
Unsupervised Action Segmentation via Fast Learning of
Semantically Consistent Actoms

Zheng Xing1, Weibing Zhao2*

1 Future Network of Intelligence Institute, School of Science and Engineering, The Chinese University of Hong Kong,
Shenzhen, China

2 Guangdong Laboratory of Machine Perception and Intelligent Computing, Shenzhen MSU-BIT University, China
{zhengxing, weibingzhao}@link.cuhk.edu.cn

Abstract

Action segmentation serves as a pivotal component in com-
prehending videos, encompassing the learning of a sequence
of semantically consistent action units known as actoms.
Conventional methodologies tend to require a significant con-
sumption of time for both training and learning phases. This
paper introduces an innovative unsupervised framework for
action segmentation in video, characterized by its fast learn-
ing capability and absence of mandatory training. The core
idea involves splitting the video into distinct actoms, which
are then merging together based on shared actions. The key
challenge here is to prevent the inadvertent creation of sin-
gular actoms that attempt to represent multiple actions dur-
ing the splitting phase. Additionally, it is crucial to avoid sit-
uations where actoms associated with the same action are
incorrectly grouped into multiple clusters during the merg-
ing phase. In this paper, we present a method for calculating
the similarity between adjacent frames under a subspace as-
sumption. Then, we employ a local minimum searching pro-
cedure, which effectively splits the video into coherent ac-
toms aligned with their semantic meaning and provides us an
action segmentation proposal. Subsequently, we calculate a
spatio-temporal similarity between actoms, followed by de-
veloping a merging process to merge actoms representing
identical actions within the action segmentation proposals.
Our approach is evaluated on four benchmark datasets, and
the results demonstrate that our method achieves state-of-the-
art performance. Besides, our method also achieves the opti-
mal balance between accuracy and learning time when com-
pared to existing unsupervised techniques. Code is available
at https://github.com/y66y/SaM.

Introduction
Large volumes of videos are uploaded to both cloud and
edge storage every day, leading to a significant demand for
rapid video analysis. Efficient video comprehension plays
a pivotal role in real-world applications, such as video re-
trieval, surveillance analysis (Vishwakarma and Agrawal
2013), robot perception (Qi et al. 2019; ?, 2021; Sun et al.
2023, 2022b,c,a), indoor localization (Wang et al. 2021,
2020a; Liu, Wang, and Luo 2020; Luo, Zhang, and Wang
2020). In recent years, a considerable focus within the
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Figure 1: Action segmentation output example from
Breakfast Dataset (Kuehne, Arslan, and Serre 2014):
P46 webcam02 P46 milk. Colors indicate different actions
in chronological order: take cup, spoon powder, pour milk,
stir milk. The background is shown in white color.

field of video comprehension has been devoted to action
segmentation in videos (Wang et al. 2023; Sheng and Li
2023; van Amsterdam et al. 2023). The objective of action
segmentation involves categorizing concise, pre-edited seg-
ments that characterize individual actions. Despite signifi-
cant progress in supervised action segmentation techniques,
driven by the emergence of deep neural networks and ex-
tensive datasets, models based on fully supervised learning
still require laborious manual data annotation. This process
is time-consuming, costly, and susceptible to errors. Conse-
quently, unsupervised action segmentation has emerged as
an alternative strategy to tackle this challenge.

Action segmentation involves assigning action labels to
individual frames within a video sequence, typically depict-
ing a person engaging in a series of actions as part of a
higher-level activity. An illustrative example of breakfast
preparation is depicted in Fig. 1. Compared to recogniz-
ing activities in videos, action segmentation introduces more
formidable challenges due to the presence of extraneous
background frames. A significant obstacle arises from the
necessity for a substantially larger number of annotations to
effectively guide learning-based methodologies, which has
resulted in the popularity of weakly supervised and unsu-
pervised approaches for action segmentation (Wang et al.
2023; de AP Marques et al. 2022; Sheng and Li 2023; Li,
He, and Xu 2022). Some techniques utilize textual infor-
mation extracted from accompanying audio to assign ac-
tion labels at the frame level for training action segmenta-
tion models, as introduced in (Alayrac et al. 2016). However,
this approach relies on the assumption of well-synchronized
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audio and video frames. Alternatively, other methodologies
presuppose some prior knowledge of actions, such as the
high-level activity labels or lists of depicted actions in each
video (Souri et al. 2021). However, even this level of annota-
tion demands substantial annotation effort for each training
video, due to the variability of constituent actions across di-
verse activities. Regardless of the level of prior knowledge,
the majority of weakly- and unsupervised methods, concen-
trate on obtaining pseudo-labels, which subsequently super-
vise the training of task-specific feature embeddings. How-
ever, the acquired pseudo-labels are inherent noisy, which
may potentially impede the effectiveness of the learned em-
beddings

This paper introduces an innovative unsupervised action
segmentation framework comprising two distinct phases:
splitting and merging. Our approach is grounded in two fun-
damental insights. Firstly, we assume that high-dimensional
frames within action videos reside in distinct subspaces,
each corresponding to a specific action. Secondly, humans
typically perceive frame segments as manifestations of indi-
vidual actions. Building upon this comprehension, the iden-
tification of actoms arises as an effective and efficient ap-
proach for segmenting actions within lengthy, untrimmed
videos. Leveraging these insights, our algorithm begins by
dividing the video into multiple actoms, where each ac-
tom encapsulates frames representing a particular action.
Nonetheless, considering the potential recurrence of the
same action multiple times within a single video (for in-
stance, a dance video featuring actions A and B followed by
another instance of action A), there is a necessity to merge
actoms associated with identical actions.

The primary challenge lies in effectively preventing a
single actom from erroneously encapsulating multiple ac-
tions during the splitting phase. It is also equally impor-
tant to avoid the situation where actoms linked with the
same action are incorrectly grouped into separate actions
during the subsequent merging process. Specifically, our ob-
jective is to ensure that each distinct actom obtained through
the video-splitting process accurately encapsulates only one
specific action. Given the intricate dynamics of motion back-
grounds and the inherent variations in action execution, the
task of splitting videos containing non-clustered frames into
discrete actoms poses a significant challenge. Furthermore,
during the actom merging phase, it is challenging to pre-
vent the fusion of two actoms representing different actions.
Our strategy relies on capturing the intricate relationship
between these actoms with precision. However, accurately
evaluating the degree of similarity between these two actoms
is a complex task.

In this paper, we draw inspiration from the Canny de-
tector (Canny 1986), commonly used in image processing,
and the segmentation method (Keogh et al. 2004), applied
in time series analysis. Our initial effort involves identifying
distinctive features that exhibit coherence within a specific
action context while manifesting variability when compared
against different actions. However, it’s essential to acknowl-
edge that challenges like occlusion, shifts in viewpoints, or
fluctuations in lighting can result in temporal features de-
rived from actions lacking strict uniformity. Diverging from

the methodology of the Canny detector, which identifies in-
tensity gradients within images, we obtain an understand-
ing of actions within videos by learning the actom in the
video. Specifically, we identify potential boundaries of ac-
toms through a comprehensive evaluation of the subspace-
based similarity between consecutive frames. One of the
previously mentioned challenges is to prevent a single ac-
tom from erroneously encapsulating multiple actions during
the splitting phase. To tackle this challenge, we propose to
utilize the minimum value selected from localized tempo-
ral windows on the similarity curve to establish the bound-
aries of actoms. These identified boundaries will then serve
as guides for segmenting the video into distinct, semanti-
cally consistent actoms. During the actom merging phase,
a challenge arises in ensuring that actoms associated with
the same action are not incorrectly separated into distinct
actions. Accurately quantifying the degree of similarity be-
tween two such actoms is crucial. Therefore, we introduce
a novel spatio-temporal similarity measure between actoms,
considering both their temporal separations and appearance
feature distances and facilitating the fast amalgamation of
actoms into cohesive actions. Our work contains the follow-
ing main contributions:

• We introduce a novel unsupervised learning framework
for action segmentation, consisting of two essential com-
ponents: a splitting procedure and a merging procedure.
The splitting procedure ensures the precise division of
the video into distinct actoms, while the merging proce-
dure guarantees the aggregation of actoms that represent
the same action into coherent clusters.

• First, compared to traditional unsupervised methodolo-
gies that heavily rely on pseudo-labels for supervised
training, our approach distinguishes itself by completely
bypassing the necessity for any form of training, thus
possessing the advantage of speed. Second, our method
adeptly leverages the semantically consistent attributes
of the temporal frames within action videos. Specifically,
we employ a splitting procedure to partition the video
into concise actoms. This process ensures that each ac-
tom comprises frames with similar semantic character-
istics. Under the premise that actoms in close tempo-
ral proximity are more likely to exhibit similar seman-
tic traits, we propose merging these actoms based on
an effective spatio-temporal similarity measure between
them.

• Our proposed method skillfully achieves a balanced
trade-off between model accuracy and learning speed,
outperforming weakly supervised and unsupervised ac-
tion segmentation techniques across four benchmark
datasets. Remarkably, our method demonstrates compa-
rable performance even when compared to supervised
methods.

Related Work
Action Segmentation in videos has attracted significant re-
search interest, as evidenced by the considerable volume
of related studies (Bueno-Benito, Vecino, and Dimiccoli
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2023; van Amsterdam et al. 2023). In this section, our atten-
tion is directed towards a comprehensive review of existing
methodologies relevant to the challenge of action segmenta-
tion. We particularly emphasize approaches about weakly-
supervised and unsupervised paradigms.

Existing methods for action segmentation can be broadly
categorized into three groups: fully supervised (Liu et al.
2022; van Amsterdam et al. 2023; Lim et al. 2023), weakly
supervised (Souri et al. 2021; Sheng and Li 2023; Luo et al.
2022; Fayyaz and Gall 2020), and unsupervised (Kukleva
et al. 2019; Bueno-Benito, Vecino, and Dimiccoli 2023;
Wang et al. 2023). They differ in whether the annotations
are collected by human annotators or extracted in a semi-
or unsupervised manner. These models typically follow a
paradigm where an embedding is trained on top of pre-
extracted frame-level video features, as seen in the works
of Sheng et al. (Sheng and Li 2023), Sener et al. (Sener
and Yao 2020), and Richard et al. (Richard et al. 2018), or
hand-crafted video features, as demonstrated by Ding et al.
(Ding and Xu 2018) and Kukleva et al. (Kukleva et al. 2019).
The training process of the embedding layer involves the use
of a discriminative objective function in conjunction with
available annotations (Li, Lei, and Todorovic 2019; Sheng
and Li 2023; Richard et al. 2018; Souri et al. 2021). In the
subsequent sections, we explore the specifics of weakly su-
pervised and unsupervised techniques, which differ signifi-
cantly in how they extract and exploit pseudo-labels.

Weakly-supervised approaches often assume the avail-
ability of both the activity label at the video level and ac-
tion ordering, referred to as transcripts, during the training
phase. Many methods follow a two-step procedure: initially
generating pseudo-labels using transcripts and subsequently
training a frame classification network with these inferred
labels (Sheng and Li 2023; Luo et al. 2022). In contrast,
NN-Vit (Richard et al. 2018) directly utilizes transcripts to
train a frame classification model. To enforce consistency
between frame-level label predictions, they introduce a loss
based on Viterbi decoding. In a similar vein, MuCoN (Souri
et al. 2021) aims to leverage transcripts in learning a frame
classification model. They employ two network branches,
with only one having access to transcripts, ensuring mutual
consistency between both branches. Another recent method,
CDFL (Li, Lei, and Todorovic 2019), also seeks to utilize
transcripts in training its frame labeling model. Initially, they
construct a fully-connected, directed segmentation graph,
where paths represent actions. Training the model involves
maximizing the energy difference between valid paths (i.e.,
paths consistent with the ground-truth transcript) and invalid
ones. In SCT (Fayyaz and Gall 2020), the authors assume
knowledge of the set of action labels for a given video, but
without their order. They determine the ordering and tempo-
ral boundaries of actions by alternately optimizing set and
frame classification objectives. This ensures that frame-level
action predictions align with set-level predictions.

Unsupervised approaches typically rely solely on
knowledge of the video-level activity label (Bueno-Benito,
Vecino, and Dimiccoli 2023; VidalMata et al. 2021; Aakur
and Sarkar 2019). The Mallow method (Sener and Yao
2020) utilizes video-level annotations in an iterative ap-

proach to action segmentation. This involves alternating
optimization between a discriminative appearance model
and a generative temporal model of action sequences. Con-
versely, the Frank-Wolfe (Alayrac et al. 2016) method ex-
tracts video narrations using Automatic Speech Recogni-
tion (ASR). These narrations are then employed to extract
an action sequence for a set of videos related to a spe-
cific activity. This is achieved by independently clustering
the videos and the ASR-recovered speech to identify action
verbs in each video. Temporal localization is subsequently
obtained by training a linear classifier. CTE proposes learn-
ing frame embeddings that incorporate relative temporal in-
formation. They train a video activity model using pseudo-
labels generated from K-means clustering of the videos’
IDT features. The trained embeddings are then re-clustered
to match the groundtruth number of actions, and their or-
der is determined using statistics of the relative timestamps
with GMM+Viterbi decoding. VTE-UNET (VidalMata et al.
2021) leverages similarly learned embeddings, combining
them with temporal embeddings to enhance the performance
of CTE. LSTM+AL (Aakur and Sarkar 2019) fine-tunes
a pre-trained VGG16 model with an LSTM, using future
frame prediction as a self-supervision objective to learn
frame embeddings. These embeddings are subsequently em-
ployed to train an action boundary detection model.

However, all these methods necessitate training on the tar-
get video dataset, which, from a practical standpoint, im-
poses significant restrictions. In contrast, our method elimi-
nates the need for training and relies solely on video splitting
and merging.

Methodology
Observed that with a well-established similarity between
frames in the video, the boundaries of actoms within a video
can be identified without resorting to additional training on
objectives reliant on objectives that use noisy pseudo-labels,
something that almost all current methods pursue. Previous
endeavors in actom boundary detection have involved com-
plex neural networks or the generation of pseudo-labels that
may not be directly relevant (Ishikawa et al. 2021; Wang
et al. 2020b). Contrary to this prevailing trend, our approach
takes a different path.

The bottom-up framework, exemplified by (Menon,
Muthukrishnan, and Kalyani 2020), emerges as a promis-
ing choice for our task. Such methods furnish a hierarchy
of data partitions instead of a singular partition. In this pa-
per, we embrace a bottom-up framework for action segmen-
tation, bypassing the need for video-level activity labels.
The capacity of our approach to generating plausible action
segmentation without training holds considerable practical
value.

Given a video X = {x1,x2, ...,xN}, our primary goal is
to categorize these frames into K actions, where K repre-
sents the number of distinct actions present in the video. Our
approach begins with an in-depth explanation of frame simi-
larity. Subsequently, we outline the methodology for detect-
ing actom boundaries based on the similarity between adja-
cent frames, a process that divides videos into discrete and
semantically consistent actoms. Moreover, we assume that
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actoms located closely in the temporal domain share simi-
lar semantic characteristics. To facilitate this, we introduce
a spatio-temporal similarity measure that forges connections
between actoms, taking into account their proximity not only
in feature space but also in the temporal dimension. This
fusion of feature-based proximity and temporal alignment
aims to incorporate spatial and temporal coherence in a uni-
fied manner.

Splitting Video into Semantically Consistent
Actoms
Our initial objective revolves around partitioning a video
into actoms by accurately identifying their boundaries.
However, due to factors such as occlusion, changes in view-
point, or variations in lighting, the alterations along the en-
tire temporal dimension of a video can be abrupt. Conse-
quently, precisely detecting actom boundaries based solely
on the general distance assessment (e.g., Euclidean) between
consecutive frames poses considerable challenges.

The subspace assumption has found extensive applica-
tion in various domains, including image representation and
compression, as well as in addressing computer vision chal-
lenges like action segmentation, face clustering, image seg-
mentation, and video segmentation. Our work aligns with
these principles and similarly operates under the premise
that distinct actions present in video frames can be discerned
by their respective placements within distinct subspaces. We
introduce a cosine-based measurement to quantify the simi-
larity between frames, building upon the subspace assump-
tion. Specifically, we measure the similarity between frames
within the same or different subspaces by evaluating the co-
sine angle between them. To achieve this, we first normal-
ize each frame xi as x̃i = xi/∣∣xi∣∣2, where ∣∣ ⋅ ∣∣ denotes
the l2 norm. These normalized frames x̃i ∈ RD, with i ∈
1,2, ...,N , are situated within the high-dimensional hyper-
sphere SD−1 (Menon, Muthukrishnan, and Kalyani 2020).
We define the angle θi,j between two frames xi and xj as
θi,j = cos−1(x̃T

i x̃j), where θi,j ∈ [0, π]. This radian-based
θi,j is then converted to degrees, denoted as θ̃i,j , using the
formula θ̃i,j = θi,j ⋅ 180/π, with θ̃i,j ∈ [0,180]. The angle
θ̃i,j = 0 when frames xi and xj reside within the same sub-
space, while θ̃i,j > 0 indicates that xi and xj are located
in different subspaces. The similarity between consecutive
frames xi and xi+1 is defined as si = exp(−θ̃i,i+1/σ2

θ) for
i ∈ [1,N −1] and sN is set to be sN = sN−1 for convenience.
In this paper, the variance σ2

θ is designated as σ2
θ = Var[θ̃].

If we graph the similarity si against their correspond-
ing time stamps i, we would observe a sequence of undu-
lating patterns resembling the shape of ⊓. The fluctuations
in similarity over time can be attributed to the fact that ac-
tions belonging to the same category exhibit high similarity
values (approaching 1), while significant decreases in sim-
ilarity values indicate substantial changes in actions. Con-
sequently, the boundaries represented by the falling edge of
⊓ are the critical delineations between different actoms. We
can simply locate the low value in the curve of si to identify
these boundaries of actoms. However, in practice, pinpoint-

Algorithm 1: The split-and-merge (SaM) algorithm.
Input: the video X , and the number of actions K.
Output: the K actoms.

1: Calculate the similarity between adjacent frames: {si}.
2: Local minimum searching resulting in the segmentation

indices B = {b1, b2, ..., bM−1}.
3: Initialize the actom {X1,X2, ...,XM} with the corre-

sponding index set {C1,C2, ...,CM} according to B.
4: repeat
5: Compute the actom feature {x̄m}m∈[1,2,..,M], and av-

eraged time-stamps t̄m = 1
∣Cm∣ ∑t∈Cm t.

6: Compute the spatio-temporal similarity G(M)(i, j)
for any i ≠ j.

7: Merge the most similar ith, and jth actoms, resulting
in new actom.

8: until the number of actoms is K.

ing these troughs on the curve of si is not straightforward
due to various factors. In particular, the regions around the
boundaries of actions tend to be plagued by a multitude of
erroneous responses. To address this issue, we develop a lo-
cal minimum search algorithm to mitigate the influence of
these errors. Specifically, we embark on a comprehensive
boundary search by constructing a set of boundaries as

{ argmin
t∈{i+1,i+2,...,i+L}

st∣i ∈ {0, L, 2L,3L, ...N −L}}

where the window size L = ⌊δN/K⌋, the length of the data
N , and the number of actions K. In this construction, we
search for minima within locally prominent windows of size
L along the temporal dimension. These identified minima
hold the potential to serve as effective boundaries between
adjacent actoms. In the upcoming experimental section, we
will conduct a detailed analysis of how the window size δ
affects the performance of our algorithm. Furthermore, we
will illustrate the robustness of our algorithm in response to
changes in δ.

Merging Actoms Representing the Same Action
Denote the boundary set obtained from the previous section
as B = {b1, b2, . . . , bM−1} ⊂ {1,2, . . . ,N}. We assume that
the boundaries are both ordered and non-repeating, such that
bk−1 < bk for any k ∈ [1,M]. The dummy boundaries are
implicitly available: b0 ∶= 0 and bM ∶= N . Since the same
action usually occurs multiple times in a video, M is always
greater than the number of actions K. Therefore, it is neces-
sary to develop a merging procedure to further group actoms
into K actions.

Denote the mth actom as Xm = {xi}i∈Cm , where the in-
dex set Cm = {bm−1 + 1, bm−1 + 2, ..., bm}. The key to merg-
ing actoms lies in measuring the similarity between them.
Drawing upon the observation of identifying linking chains
within data through the presence of nearest or shared neigh-
bors, we introduce a spatio-temporal measurement that con-
siders both proximities in the feature space and the temporal
arrangement of actoms. Specifically, we aim to design a sim-
ilarity metric that captures the essence of both feature-space
and temporal closeness among actoms. This is achieved by
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incorporating the progression of time as a modulating factor
during the similarity computation. We first compute the fea-
ture vector of actoms, denoted as {x̄m}m∈[1,2,..,M], where
x̄m = 1

∣Cm∣ ∑i∈Cm xi represents the feature of the mth actom
that characterizes a specific action. The similarity between
the ith and jth actoms is then defined as

G(M)(i, j) = exp(−
λ∣t̄i − t̄j ∣

N
) ⋅ exp[−

180

πσ2
θ

cos−1(
x̄T
i x̄j

∣∣x̄i∣∣2∣∣x̄j ∣∣2
)]

for any i, j ∈ [1,2, ...,M], i ≠ j, where t̄m = 1
∣Cm∣ ∑t∈Cm t,

and λ serves as a trade-off parameter, offering control over
the influence of the temporal consistency requirement.

The introduced term exp(−λ∣t̄i−t̄j ∣
N
) is employed to ac-

centuate the significance of the temporal consistency on the
similarity measure. Here, ∣t̄i−t̄j ∣ represents the temporal dis-
parity between the respective nodes, with its impact adjusted
by λ. This factor is especially pertinent as we intend to em-
ploy temporal similarity as a modulating component for the
feature-space similarity. Consequently, G(M)(i, j) signifies
the spatio-temporal similarity between the actoms i and j,
taking into account the temporal relationships while consid-
ering the weight derived from the duration of the video se-
quence.

The entry G(M)(i, j), for any i, j ∈ {1,2, ...,M}, i ≠ j
with the maximum value is selected and the corresponding
x̄i and x̄j are considered as the most similar actoms, which
are merged to generate a new actomXm′ = {xi}i∈Cm′ , where
the index set Cm′ = Ci ∪ Cj . We repeat the merging process
until the number of actoms reduces to K. The main steps of
the proposed algorithm are shown in Alg. 1.

Experiments
Experimental Setup
Datasets. We assessed the efficacy of our approach on four
benchmark datasets: Breakfast (BF)(Kuehne, Arslan, and
Serre 2014), YouTube Instructional Videos (YTI) (Alayrac
et al. 2016), Hollywood Extended (HE) (Bojanowski et al.
2014), and 50Salads (FS) (Stein and McKenna 2013). These
four datasets encompass a broad spectrum of activities,
ranging from diverse cooking routines to tasks like car
maintenance. The dataset characteristics span varying video
lengths, with averages ranging from approximately 520
frames to as high as 11788 frames.

Features. To ensure an equitable comparison with rele-
vant prior studies, we adopt the same input features as re-
cent methodologies (Sheng and Li 2023; Wang et al. 2023;
Fayyaz and Gall 2020). Specifically, for the BF, FS, and HE
datasets, we utilize the Improved Dense Trajectory (IDT)
features (Wang and Schmid 2013) as computed and pro-
vided by the authors of CTE (Kukleva et al. 2019) (for
BF and FS) and SCT (Fayyaz and Gall 2020) (for HE).
For YTI (Alayrac et al. 2016), we leverage the features
made available by the authors themselves. These features
consist of 3000-dimensional vectors, achieved by concate-
nating Histogram of Optical Flow (HOF) (Laptev et al.
2008) descriptors with feature embeddings extracted from

VGG16-conv5 (Simonyan and Zisserman 2014). Through-
out all datasets, our reporting of performance encompasses
the entire dataset, ensuring alignment with established prac-
tices within the literature.

Evaluation Metrics. Since our method outputs clusters
without particular correspondences to the ground-truth la-
bels, we require a one-to-one mapping between the outputs
and the ground-truth labels. Following (Aakur and Sarkar
2019; Kukleva et al. 2019; Sener and Yao 2020), we uti-
lize the Hungarian algorithm to generate this mapping based
on the overlap between matched clusters. Since our method
does not concern cluster labels, we conduct this mapping on
the video level as in (Aakur and Sarkar 2019). We also report
the F1 score and mean over frames (MoF) for all datasets as
used in previous works (Kukleva et al. 2019). We report the
Jaccard index as an intersection over union (IoU) as an ad-
ditional measurement.

Comparison to State-of-the-art
We proceed to present a comprehensive comparison of our
method against the current state-of-the-art techniques, in-
cluding WPI (Ghoddoosian et al. 2022), SSTDA (Chen et al.
2020), ASAL (Li and Todorovic 2021), TOT+TCL (Kumar
et al. 2022), Mallow (Sener and Yao 2020), ASAL (Li and
Todorovic 2021), SCV (Li and Todorovic 2020), US-FGW
(Luo et al. 2022), DMR (Asghari-Esfeden, Sznaier, and
Camps 2020), D3TW (Chang et al. 2023), SRL (Feichten-
hofer et al. 2021), SRA (Lai et al. 2019), STPE (de AP Mar-
ques et al. 2022), GMM+CNN (Kuehne, Richard, and Gall
2019), FFA (Ng and Fernando 2020), C2F (Sheng, Li, and
Tian 2021), TAD (Li, He, and Xu 2022), etc. We will dis-
cuss the results individually for each of the four datasets,
as summarized in the following tables: Tab. 1 (BF), Tab. 2
(YTI), Tab. 4 (FS), and Tab. 3 (HE). However, it’s impor-
tant to acknowledge that as highlighted in (Kukleva et al.
2019), while our evaluation metrics are comparable to those
utilized by both weakly and fully supervised approaches, a
certain nuance must be taken into account. Specifically, the
results of unsupervised learning are presented concerning an
optimal cluster assignment to ground-truth classes, thereby
representing the best conceivable scenario for this task. For
each dataset, we incorporate partial relevant metrics when-
ever they are conventionally utilized for that specific dataset.
In the presented tables, the Train column serves as an indica-
tor of whether the method necessitates training on the target
activity videos before executing the segmentation process.
A hyphen – denotes instances where no reported results are
available.

Performance on BF. In Tab. 1, we present a performance
comparison with state-of-the-art methods on BF. In addi-
tion to unsupervised methods, we also include a compari-
son with several supervised and weakly supervised methods,
which serve as upper bounds for evaluating our method’s
performance. Our SaM method demonstrates superior per-
formance over all unsupervised methods, showcasing ab-
solute improvements of 9.5%, 10.2%, and 12% compared
to the best-reported unsupervised method CoSeg (Wang
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BF
Weakly Supervised IoU F1 MoF Train
CDFL – – 50.2 ✓
SCT – – 30.4 ✓
MuCon – – 48.5 ✓
WPI 25.0 – – ✓
C2FL – – 50.4 ✓
Unsupervised IoU F1 MoF Train
CTE – 26.4 41.8 ✓
SSTDA – – 55.2 ✓
ASAL – 37.9 52.5 ✓
TOT+TCL – 30.3 39.0 ✓
CoSeg 42.6 44.7 53.1 ✓
SaM 44.4 55.9 64.0

Table 1: Comparison to the state-of-the-art on BF.

YTI
Unsupervised F1 MoF Train
CTE 28.3 39.0 ✓
Mallow 27.0 27.8 ✓
ASAL 32.1 44.9 ✓
TOT+TCL 32.9 45.3 ✓
LTL 34.7 52.4
SaM 49.6 68.1

Table 2: Comparison to the state-of-the-art learning on YTI.

et al. 2023). Similarly, our approach outperforms the lead-
ing weakly supervised method C2FL (Sheng and Li 2023)
with a remarkable 14.7% enhancement on the MoF metric.
Furthermore, in comparison with fully supervised methods,
our approach achieves results 5.9% lower than the F1 met-
ric of (van Amsterdam et al. 2023) and 5.1% lower than the
MoF metric of (Chen et al. 2020). Although our method falls
short of the performance exhibited by fully supervised meth-
ods, we have achieved remarkable proximity to their results.

Performance on YTI. We summarize the performance of
our method on YTI in Tab. 2. To make a fair compari-
son, we remove background frames from videos as previ-
ous approaches (Kukleva et al. 2019; Sener and Yao 2020).
Our SaM method significantly outperforms all unsupervised
methods, with absolute gains of 14.9%/15.7% on F1/MoF
over the best published unsupervised method LTL (Bueno-
Benito, Vecino, and Dimiccoli 2023).

Performance on HE. As shown in Tab. 3, our method
achieves a significant leap compared with existing ap-
proaches. In particular, our method obtains improvements of
5.7% on MoF compared with the best unsupervised method
DHC (Sharma et al. 2023). Similarly, our method outper-
forms the best weakly supervised method MuCon (Souri
et al. 2021) with 19.3% gains on the MoF metric. Re-
markably, our method even outperforms all fully supervised
methods on the IoU and MoF metrics.

HE
Fully Supervised IoU F1 MoF Train
GMM+CNN 8.4 – 39.5 ✓
SCV 35.5 – – ✓
Weakly Supervised IoU F1 MoF Train
CDFL 19.5 – 40.6 ✓
SCT 17.7 – – ✓
MuCon – – 41.6 ✓
US-FGW 23.1 – 38.4 ✓
D3TW – – 33.6 ✓
Unsupervised IoU F1 MoF Train
SRA – 41.1 – ✓
DMR – 47.4 – ✓
SRL 30.0 45.7 53.0 ✓
STPE – – 47.3 ✓
DHC – – 55.2 ✓
SaM 39.4 57.3 60.9

Table 3: Comparison to the state-of-the-art on HE.

FS
Weakly Sup. F1 MoF(eval) MoF(mid) Train
CDFL – – 54.7 ✓
FFA – – 49.4 ✓
C2F – – 24.7 ✓
TAD – – 45.5 ✓
C2F2 – – 56.2 ✓
Unsup. F1 MoF(eval) MoF(mid) Train
CTE – 35.5 30.2 ✓
SSTDA 73.8 – – ✓
ASAL – 39.2 34.4 ✓
TOT+TCL – 44.5 34.3 ✓
CoSeg 71.8 – – ✓
SaM 78.2 71.6 71.9

Table 4: Comparison to the state-of-the-art on FS.

Performance on FS. We provide a summary of the per-
formance of our method on the FS dataset in Tab. 4. The
FS dataset encompasses an average of 19 actions per video,
with 14.1% of all frames classified as background frames.
We evaluate our method based on two levels of action gran-
ularity, as outlined in (Stein and McKenna 2013). The mid
granularity level assesses performance across the complete
set of 19 actions, while the eval granularity level combines
certain action classes to yield 10 distinct action classes. In
the mid granularity evaluation, our method achieves an MoF
of 71.9%, which is notably higher by 15.7% (in absolute
terms) compared to the leading weakly supervised method
C2F2 (Sheng and Li 2023). This trend of performance im-
provement is also evident in the eval granularity level eval-
uation. In comparison to the most effective fully supervised
method, our approach achieves results that are 10.29% lower
in terms of F1 metric, 12.2% lower in terms of eval metric,
and 4.4% lower in terms of mid metric. This indicates that
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Train (h) Learn (s) Train
Weakly Supervised
CDFL 66.73 62.37 ✓
MuCon-full 4.57 3.03 ✓
Unsupervised
CTE – 217.94 ✓
Ours 0.00 0.20

Table 5: Comparison of training and learning time. The
training time is measured for training on split 1 on BF and
the learning time is measured as the average learning time
for a single video.
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Figure 2: The performance of our method with varying (a) δ
and (b) λ on BF dataset.

there is still room for enhancement in our method’s perfor-
mance on the FS dataset.

Run-Time Comparison
The comparison of runtime efficiency between our method
and alternative approaches is presented in Tab. 5, includ-
ing MuCon-full (Souri et al. 2021), etc. All experiments
were conducted using split 1 of the BF dataset, with learn-
ing times reported for individual videos. Each video within
this dataset comprises approximately 2,000 frames. The time
used for feature extraction is not included. A discernible pat-
tern emerges from the table: our method eliminates the ne-
cessity for hours of GPU-intensive model training. In com-
parison to the faster unsupervised approach CTE (Kukleva
et al. 2019), which either requires no training or entails train-
ing overhead, our method achieves an impressive 56x faster
learning rate. The combination of swift learning speed and
the absence of training prerequisites underscores the practi-
cal feasibility of our approach. When paired with an off-the-
shelf feature extractor, our method becomes readily applica-
ble to real-world applications.

Parameter Sensitivity Analysis
Impact of δ. We delve into investigating the impact of
the window size parameter, δ, which governs the search for
boundaries of actoms. We fix the parameter λ as λ = 0.001,
The relationship between action segmentation performance
and the parameter δ is illustrated in Fig. 2 (a). When δ is in-
creased, our method tends to yield stable results, particularly
within the range of δ < 0.4. However, when δ exceeds 0.4,
the effectiveness of our algorithm begins to diminish. This

decline can be attributed to the fact that with larger δ values,
the algorithm detects fewer boundaries of actoms. Nonethe-
less, it’s worth noting that our algorithm maintains a rela-
tively stable performance across a wide range of δ values,
0.1 < δ < 0.4. Our algorithm exhibits consistent behavior
within this range. We set δ = 0.3 in our experiment.

Influence of λ. We further delve into investigating the im-
pact of the trade-off parameter, λ, on the actom merging pro-
cess. We maintain a fixed value for the parameter δ, setting
it to δ = 0.3. The correlation between action segmentation
performance and the parameter λ is depicted in Fig. 2 (b).
Similar to δ, it appears that the parameter λ also exerts a
significant influence on the performance of our algorithm.
We notice that the performance of our algorithm improves
as λ increases, and this trend starts to diminish when λ sur-
passes 0.001. However, there is a potential issue to consider.
Increasing the value of λ to enhance temporal consistency
can inadvertently lead to the merging of adjacent atoms that
actually represent distinct actions. For example, if a video
showcases actions A, B, and C, and the sequential occur-
rence of these actions follows the pattern A, B, A, C, B. In
this case, a tremendous value of λ would result in merging
the first three actoms A, B, and A into an action. To address
this concern, it is advisable to adopt a balanced approach
and refrain from assigning excessively large values to λ. A
commonly suggested value for λ is 0.001.

Ablation Study

Impact of Splitting. We demonstrate the role of the split-
ting step by removing it from our algorithm. We assume
that each frame represents an actom, and subsequently, our
merging method is applied to these actoms. This adaptation
results in a performance decline in our method on the BF
dataset, with the MoF score dropping from 64.0 to 54.8, IoU
decreasing from 44.4 to 35.1, and F1 diminishing from 55.9
to 39.6. This illustrates that our method cannot function ef-
fectively without the splitting step.

Impact of Merging. To illustrate the impact of the merg-
ing step, we exclude it from our algorithm. We execute the
boundary search process, retaining only K − 1 boundaries
with the lowest similarity si to ensure the generation of
K segments, with each segment corresponding to an ac-
tion. This adjustment leads to a performance decline in our
method on the BF dataset, with the MoF score dropping
from 64.0 to 50.6, IoU decreasing from 44.4 to 22.0, and
F1 diminishing from 55.9 to 30.4. This emphasizes that our
method cannot operate effectively without the merging step.

Conclusion
This paper introduces an innovative unsupervised learning
framework for action segmentation. By considering both the
consistency within actions and the variation across actions,
we develop a SaM algorithm to learn the semantically con-
sistent actoms. Rigorous evaluations conducted on four de-
manding datasets substantiate the efficacy of our approach.
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