ 47.72 31.32 48.05

ψ + τ 49.07 32.52 49.44
ψ + υ 48.60 32.79 49.50
τ + υ 49.10 33.04 50.03

τ + υ + ψ 49.30 33.70 50.36

Table 4: Ablation study in HAAA on the DDR dataset. ψ
is represented as 1×1 convolution, τ is represented as 5×5
modulated deformable convolution, and υ is represented as
attention. The best results are highlighted in bold. (Unit: %)

Loss Function mDice mIoU mAUPR

ζCE 47.04 31.67 47.32
ζWCE 47.88 32.34 48.51
ζDice 46.50 30.81 46.51

ζCE + ζDice 46.95 31.34 46.75
ζOHEM 47.12 31.71 47.95

ζNA + ζWCE 49.08 33.41 50.01
ζNA 49.30 33.70 50.36

Table 5: Ablation study of loss function on the DDR dataset.
The top outcomes are shown in bold. (Unit: %)

image resolutions and qualities.

Effectiveness of Heterogeneous Branches. Table 3
shows that the heterogeneous features formed by HACDR-
Net have greatly improved various metrics compared with a
single branch. Among them, the combination of branches
represented by ’Bα’, ’Bθ’, ’Bκ’, compared with a sin-
gle branch, our metrics mAUPR, mDice, and mIoU im-
prove respectively by 2.35%∼3.86%, 1.95%∼2.75%, and
1.69%∼2.66%. ’Bκ’ (k = 17) has a significant biased effect
on lesions of different scales. The details of ’Bκ’ will be in-
troduced in Hyper-Parameters. Overall, our results shed new
light on the importance of heterogeneous-aware convolution
for improving DR multi-lesion segmentation performance.

Effectiveness of HAAA and DFFN Module. HAAA col-
lects and combines heterogeneous features in HACDR-Net.
Table 3 demonstrates its significance, as mAUPR, mDice,
and mIoU drop by 4.66%, 3.99%, and 3.27% without
HAAA. Table 4 verifies the essentiality of HAAA’s key
components: 1×1 convolution for aggregation, 5×5 de-
formable convolution for adaptive features, and attention
mechanism. DFFN is crucial for aggregating heterogeneous
features and without it, mAUPR, mDice, and mIoU decrease
by 0.66%, 0.21%, and 0.28%, respectively.

Effectiveness of NALoss. Table 5 illustrates that our
NALoss outperforms the DR multi-lesion segmentation
dataset with imbalanced data. Abbreviations used include
ζCE for Cross-Entropy loss, ζWCE for Weighted Cross-
Entropy loss (Ronneberger, Fischer, and Brox 2015), ζDice

for Dice loss (Li et al. 2020), ζOHEM for Ohem loss
(Shrivastava, Gupta, and Girshick 2016), and ζNA for our

Figure 6: The deep features are visualized using T-SNE
in (a) DenseU-net, (b) HACDR-Net+WCEloss, and (c)
HACDR-Net+NALoss.

Figure 7: Evaluation of the hyperparameters. Comparative
analysis of (a) the kernel k of Optional near-far-aware Con-
volution Bκ, and (b) the threshold for NALoss θ. (Unit: %)

NALoss. Our HACDR-Net is the baseline network. We sur-
pass mainstream loss functions, achieving optimal outcomes
(mAUPR:+1.85%, mIoU:+1.36%, mDice:+1.42%).

Visualization of Deep Features. T-SNE (Van der Maaten
and Hinton 2008) is used to obtain 2D embeddings and visu-
alize the deep features of the last encoder layer. As shown in
Fig. 6, the lesion feature class generated by our network with
NALoss is more compact, the difference between different
classes is clearer, and the segmentation effect is improved.

Hyper-Parameters. We evaluate the influence of two core
parameters on the model, one is the size of the convolution
kernel k of ONFA branch Bκ, and the other is the different
threshold for NALoss θ, As in Fig. 7. ONFA branch adapts
receptive field based on lesion size. The kernel k denotes
convolution receptive field size. A larger kernel (k = 17)
works well for EX segmentation, while a smaller kernel
(k = 5) is good for MA. However, the best overall perfor-
mance is achieved with a moderate k value (k = 9). Next,
we examine the impact of various thresholds θ for NALoss.
Setting θ to 0.5 yields the best results.

Conclusion
We introduce a new network, HACDR-Net, for DR multi-
lesion segmentation. This network addresses the challenge
of segmenting lesions of different shapes and sizes in DR
images. Moreover, we propose a new loss function, NALoss,
to handle imbalanced segmentation requirements. Our ex-
periments show that HACDR-Net outperforms other meth-
ods in DR multi-lesion segmentation. In future work, we aim
to enhance multi-lesion segmentation in DR images using
multi-modal technology.
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