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Abstract

Monocular 3D object detection usually adopts direct or hier-
archical label supervision. Recently, the distillation supervi-
sion transfers the spatial knowledge from LiDAR- or stereo-
based teacher networks to monocular detectors, but remain-
ing the domain gap. To mitigate this issue and pursue ade-
quate label manipulation, we exploit Foreground Depth map
for feature-supervised monocular 3D object detection named
FD3D, which develops the high-quality instructive interme-
diate features to conduct desirable auxiliary feature supervi-
sion with only the original image and annotation foreground
object-wise depth map (AFOD) as input. Furthermore, we
build up our instructive feature generation network to cre-
ate instructive spatial features based on the sufficient correla-
tion between image features and pre-processed AFOD, where
AFOD provides the attention focus only on foreground ob-
jects to achieve clearer guidance in the detection task. More-
over, we apply the auxiliary feature supervision from the
pixel and distribution level to achieve comprehensive spatial
knowledge guidance. Extensive experiments demonstrate that
our method achieves state-of-the-art performance on both the
KITTI and nuScenes datasets, with no external data and no
extra inference computational cost. We also conduct experi-
ments to reveal the effectiveness of our designs.

Introduction

3D object detection is crucial for the perception task in ex-
tensive applications such as autonomous driving and robotic
manipulation (Reading et al. 2021; Liu, Wu, and T6th 2020).
Considering different scenarios, recent 3D detection ap-
proaches (Thomas et al. 2019; Nabati and Qi 2021; Huang
et al. 2022; Sun et al. 2020) measure the objects’ precise lo-
cation from the different-modalities inputs, such as 3D point
clouds, radar signals, monocular images or stereo images. In
particular, the monocular setting adopting the deployment of
a single RGB camera has attracted increasing attention.
The usual pipeline for monocular 3D object detection re-
veals to apply the direct label supervision with the well-
designed model and constrains (Zhang, Lu, and Zhou 2021;
Reading et al. 2021; Huang et al. 2022), or deliver the hi-
erarchical label supervision on different-layer features (Lu
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Figure 1: Illustration of our auxiliary feature supervision
framework, where the instructive features are trained from
the generation network with inputs of image and annotation
foreground object-wise depth (AFOD).

et al. 2021). Recently, researchers have explored the distilla-
tion schema to train the LiDAR- or stereo-based teacher net-
works to transfer the learned spatial features’ knowledge to
monocular 3D detectors (Chong et al. 2022; Chen, Dai, and
Ding 2022). It actually exhibits an auxiliary feature super-
vision to the original monocular baseline, with the elaborate
manipulation of the labels, teacher models, and inputs like
LiDAR or stereo sensors.

Notably, these multi-modal sensors bring robust spatial
guidance like feature-level (Chen, Dai, and Ding 2022) or
object-level (Chong et al. 2022) adaptation but remain more
expensive compared with the monocular image-only setting
(Yin, Zhou, and Krahenbuhl 2021; Li and Zhao 2021). In
addition, their teacher network’s training stays restricted by
the domain gap, which reveals the other-modal input, the
heavier feature extractor and more challenging cross-modal
feature distillation. Furthermore, they utilize indirect label
supervision to make inaccurate predictions under the model
limitation, ignoring the potential of ground truth as a direct
indication to generate reliable spatial features.

To mitigate these issues and pursue adequate label ma-
nipulation, we exploit Foreground Depth map for feature-
supervised monocular 3D object detection named FD3D,
which develops the high-quality instructive intermediate
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features to conduct desirable auxiliary feature supervision
with only the original image and annotation foreground
object-wise depth map (AFOD) as input. As shown in Fig. 2,
it can be considered as an elegant auxiliary feature super-
vision with a novel input-label manipulation for excellent
label absorbance. In specific, within the instructive feature
generation network (IFGN), we cancel the heavy LiDAR
or stereo feature extractor. Instead, we pre-process the fore-
ground object-wise depth label to achieve alignment with
the image domain, where AFOD provides the attention fo-
cus only on foreground objects to achieve clearer guidance
in the detection task. Moreover, we propose a vision-depth
association module (VDAM) to promote the semantic and
spatial clues correlation with image and AFOD as input. No-
ticeably, the IFGN actually keeps the similar light monocu-
lar detection framework, and the VDAM fully manipulates
the depth labels as a reliable indicator to generate more in-
structive intermediate features. Afterwards, we deliver the
auxiliary feature supervision to release the cross-domain
challenge and acquires efficient spatial knowledge migration
with the channel-wise projection layer (pixel-level supervi-
sion) and adversarial scoring block (distribution-level super-
vision). After training, we reserve the primary detection net-
work to inference tested images, with no external data and
no extra inference computational cost. We summarize our
contributions as follows:

* We propose a new framework FD3D for monocular 3D
object detection, which sufficiently manipulates the im-
age and annotation foreground object-wise depth map
(AFOD) as input to focus on the foreground objects, thus
to produce instructive intermediate features for further
domain-free feature supervision.

* We develop a vision-depth association module to gener-
ate robust intermediate features, which projects features
with semantic, depth, and geometric clues into 3D coor-
dinates to deploy adequate feature fusion.

* We propose the auxiliary feature supervision to reach ef-
ficient pixel-level and distribution-level feature guidance
with channel-wise projection layer and adversarial scor-
ing block.

Our approach achieves state-of-the-art performance on
the KITTI (Geiger, Lenz, and Urtasun 2012) and
nuScenes (Caesar et al. 2019) datasets.

Related Work

Monocular 3D object detection. The objective of monoc-
ular 3D objection detection was to recognize objects of in-
terest and recover the corresponding 3D bounding box infor-
mation from monocular images. It was an ill-posed problem
due to the lack of direct depth information measurements
for solving 2D-3D projection ambiguity (Ma et al. 2021;
Reading et al. 2021). Recent approaches (Zhang, Lu, and
Zhou 2021; Reading et al. 2021; Park et al. 2021; Huang
et al. 2022) adopted the convolutional neural networks to
encode high-level semantic features from image inputs, and
designed geometric constraints based on calibration projec-
tion or utilized additional depth supervision with LiDAR
measuring to decode target-level responses. To mitigate the
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issue of depth measuring absence, PatchNet (Ma et al. 2020)
adopted dense depth estimation pretraining (Fu et al. 2018)
and performed the task of regression from patched depth
maps. MonoDTR (Huang et al. 2022) proposed a depth-
aware transformer to encode long-range semantic and depth
dependencies. MonoDistill (Chong et al. 2022) utilizes the
projected LiDAR signals as the inputs for the teacher model
to educate the student model with spatial information. Our
approach reveals the monocular detector to further motivate
the auxiliary spatial feature supervision.

Auxiliary Learning. Auxiliary learning (Zhang, Tang,
and Jia 2018; Liu, Davison, and Johns 2019; Ye et al. 2021)
aimed at jointly training a primary task alongside auxiliary
tasks to improve the primary model robustness to unseen
data. Works (Flynn et al. 2016; Zhou et al. 2017) accom-
plished unsupervised monocular depth estimation via de-
veloping image synthesis networks that predicted the rela-
tive pose of multiple cameras for auxiliary learning. For the
primary task of 2D object detection, Mordan et al. (Mor-
dan et al. 2018) proposed the generic ROCK residual block
to train auxiliary scene classification, depth estimation, and
normal estimation. In terms of monocular 3D object detec-
tion, DD3D (Park et al. 2021) proposed to pre-train the de-
tector with the auxiliary task of depth estimation to assist
in monocular 3D localization. MonoCon (Liu, Xue, and Wu
2022) proposed to recover the 2D-3D relationship via apply-
ing geometric constraints, which trained the key-point es-
timations of foreground objects as the auxiliary task. Our
auxiliary feature supervision can be regarded as an auxiliary
learning task to improve the primary detection task.

Methodology
Overview

As shown in Fig. 2, we illustrate the overview of our FD3D
framework for monocular 3D object detection. Firstly, we
propose an instructive feature generation network (IFGN)
by developing a vision-depth association module (VDAM),
which considers the long-range dependencies of foreground
object-wise depth maps (AFOD) from labels and their en-
coded semantic features. We supervise it with labels and
restore the instructive intermediate features for feature su-
pervision. Afterwards, we adopt MonoDLE (Ma et al. 2021)
monocular detector as our baseline model, and train it for
the primary task of 3D detection, together with the auxiliary
feature supervision between intermediate features, where we
design the channel-wise projection layer and an adversarial
scoring block to promote spatial knowledge migration. After
training, we propose the tested images into the primary de-
tection network to receive detection results with no external
data. Next, we will introduce our framework with equations
compared with the previous ones, and reveal more details of
our contributions.

Label Manipulation for 3D Object Detection

In the Fig. 3, we elaborate the label manipulation com-
parison. Firstly, we introduce the usual label manipulation:
Fig. 3(a) with direct label supervision and Fig. 3(b) with
multi-layer losses to realize hierarchical label supervision,
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Figure 3: The usual label manipulation for monocular 3D object detection with the direct label (a) or hierarchical label (b)
supervision. The distillation schema in (c) with other-modal input X, which applies cross-domain intermediate feature super-

vision. Our strategy in (d) replaces the X with image X, adopts the similar monocular model F and leverages the ground truth
Y as a spatial indicator to achieve more instructive intermediate features.

where X denotes the monocular image inputs and F; de- we propose our stylish pipeline:
notes the i-th layer of model. Li(I(Fn; X);Y)+ Lan(I(Fn; X, Y );Y))
AR + 32 L OURs X)) (F X))
Lsi(I(Gn; X); Y ZLSZ (I(F; X)); 1(Gi; X)) =L(. +ZL4 (Fi; X); (T(Fn, X, Y5V ); X, Y))
A 5 2)
=Li(.) + ZL3 (£ X); I(Ti(Gw, X3 Y), X)) As shown in Fig. 3 (d), we firstly replace the X with
6] the same image domain input X and replace the other-
Furthermore, E'qu.(1) reflects the distillation schema in modal-based guidance network G with the similar monocu-
Fig. 3(c) which trains the guidance network G in L3, with lar model F to release the domain gap. In addition, we delve
other-modal input X like LiDAR pointcloud, and applies into label manipulation where we leverage the ground truth
the feature supervision loss L3z between intermediate fea- Y as the strong geometrical clue indicator to achieve more
tures, where I(A; B) denotes the inference result of model instructive intermediate features I(7;; X,Y"). We regard our
layers A with input B; L(A; B) denotes the loss between approach as a sufficient approach to absorb and manipulate
prediction A with label B; O denotes the operation on fea- the three elements (F', X,Y’), which decreases the training
tures. Actually, weAcould simplify the L3; and L35 to the complexity.
L3 where T'(Gy, X;Y) indicates the manipulation (model . .
training) process of the three elements (Gy,X,Y), thus Instructive Feature Generation Network
could achieve the i-th intermediate T’ features via the in- Prior to the details, we briefly introduce some important de-
put X. Considering the limitations of previous frameworks, sign considerations. First of all, we shall avoid the usage
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Figure 4: The structure of our vision-depth fusion module is only employed in our teacher model.

of additional inputs like LiDAR signals or paired stereo-
images during the network training or inference, so that our
results could be fairly compared against the prior monocu-
lar research. Secondly, noting that we aim at transferring the
abundant spatial knowledge to the baseline, we shall ensure
that the instructive intermediate features from the genera-
tion network are accurate and reliable. Thirdly, to alleviate
the cost of performing dimensional alignments, despite the
vision-depth association module, we maintain the genera-
tion network architecture as that of the baseline model.

Specifically, as shown in Fig. 4, we create the annotation
foreground object-wise depth map (AFOD), denoted as D,
via applying the calibration projection of object-wise depth
labels .A. We adopt the AFOD for its overall superior perfor-
mance with clearer instructive features about the foreground
objects. LIDAR depth reaches the ambiguous feature guid-
ance on the long-distance and occluded cases, which is af-
fected by the disruption of background noise, such as build-
ings and traffic devices. More details are demonstrated in the
experiment section.

Then pixels within projected 2D boxes are assigned with
center depth values of 3D boxes, while the occlusion areas
are assigned with depth values of closer targets. As shown
in Fig. 4, we designed the vision-depth association mod-
ule based on the cross-attention association (Vaswani et al.
2017) and the coordinate embedding (Liu et al. 2022) mech-
anisms. While, instead of generating 3D coordinate feature
maps with semantic features only, we further restrain the
pixel localization error by multiplying it with encoded depth
features from D. We denote the image feature extractor as
Fpg, the multi-layer-perceptron (MLP) operation as Fy,
the cross-attention operation as 1), and the coordinate gener-
ator as ¢. Hence in function, we formulate the vision-depth
association module as

Fry =o(Fy (Y (Frmg(X), D))
X Fy(9(X)) + ¢ (Frimg(X), D),

where I ; refers to the associated vision-depth features, i.e.

3
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our wanted instructive features, and o refers to the sigmoid
operation. Within the coordinate generator ¢, we first create
height and width arrays with lengths of the input image size,
and leverage the LID distribution to create the depth array
for each pixel location. Hence, we multiplied the camera-
axis coordinates with the inverse of the intrinsic parameters,
together with the camera to LiDAR extrinsic parameters to
obtain our initial 3D coordinates of shape H x W x 3. Our
cross-attention association sets the encoded semantic fea-
tures as query and the concatenation of depth and semantic
map as key and value, so that the generator has access to the
precise information of distance measuring.

Afterwards, we train the IFGN with 3D labels in a super-
vised manner and evaluate the depth-measuring quality of
instructive intermediate features based on its 3D detection
performance on the validation split.

Auxiliary Feature Supervision

In this subsection, we are going through the auxiliary fea-
ture supervision process of instructive intermediate features.
Unlike previous auxiliary learning approaches for monocu-
lar 3D object detection (Park et al. 2021, 2023; Peng et al.
2022) that require the pre-training of a large number of sam-
ples with dense depth map labels, we train our auxiliary su-
pervision on the detection dataset only.

Channel-Wise Projection Layer (CPL) Motivated by the
MLP-only architecture (Touvron et al. 2022), we conduct the
channel-wise interaction in a residual manner with the MLP
operations. As shown in Fig. 5, the proposed CPL consists
of the residual structure with channel attention generation.
Instead of directly adopting the proposed designs (Touvron
et al. 2022), we replace the self-attention module with lin-
ear layers (Li.), affine transformation (Aff.) and other oper-
ations, which abandons the traditional multi-head attention
computation and achieves GPU savings and stable training.
Next, we deliver the global features through the channel at-
tention generation, to obtain the channel attention weights.
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Figure 5: Overview of the channel-wise projection layer (CPL).
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Therefore, the total pixel-wise loss £,;; can be denoted as:

Loz =NE Lonee (CPL(FS), FT), 4)

where AL is the hyper-parameters for loss balancing the
training. The MSE loss refers to the mean squared errors.

Adversarial Scoring Block The above MSE loss cares
about the pixel-wise diversity, which may mislead the aux-
iliary supervision with the unbalanced feature distribution:
a small partition of foreground object targets but a large
partition of background (Chong et al. 2022). Therefore, we
adopt the training procedure of generative adversarial net-
work (Goodfellow et al. 2020), and propose the adversar-
ial scoring block (ASB), as shown in Fig. 6. It allocates the
distribution consistency between paired features, and lever-
ages the discriminator network to distinguish them. When
the primary features succeed in fooling the discriminator,
we receive a similar distribution between the primary and in-
structive features. Specifically, we design the discriminator
network with linear layers. When training the discriminator,
we assign the real labels to the auxiliary instructive features
and fake labels to the primary ones.

We minimize the binary cross-entropy loss Lp of the
score map from discriminator D on the features as follows:

—% Z Zyilog (D(Fm)(h’“’))

i h,w

Lp

&)
+ (1= y)log (D(F,) ")
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Method mAPT mATE| mAOE] NDS?T
CenterNet 0.338 0.658 0.629 0.400
FCOS3D 0.358 0.690 0.452 0.428
DD3D 0.418 0.572 0.368 0.477
PETR 0.391 0.647 0.433 0.455
BEVFormer | 0.409 0.650 0.439 0.462
BEVDet 0.398 0.556 0.414 0.463
Ours 0.431 0.569 0.365 0.485
Imp. +1.3% +0.3% +03%  +0.8%

Table 1: Single-frame nuScenes detection test set evaluation.
‘Imp.’ indicates our performance improvement over the base
model DD3D.

where y;=1 when the discriminator input is instructive inter-
mediate features F;,, and y;=0 when the input reveals the
primary features [,

After the discriminator’s training, we fix the discriminator
and begin the auxiliary supervision training for the primary
network. As shown in the bottom of Fig. 6, by constraining
the score map from the auxiliary training and assigning real
labels with binary cross-entropy loss, the auxiliary learning
model can effectively generate appropriate features and pre-
diction outputs with higher quality, which acts as one dis-
tribution agreement different from the pixel-wise MSE loss.
The adversarial loss £,4,, could be formulated as:

[’gdv = _% Z Z IOg (D<Fpr)(h7w))a

i h,w

(6)

As a result, features from the primary network can fool the
discriminator by maximizing the probability of the feature
or prediction similarity.

Primary and Auxiliary Supervision

For brevity, we use L.; and L., to denote the detection
loss. We first train our primary network with the loss:

ﬁpr = Ecls + ﬁreg @)

Then, we train our auxiliary feature supervision with the
pre-trained primary network and instructive feature gen-
eration network. To achieve end-to-end network training,
within one batch training, we first train the discriminator
with Eg (Equ. 5), then increase the auxiliary feature super-
vision (Equ. 8).

Ls =Ly + Lpiz + NI LE

adv

®)
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Monocular Method Extra Data Time(ms) Ea§P3D1\/§S§.r tesltgar q Ea/slfB El‘\//[(()g,ar teﬁltgr l
MonoDTR (Huang et al. 2022) LiDAR 37 2199 1539 12.73 | 28.59 20.38 17.14
MonoDistill (Chong et al. 2022) LiDAR 40 2297 16.03 13.60 | 31.87 2259 19.72
DCD (Li et al. 2022) LiDAR - 23.81 1590 13.21 | 32,55 21.50 18.25
SGM3D (Zhou et al. 2022) Stereo 30 2246 14.65 1297 | 31.49 2137 1843
OPA-3D (Su et al. 2023) KITTI-Depth 40 24.60 17.05 14.25 | 33.54 22.53 19.22
NeurOCS (Min et al. 2023) G.T. Fore. Mask - 29.89 1894 1590 | 37.27 2449 20.89
PGD (Wang et al. 2021b) None 21 19.05 11.76 939 | 26.89 16.51 13.49
MonoDLE (Ma et al. 2021) None 40 17.23 1226 10.29 | 2479 18.89 16.00
MonoEF (Zhou et al. 2021) None 30 21.29 13.87 11.71 | 29.03 19.70 17.26
GUPNet (Lu et al. 2021) None 34 20.11 1420 11.77 - - -
HomoLoss (Gu et al. 2022) None - 21.75 1494 13.07 | 29.60 20.68 17.81
MonoJSG (Lian, Li, and Chen 2022) None 42 24.69 16.14 13.64 | 32.59 21.26 18.18
MonoCon (Liu, Xue, and Wu 2022) None 26 2250 1646 13.95 | 31.12 22.10 19.00
Ours None 40 2538 17.12 14.50 | 3420 23.72 20.76
Improvements - - +0.69 +0.66 +0.55 | +1.61 +1.62 +1.76

Table 2: Comparison on the KITTT test set. ‘Improvements’ indicates our performance gain over the previous best results
without extra data. G.T. Fore. Mask denotes ground truth foreground mask (Min et al. 2023).

AP3;p(Car val) APggy(Car val)
Method Modal Easy Mod. Hard | Easy Mod. Hard
(1) MV3D (Chen et al. 2017) LiDAR 71.19 56.60 55.30 | 86.18 77.32 76.33
(ii) Instructive Fea. Gen. Network RGB + All LiDAR Depth 69.40 5543 4354 | 8245 67.56 55.60
(iii) Instructive Fea. Gen. Network RGB+ Foreground LiDAR Depth | 69.50 55.57 43.60 | 82.58 67.64 55.58
(iv) Instructive Fea. Gen. Network RGB+ AFOD (Ours) 68.39 60.47 52.24 | 7839 73.05 64.33

Table 3: Evaluation of the instructive feature generation network on the KITTI validation split on ‘Car’ category. Our approach
(iv) could achieve a comparable detection performance with the LiDAR-based detector (i) (Chen et al. 2017) and obtains better

where AL denote the loss balancing hyper-parameters of the
adversarial loss.

Experiments
Settings

Dataset. We evaluate our approach on two widely used
datasets: KITTI (Geiger, Lenz, and Urtasun 2012) and
nuScenes (Caesar et al. 2020) benchmarks. The KITTI
dataset consists of 7,481 samples for training and 7,518 for
testing. Following (Reading et al. 2021), we divide train-
ing samples into a training set with 3,712 samples and a
validation set with 3,769 samples. Ablation studies are all
conducted on the validation split with models trained on the
training split. There are three object classes (Car, Pedestrian
and Cyclist) and each class is divided into three difficulty
levels based on occlusion, truncation and size. The large-
scale dataset nuScenes (Caesar et al. 2020) contains a full
360-degree field of view provided by 6 cameras, 1 Lidar
and 5 radars, which consists of 1000 driving scenes, with
700, 150 and 150 scenes for training, validation, and test-
ing, respectively. The corresponding sequences are sampled
to frames with the resolution of 1600 x 900 at 2Hz.

Evaluation metric. For KITTI dataset, following prior
works (Reading et al. 2021), the 3D Average Precision
(AP;3p) and BEV Average Precision (APg gy ) are two vital
evaluation metrics. They are calculated using class-specific
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thresholds with 40 recall positions based on the intersection-
over-union (IoU) of 2D BEV and 3D bounding boxes. The
Car, Pedestrian and Cyclist categories have 0.7, 0.5, 0.5 IoU
threshold. For nuScenes, we follow (Park et al. 2021) and
adopt the evaluation metrics including nuScenes Detection
Score (NDS) and mean Average Precision (mAP), along
with two true-positive metrics ATE and AOE.

Implementation details. We select monocular 3D de-
tection method MonoDLE (Ma et al. 2021) as our base
model for KITTTI dataset following (Chong et al. 2022), and
DD3D (Park et al. 2021) as the base model for nuScenes
dataset, which both reveal one-stage center-based detection
approaches. The weight performs A\f'=0.9 for pixel-wise
loss, and A\f'=0.9 for the adversarial loss. The settings for
the optimizer and batch size follow base models (Ma et al.
2021; Park et al. 2021).

Evaluation of Our Framework

Comparisons on KITTI dataset. In Table 2, we present
the benchmark evaluation on the KITTI test split. Compared
with the previous best results without extra data, our frame-
work outperforms it with a certain margin. Furthermore, our
framework realizes the inference time of 40ms, which does
not introduce additional computational costs in the inference
stage and is industrially implementable.
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. AP;p@IoU=0.7 APppy @IoU=0.7
Ablation Easy Mod. Hard | Easy Mod. Hard
(1) direct. 60.57 5732 4950 | 71.00 67.68 59.30
(ii) cro. 61.31 5745 49.61 | 71.72 67.69 59.75
(ii1) +coord. 62.03 5854 50.10 | 72.39 68.72 60.83
(iv) +coord. x o (Fps(vis.)) | 66.58 63.52 5482 | 7749 7540 63.32
(v) +coord.xo (Fps(dep.)) | 67.38 62.97 54.03 | 7891 76.06 64.64
(vi) +coord.x o (Far(cro.)) | 73.48 67.10 56.99 | 83.93 78.76 69.39

Table 4: Ablation study of different instructive feature generation network designs on the KITTI validation set. ‘vis.” denotes
the visual features. ‘dep.” denotes the object-wise annotation depth. ‘direct.” denotes the direct association from the MLP layer
with concatenation input of ‘vis.” and ‘dep.’. ‘cro.” denotes the our cross-attention association strategy. ‘coord.” denotes the
preset 3D coordinates. F;; and o denotes the MLP and sigmoid operation.

AP;p@IoU=0.7 APgpgy @loU=0.7
Feature | C-P~ A-S Easy ° Mod.  Hard | Easy K/Iod. Hard
@) - - - 1745 13.66 11.68 | 2497 1933 17.01
(ii) v v - 26.78 1943 1641 | 35.79 26.21 22.71
(iii) v - v 12472 18.16 1547 | 3448 2447 21.16
@iv) v v v | 2822 20.23 17.04 | 36.98 26.77 23.16

Table 5: Ablation study for auxiliary feature supervision. ‘C-P’ denotes the channel-wise projection layer for pixel-wise loss.
‘A-S’ denotes the adversarial scoring block for distribution-level loss.

Comparisons on nuScenes dataset. In Table 1, we com-
pare with monocular approaches CenterNet (Zhou, Wang,
and Krihenbiihl 2019), FCOS3D (Wang et al. 2021a) and
DD3D (Park et al. 2021) on the nuScenes dataset, where our
approach outperforms the base model DD3D with a 1.3%
improvement in mAP and 0.8% improvement in NDS.

Evaluation of the instructive feature generation network.
The generation network should achieve adequate detection
accuracy to ensure reliable instructive intermediate features.
As shown in Table 3, we conduct the evaluation compari-
son with (i) the LiDAR-based method MV3D (Chen et al.
2017), and (ii-iv) the IFGN with all LiDAR depth, fore-
ground LiDAR depth and our AFOD as input. Our approach
(iv) could achieve a comparable detection performance with
the LiDAR-based detector (i) and generates clearer guid-
ance features on the long-distance and occluded objects, i.e.
the ‘Mod.” and ‘Hard’ cases. The settings (ii) and (iii) gain
higher score on the ‘Easy’ cases with denser and more re-
fined LiDAR depth clues, but receive the mixed and ambigu-
ous instructive features on the long-distance and occluded
cases. In addition, the full-range LiDAR depth (ii) is dis-
turbed by the background objects like buildings and road
devices. Overall, our (iv) obtains better overall performance.

Ablation Study

In this section, we investigate the effects of each component
of our framework on the KITTI validation split.

Ablation study for instructive feature generation net-
work. We explore some different designs of the instructive
feature generation network, specifically for the prior coor-
dinates with 3D embedding, as shown in Table 4. Firstly,
the cross-attention association (setting (ii)) performs bet-
ter compared to the direct association of concatenation and
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MLP (setting (i)), for the long-range dependencies consider-
ation. Based on setting (ii), we add the fixed 3D grid coor-
dinates, yet have a limited improvement (setting (iii)), as the
fixed 3D grid is a presetting schema and lacks the content-
aware and geometry-aware bias. If we insert the visual in-
formation (setting (iv)) or depth knowledge (setting (v)), as
the attention weight, into the originally fixed coordinates,
the performance advances. We hence inject both contents
simultaneously (setting (vi)) and achieve our strongest fea-
tures generation network for producing instructive interme-
diate features.

Ablation study for auxiliary feature supervision. As
shown in Table 5, we investigate our designs of auxiliary
feature supervision: the channel-wise projection layer (CPL)
and adversarial scoring block (ASB). Setting (ii) proves the
effects of our CPL to enhance the pixel-wise guidance. Set-
ting (iii) also improves the baseline, but it performs sub-
optimal results without applying the pixel-wise constraint.
We hence further jointly take both supervisions, and it turns
to generate convincing improvements in setting (iv).

Conclusion

In this paper, we propose a new monocular 3D object detec-
tion framework named FD3D, which develops high-quality
instructive intermediate features to conduct auxiliary feature
supervision with only the image and annotation foreground
object-wise depth map (AFOD) as input. To obtain repre-
sentative instructive features with depth-positional cues, we
develop a vision-depth association within the generation net-
work that interacts with the AFOD with semantic features to
realize long-range aware embedding. We proceed with aux-
iliary feature supervision from both the pixel and distribu-
tion levels. Our pipeline is shown effective and efficient on
KITTT and nuScenes datasets.
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