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Abstract

The recent contrastive language-image pre-training (CLIP)
model has shown great success in a wide range of image-level
tasks, revealing remarkable ability for learning powerful vi-
sual representations with rich semantics. An open and worth-
while problem is efficiently adapting such a strong model to
the video domain and designing a robust video anomaly de-
tector. In this work, we propose VadCLIP, a new paradigm
for weakly supervised video anomaly detection (WSVAD)
by leveraging the frozen CLIP model directly without any
pre-training and fine-tuning process. Unlike current works
that directly feed extracted features into the weakly super-
vised classifier for frame-level binary classification, VadCLIP
makes full use of fine-grained associations between vision
and language on the strength of CLIP and involves dual
branch. One branch simply utilizes visual features for coarse-
grained binary classification, while the other fully leverages
the fine-grained language-image alignment. With the bene-
fit of dual branch, VadCLIP achieves both coarse-grained
and fine-grained video anomaly detection by transferring pre-
trained knowledge from CLIP to WSVAD task. We conduct
extensive experiments on two commonly-used benchmarks,
demonstrating that VadCLIP achieves the best performance
on both coarse-grained and fine-grained WSVAD, surpassing
the state-of-the-art methods by a large margin. Specifically,
VadCLIP achieves 84.51% AP and 88.02% AUC on XD-
Violence and UCF-Crime, respectively. Code and features are
released at https://github.com/nwpu-zxr/VadCLIP.

Introduction
In recent years, weakly supervised video anomaly detection
(WSVAD, VAD) has received growing concerns due to its
broad application prospects. For instance, with the aid of
WSVAD, it is convenient to develop more powerful intel-
ligent video surveillance systems and video content review
systems. In WSVAD, the anomaly detector is expected to
generate frame-level anomaly confidences with only video-
level annotations provided. The majority of current research
in this field follows a systematic process, wherein the ini-
tial step is to extract frame-level features using pre-trained
visual models, e.g., C3D (Tran et al. 2015; Sultani, Chen,
and Shah 2018), I3D (Carreira and Zisserman 2017; Wu
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Figure 1: Comparisons of different paradigms for WSVAD.

et al. 2020), and ViT (Dosovitskiy et al. 2020; Li, Liu, and
Jiao 2022), followed by feeding these features into multi-
ple instance learning (MIL) based binary classifiers for the
purpose of model training, and the final step is to detect
abnormal events based on predicted anomaly confidences.
Despite their simple schemes and promising results, such a
classification-based paradigm fails to take full advantage of
cross-modal relationships, e.g, vision-language associations.

During the past two years, we have witnessed great
progress in the development of vision-language pre-training
(VLP) models (Kim, Son, and Kim 2021; Jia et al. 2021;
Wang et al. 2021; Chen et al. 2023a), e.g., CLIP (Radford
et al. 2021), for learning more generalized visual repre-
sentations with semantic concepts. The main idea of CLIP
is to align images and texts by contrastive learning, that
is, pull together images and matched textual descriptions
while pushing away unmatched pairs in the joint embedding
space. Thanks to hundreds of million noisy image-text pairs
crawled from the web, such models pre-trained at a large
scale really demonstrate their strong representation learning
as well as associations between vision and language. In view
of the breakthrough performance of CLIP, recently, building
task-specific models on top of CLIP is becoming emerging
research topics and applied to a broad range of vision tasks,
and these models achieve unprecedented performance.

Although CLIP and its affiliated models demonstrate the
great potential on various vision tasks, these methods mainly
focus on the image domain. Therefore, how to efficiently
adapt such a model learned from image-text pairs to more
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complex video anomaly detection task under weak super-
vision deserves a thorough exploration. Recently, a few
works (Joo et al. 2023; Lv et al. 2023) attempt to make use
of the learned knowledge of CLIP, however, these methods
limit their scope to directly using visual features extracted
from the image encoder of CLIP, and neglect to exploit se-
mantic relationships between vision and language.

In order to make effective use of generalized knowledge
and enable CLIP to reach its full potential on WSVAD
task, based on the characteristics of WSVAD, there are sev-
eral critical challenges that need to be addressed. First, it
is vital to explore ways to capture contextual dependen-
cies across time. Second, it is essential to determine how
to harness learned knowledge and the visual-language con-
nections. Third, it is crucial to maintain optimal CLIP per-
formance under weak supervision.

In this work, we propose a novel paradigm based on CLIP
for WSVAD, which is dubbed as VadCLIP. VadCLIP con-
sists of several components to overcome the above chal-
lenges. Specifically, for the first challenge, we present a
local-global temporal adapter (LGT-Adapter), which is a
lightweight module for video temporal relation modeling.
LGT-Adapter involves two components, i.e., local tempo-
ral adapter and global temporal adapter, wherein the former
mainly captures local temporal dependencies with high ef-
ficiency, since in most cases the current events are highly
related to the adjacent events, and the latter smooths fea-
ture information in a more holistic view with less parame-
ters. For the second challenge, unlike current methods (Joo
et al. 2023; Lv et al. 2023) that solely use visual features,
we encourage VadCLIP to also leverage textual features to
preserve learned knowledge as much as possible. As shown
in Figure 1, VadCLIP is devised as a dual-branch fashion,
where one simply and directly utilizes visual features for
binary classification (C-branch), while the other employs
both visual and textual features for language-image align-
ment (A-branch). Moreover, such dual branch seamlessly
achieves coarse-grained and fine-grained WSVAD (Wu, Liu,
and Liu 2022). For A-branch, we build bridge between
videos and video-level textual labels. Moreover, we propose
two prompt mechanisms (Wu et al. 2023), i.e., learnable
prompt and visual prompt, to specify that the succinct text
is about the video. Learnable prompt does not require exten-
sive expert knowledge compared to the handcrafted prompt,
effectively transfers pre-trained knowledge into the down-
stream WSVAD task. Visual prompt is inspired by that vi-
sual contexts can make the text more accurate and discrimi-
nate. Imagine that if there is a car in the video, two types of
abnormal events of ”car accident” and ”fighting” would be
more easily distinguished. Hence, In the visual prompt, we
focus on anomaly information in videos and integrate these
anomaly-focus visual contents from C-branch with textual
labels from A-branch for automatic prompt engineering.
Such a practice seamlessly creates connections between dual
branch. For the third challenge, multiple instance learning
(MIL) (Sultani, Chen, and Shah 2018; Wu et al. 2020) is the
most commonly used method. For the language-visual align-
ments in A-branch, we introduce a MIL-Align mechanism,
the core idea is to select the most matched video frames for

each label to represent the whole video.
Note that during training, the weights of CLIP image and

text encoders are kept fixed, and the gradients are back-
propagated to optimise these learnable parameters of the de-
vised adapter and prompt modules.

Overall, the contributions of our work are threefold:
(1) We present a novel diagram, i.e., VadCLIP, which in-
volves dual branch to detect video anomaly in visual classifi-
cation and language-visual alignment manners, respectively.
With the benefit of dual branch, VadCLIP achieves both
coarse-grained and fine-grained WSVAD. To our knowl-
edge, VadCLIP is the first work to efficiently transfer pre-
trained language-visual knowledge to WSVAD.
(2) We propose three non-vital components to address new
challenges led by the new diagram. LGT-Adapter is used to
capture temporal dependencies from different perspectives;
Two prompt mechanisms are devised to effectively adapt the
frozen pre-trained model to WSVAD task; MIL-Align re-
alizes the optimization of alignment paradigm under weak
supervision, so as to preserve the pre-trained knowledge as
much as possible.
(3) We show that strength and effectiveness of VadCLIP on
two large-scale popular benchmarks, and VadCLIP achieves
state-of-the-art performance, e.g., it obtains unprecedented
results of 84.51% AP and 88.02% AUC on XD-Violence
and UCF-Crime respectively, surpassing current classifica-
tion based methods by a large margin.

Related Work
Weakly Supervised Video Anomaly Detection
Recently, some researchers (Zaheer et al. 2020; Feng, Hong,
and Zheng 2021; Wu et al. 2021; Chen et al. 2023b) have
proposed weakly supervised methods for VAD. Sultani et
al. (Sultani, Chen, and Shah 2018) firstly proposed a deep
multiple instance learning model, which considers a video
as a bag and its multiple segments as instances. Then sev-
eral follow-up works made effort to model temporal rela-
tions based on self-attention models and transformers. For
example, Zhong et al. (Zhong et al. 2019) proposed a graph
convolutional network (GCN) based method to model the
feature similarity and temporal consistency between video
segments. Tian et al. (Tian et al. 2021) used a self-attention
network to capture the global temporal context relationship
of videos. Li et al. (Li, Liu, and Jiao 2022) proposed a
transformer based multi-sequence learning framework, and
Huang et al. (Huang et al. 2022) proposed a transformer
based temporal representation aggregation framework. Zhou
et al. (Zhou, Yu, and Yang 2023) presented a global and local
multi-head self attention module for the transformer layer
to obtain more expressive embeddings for capturing tempo-
ral dependencies in videos. The above methods only detect
whether video frames are anomalous, on the contrary, Wu
et al. (Wu, Liu, and Liu 2022) proposed a fine-grained WS-
VAD method, which distinguishes between different types
of anomalous frames. More recently, the CLIP model has
also attracted great attentions in the VAD community. Based
on visual features of CLIP, Lv et al. (Lv et al. 2023) pro-
posed a new MIL framework called Unbiased MIL (UMIL)

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

6075



to learn unbiased anomaly features that improve WSVAD
performance. Joo et al. (Joo et al. 2023) proposed to employ
visual features from CLIP to efficiently extract discrimina-
tive representations, and then model long- and short-range
temporal dependencies and nominate the snippets of interest
by leveraging temporal self-attention. All the above meth-
ods are based on the classification paradigm, which detect
anomalous events by predicting the probability of anoma-
lous frames. However, this classification paradigm does not
fully utilize the semantic information of textual labels.

Vision-Language Pre-training
Vision-language pre-training has achieved impressive
progress over the past few years, which aims to learn
the semantic correspondence between vision and language
through pre-training on large-scale data. As one of the most
representative works, CLIP has shown impressive perfor-
mance on a range of vision-language downstream tasks, in-
cluding image classification (Zhou et al. 2022a), image cap-
tioning (Mokady, Hertz, and Bermano 2021), object detec-
tion (Zhou et al. 2022b), scene text detection (Yu et al.
2023), dense prediction (Zhou et al. 2022c; Rao et al.
2022), and so on. Recently, some follow-up works at-
tempted to leverage the pre-trained models for video do-
mains. For example, CLIP4Clip (Luo et al. 2022) trans-
ferred the knowledge of CLIP model to the video-text re-
trieval, some works (Wang, Xing, and Liu 2021; Lin et al.
2022; Ni et al. 2022) attempted to take advantages of CLIP
for video recognition, furthermore, CLIP is used to tackle
the more complex video action localization task (Nag et al.
2022; Ju et al. 2022). More generally, Ju et al. (Ju et al. 2022)
presented a simple yet strong baseline to efficiently adapt
the pre-trained image-based visual-language model, and ex-
ploited its powerful ability for general video understanding.
In this work, we deeply explore how to adapt pre-trained
vision-language knowledge of CLIP from image-level into
video-level downstream WSVAD efficiently.

Method
Problem Definition
The WSVAD task supposes that only video-level labels are
available during the training stage. Given a video v, if all
frames of this video do not contain abnormal events, this
video is defined as normal with the label y = 0; Otherwise,
if there is at least one frame contains abnormal events, this
video is labeled as abnormal with the label y = 1. The goal
of WSVAD task is to train a detection model that is able to
predict frame-level anomaly confidences while only video-
level annotations are provided.

Previous works generally make use of pre-trained 3D
convolutional models, e.g., C3D (Tran et al. 2015) and
I3D (Carreira and Zisserman 2017), to extract video fea-
tures, and then feed these features into MIL-based binary
classifiers, such paradigms are referred as the classification-
based paradigm in this paper. Recently, CLIP, as a large-
scale language-vision pre-trained model, has revolutionized
many fields in computer vision, and has shown great gen-
eralization capabilities across a wide range of downstream

tasks. Inspired by CLIP, our work not only uses the image
encoder of CLIP as the backbone to extract video features,
but also attempts to utilize the text encoder of CLIP to take
full advantage of the powerful associations between visual
contents and textual concepts. Our work is demonstrated in
Figure 2.

Local and Global Temporal Adapter
As we know, CLIP is pre-trained on large-scale image-text
pairs crawled from the web. In this section, we investigate
how to model temporal dependencies and bridge the gap be-
tween the image domain and video domain for CLIP. Mean-
while, it is also significant to learn long-range and short-
range temporal dependencies for WSVAD task (Zhou, Yu,
and Yang 2023; Wu and Liu 2021). From the perspective of
the efficiency and receptive field, we design a new temporal
modeling method compatible with local and global receptive
field.

Local Module. To capture local temporal dependencies,
we introduce a transformer encoder layer on top of frame-
level features Xclip ∈ Rn×d from the frozen image encoder
of CLIP, where n is the length of video, d is the dimension
size, which is set as 512 in this work. Note that this layer
differs from the ordinary transformer encoder layer since
it limits self-attention computation to local windows (Liu
et al. 2021) instead of the global scope. Specifically, we split
frame-level features into equal-length and overlapping win-
dows over temporal dimension, self-attention calculation is
limited within each window, and no information exchange
among windows. Such an operation possesses local recep-
tive field like the convolution, and leads to the lower compu-
tation complexity.

Global Module. To further capture global temporal de-
pendencies, we introduce a lightweight GCN module fol-
lowing local module, we adopt GCN to capture global
temporal dependencies due to its widespread adoption and
proven performance in VAD (Zhong et al. 2019; Wu et al.
2020; Wu and Liu 2021). Following the setup in (Zhong
et al. 2019; Wu et al. 2020), we use GCN to model global
temporal dependencies from the perspective of feature simi-
larity and relative distance, it can be summarized as follows,
Xg = gelu ([Softmax (Hsim) ;Softmax (Hdis)]XlW )

(1)
where Hsim and Hdis are the adjacency matrices, the Soft-
max normalization is used to ensure the sum of each row
of Hsim and Hdis equals to one. Xl is the frame-level video
feature obtained from local module, W is the only one learn-
able weight that is used to transform the feature space, this
setup demonstrates the lightweight of global module.

Feature similarity branch is designed to generated a
similarity relationship adjacency matrix for GCN. We use
the frame-wise cosine similarity to calculate the adjacency
matrix Hsim, which is presented as follows,

Hsim =
XlX

⊤
l

∥Xl∥2 · ∥Xl∥2
(2)

we also use the thresholding operation to filter weak rela-
tions (Wu et al. 2020).
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Position distance branch is used to capture long-range
dependencies based on positional distance between each two
frames. The proximity adjacency matrix is shown as follows:

Hdis(i, j) =
−|i− j|

σ
(3)

the proximity relation between ith and jth frames only de-
termined by their relative temporal position. σ is a hyper-
parameter to control the range of influence of distance rela-
tion. Both local transformer and GCN layer employ residual
connection to prevent feature over-smoothing.

Dual Branch and Prompt
Dual Branch. Unlike other previous WSVAD works, our
VadCLIP contains dual branch, more precisely, in addition
to the traditional binary classification branch (C-Branch),
we also introduce a novel video-text alignment branch,
dubbed as A-Branch. Specifically, after temporal modeling,
the video feature Xg is fed into a fully connected (FC) layer
to obtain the final video feature X ∈ Rn×d. In C-Branch, we
feed X into a binary classifier that contains a feed-forward
network (FFN) layer, an FC layer and a Sigmoid activation
to obtain the anomaly confidence A ∈ Rn×1.

A = Sigmoid (FC (FFN (X) +X)) (4)
In A-Branch, textual labels, e.g., abuse, riot, fighting, etc, are
no longer encoded as one-hot vectors, on the contrary, they
are encoded into class embeddings using the text encoder
of CLIP, we leverage the frozen pre-trained text encoder
of CLIP throughout, as the text encoder can provide lan-
guage knowledge prior for video anomaly detection. Then
we calculate the match similarities between class embed-
dings and frame-level visual features to obtain the alignment
map M ∈ Rn×m, where m is the number of text labels,
such a setup is similar to that of CLIP. In A-Branch, each
input text label represents a class of abnormal events, thus
naturally achieving fine-grained WSVAD.

Learnable Prompt. In WSVAD, text labels are words
or phrases, which are too succinct to summarize abnor-
mal events very well. To learn robust transferability of
text embedding, we take inspirations from CoOp (Zhou
et al. 2022a), and add the learnable prompt to original class
embeddings. Concretely, the original text labels are first
transformed into class tokens through CLIP tokenizer, i.e.,
tinit = Tokenizer(Label), where Label is the discrete text
label, e.g., fighting, shooting, road accident, etc. Then we
concatenate tinit with the learnable prompt {c1, ..., cl} that
contains l context tokens to form a complete sentence token,
thus the input of text encoder is presented as follows:

tp = {c1, ..., tinit, ..., cl} (5)

here we place the class token at the middle of a sequence.
Then this sequence token is added to the positional embed-
ding to obtain positional information, and finally, the text
encoder of CLIP takes as input tp and generates class em-
bedding tout ∈ Rd.

Anomaly-Focus Visual Prompt. In order to further im-
prove the representation ability of text labels for abnormal
events, we investigate how to use visual contexts to refine
the class embedding, since visual contexts can make the suc-
cinct text labels more accurate. To this end, we propose an
anomaly-focus visual prompt, which focuses on the visual
embeddings in abnormal segments, and aggregate these em-
beddings as the video-level prompt for class embeddings.
We first use the anomaly confidence A obtained from C-
Branch as the anomaly attention, then compute the video-
level prompt by the dot product of anomaly attention and
video feature X , which is presented as follows,

V = Norm
(
A⊤X

)
(6)

where Norm is the normalization, and V ∈ Rd is the
anomaly-focus visual prompt. We then add V to the class
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embedding tout and obtain the final instance-specific class
embedding T by a simple FFN layer and a skip connection.

T = FFN (ADD (V, tout)) + tout (7)

where ADD is the element-wise addition. Such a imple-
mentation allows class embeddings to extract the related vi-
sual context from videos.

With X and T in hands, we calculate the match similar-
ities between all class embeddings and frame-level visual
features to obtain the alignment map M .

Objective Function
For C-Branch, we follow previous works (Wu et al. 2020)
and use Top-K mechanism to select K high anomaly con-
fidences in both abnormal and normal videos as the video-
level predictions. Then we use the binary cross entropy be-
tween video-level predictions and ground-truth to compute
classification loss Lbce.

For A-Branch, we are confronted with new challenges:
1) there is no anomaly confidence; 2) facing multi-classes
instead of binary classes. To address this dilemma, we pro-
pose the MIL-Align mechanism which is similar to vanilla
MIL. Specifically, we consider the align map M since it
expresses the similarity between frame-level video features
and all class embeddings. For each row, we select top K
similarities and compute the average to measure the align-
ment degree between this video and the current class. Then
we can obtain a vector S = {s1, ..., sm} that represents the
similarity between this video and all classes. We hope the
video and its paired textual label emit the highest similarity
score among others. To achieve this, the multi-class predic-
tion is firstly computed as follows,

pi =
exp (si/τ)∑
j exp (sj/τ)

(8)

where pi is the prediction with respect to the ith class, and
τ refers to the temperature hyper-parameter for scaling. Fi-
nally, the alignment loss Lnce can be computed by the cross
entropy.

In addition to classification loss Lbce and alignment loss
Lnce, we also introduce a contrastive loss to slightly push the
normal class embedding and other abnormal class embed-
dings away, here we first calculate cosine similarity between
normal class embedding and other abnormal class embed-
dings, and then compute the contrastive loss Lcts as follows,

Lcts =
∑
j

max

(
0,

t⊤n taj
∥tn∥2 · ∥taj∥2

)
(9)

where tn is the normal class embedding, and ta is abnormal
class embeddings.

Overall, the final total objective of VadCLIP is given by:

L = Lbce + Lnce + λLcts (10)

Inference
VadCLIP contains dual branch that enables itself to ad-
dress both fine-grained and coarse-grained WSVAD tasks.

In regard to fine-grained WSVAD, we follow previous
works (Wu, Liu, and Liu 2022) and utilize a thresholding
strategy on alignment map M to predict anomalous events.
In regard to coarse-grained WSVAD, there are two ways to
compute the frame-level anomaly degree. The first one is to
directly use the anomaly confidences in C-Branch, the sec-
ond one is to use the alignment map in A-Branch, specif-
ically, subtracting the similarities between videos and the
normal class by one is the anomalous degree. Finally, we
select the best of these two ways for computing the frame-
level anomaly degree.

Experiments
Datasets and Evaluation Metrics
Datasets. We conduct experiments on two popular WS-
VAD datasets, i.e., UCF-Crime and XD-Violence. Notably,
training videos only have video-level labels on both datasets.

Evaluation Metrics. For coarse-grained WSVAD, we fol-
low previous works, and utilize the frame-level Average Pre-
cision (AP) for XD-Violence, and frame-level AUC and the
AUC of anomaly videos (termed as AnoAUC) for UCF-
Crime. For fine-grained WSVAD, we follow the standard
evaluation protocol in video action detection and use the
mean Average Precision (mAP) values under different in-
tersection over union (IoU) thresholds. In this work, we use
IoU thresholds ranging from 0.1 to 0.5 with a stride of 0.1
to compute mAP values. Meanwhile, we also report an aver-
age of mAP (AVG). Note that we only compute mAP on the
abnormal videos in the test set.

Implementation Details
For network structure, frozen image and text encoders are
adopted from pre-trained CLIP (ViT-B/16). FFN is a stan-
dard layer from Transformer, and ReLU is replaced with
GELU. For hyper-parameters, we set σ in Eq.3 as 1, τ in
Eq.8 as 0.07, and the context length l as 20. For window
length in LGT-Adapter, we set it as 64 and 8 on XD-Violence
and UCF-Crime, respectively. For λ in Eq.10, we set it as
1 × 10−4 and 1 × 10−1 on XD-Violence and UCF-Crime,
respectively. For model training, VadCLIP is trained on a
single NVIDIA RTX 3090 GPU using PyTorch. We use
AdamW as the optimizer with batch size of 64. On XD-
Violence, the learning rate and total epoch are set as 2×10−5

and 20, respectively, and on UCF-Crime, the learning rate
and total epoch are set as 1× 10−5 and 10, respectively.

Comparison with State-of-the-Art Methods
VadCLIP can simultaneously realize coarse-grained and
fine-grained WSVAD, therefore we present the performance
of VadCLIP and compare it with several state-of-the-art
methods on coarse-grained and fine-grained WSVAD tasks.
For the sake of fairness, all comparison methods use the
same visual features extracted from CLIP as VadCLIP.

Coarse-grained WSVAD Results. We show comparison
results in Tables 1 and 2. Here Ju et al. (Ju et al. 2022)
is a CLIP-based work for action recognition, which is sig-
nificantly inferior to our method. Such results demonstrate
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challenges on WSVAD task, and also show the strength
of our method with respect to Ju et al. (Ju et al. 2022)
for the specific WSVAD task. Besides, we found that Vad-
CLIP significantly outperforms both semi-supervised meth-
ods and classification-based weakly supervised methods on
two commonly-used benchmarks and across all evaluation
metrics. More precisely, VadCLIP attains 84.51% AP and
82.08% AUC on XD-Violence and UCF-Crime, respec-
tively, a new state-of-the-art on both datasets. By compar-
ison, VadCLIP achieves an absolute gain of 2.3% and 2.1%
in terms of AP over the best competitors CLIP-TSA (Joo
et al. 2023) and DMU (Zhou, Yu, and Yang 2023) on XD-
Violence, and on UCF-Crime, VadCLIP also outperforms
them by 0.4% and 1.3% in terms of AUC. More impor-
tantly, among all comparison methods, AVVD (Wu, Liu, and
Liu 2022) uses fine-grained class labels exactly, and it only
achieves 78.10% AP and 82.45% AUC on XD-Violence and
UCF-Crime, respectively, which lags behind VadCLIP by a
large margin. Such a result shows simply using fine-grained
labels cannot lead to performance gains, since excessive in-
puts of label increases the difficulty of binary classifica-
tion. The performance advantage of VadCLIP is partially at-
tributable to the vision-language associations, since all com-
parison baselines use the same visual features as VadCLIP.

Fine-grained WSVAD Results. For fine-grained WS-
VAD task, we compare VadCLIP with previous works
AVVD and Sultani et al. (Sultani, Chen, and Shah 2018; Wu,
Liu, and Liu 2022) in Tables 3 and 4. Here AVVD is the
first work to propose the fine-grained WSVAD, and we re-
implement it with visual features of CLIP, then we also fine-
tune Sultani et al. based on the setup in AVVD for adapt-
ing fine-grained WSVAD. As we can see, the fine-grained
WSVAD is a more challenging task with respect to coarse-
fined WSVAD since the former needs to consider both multi-
category classification accuracy and detection segment con-
tinuity. On this task, VadCLIP is also clearly superior to
these excellent comparison methods on both XD-Violence
and UCF-Crime datasets. For instance, On XD-Violence,
VadCLIP achieves a performance improvement of 13.1%
and 4.5% in terms of AVG compared to Sultani et al. and
AVVD.

Ablation Studies
Extensive ablations are carried out on XD-Violence dataset.
Here we choose the similarity map to compute the frame-
level anomaly degree for coarse-grained WSVAD.

Effectiveness of LGT-Adapter. As shown in Table 5,
firstly, without the assistance of LGT-Adapter for tempo-
ral modeling, the baseline model only achieves 72.22% AP
and 15.64% AVG, this results in a considerably drop of
12.3% AP and 9.1% AVG. Secondly, only using global
transformer encoder layer, local transformer encoder layer
or GCN layer gets clear performance boosts, especially in
terms of AP, which convincingly indicates transformer en-
coder and GCN both can efficiently capture temporal de-
pendencies by means of the self-attention mechanism across
video frames. Thirdly, the combination of global transformer
encoder and GCN yields the slightly improved performance

Category Method AP(%)

SVM baseline 50.80
Semi OCSVM (1999) 28.63

Hasan et al. (2016) 31.25

Ju et al. (2022) 76.57
Sultani et al. (2018) 75.18
Wu et al. (2020) 80.00
RTFM (2021) 78.27

Weak AVVD (2022) 78.10
DMU (2023) 82.41
CLIP-TSA (2023) 82.17
VadCLIP (Ours) 84.51

Table 1: Coarse-grained comparisons on XD-Violence.

Method AUC(%) Ano-AUC(%)

SVM baseline 50.10 50.00
OCSVM (1999) 63.20 51.06
Hasan et al. (2016) 51.20 39.43

Ju et al. (2022) 84.72 62.60
Sultani et al. (2018) 84.14 63.29
Wu et al. (2020) 84.57 62.21
AVVD (2022) 82.45 60.27
RTFM (2021) 85.66 63.86
DMU (2023) 86.75 68.62
UMIL (2023) 86.75 68.68
CLIP-TSA (2023) 87.58 N/A
VadCLIP (Ours) 88.02 70.23

Table 2: Coarse-grained comparisons on UCF-Crime.

Method mAP@IOU(%)
0.1 0.2 0.3 0.4 0.5 AVG

Random 1.82 0.92 0.48 0.23 0.09 0.71
Sultani et al. 22.72 15.57 9.98 6.20 3.78 11.65
AVVD 30.51 25.75 20.18 14.83 9.79 20.21
VadCLIP 37.03 30.84 23.38 17.90 14.31 24.70

Table 3: Fine-grained comparisons on XD-Violence.

Method mAP@IOU(%)
0.1 0.2 0.3 0.4 0.5 AVG

Random 0.21 0.14 0.04 0.02 0.01 0.08
Sultani et al. 5.73 4.41 2.69 1.93 1.44 3.24
AVVD 10.27 7.01 6.25 3.42 3.29 6.05
VadCLIP 11.72 7.83 6.40 4.53 2.93 6.68

Table 4: Fine-grained comparisons on UCF-Crime.

in terms of AP (+0.4%) over the combination of local trans-
former encoder and GCN, while the latter achieves signif-
icantly better performance in terms of AVG (+3.9%). We
also attempt a combination of local Transformer encoder and
global Transformer encoder, which results in significant per-
formance degradation in terms of AP listed in the 5th row.
The possible reason is that, compared to Transformer, GCN
can be regarded as a lightweight variant, and fewer parame-
ters prevent learned knowledge of CLIP from being affected
during the transfer process. Therefore, local transformer en-
coder and GCN are the optimum combination, which can
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Method AP(%) AVG(%)
Baseline (w/o temporal modeling) 72.22 15.64
Global TF-Encoder 82.54 16.76
Local TF-Encoder 81.18 18.41
Only GCN 81.56 23.31
Local TF-Encoder+ Global TF-Encoder 79.91 19.78
Global TF-Encoder+GCN 84.87 20.84
LGT-Adapter 84.51 24.70

Table 5: Effectiveness of LGT-Adapter.

C-Branch A-Branch L-Prompt V-Prompt AP(%)√
80.53√
68.15√ √
75.03√ √ √
78.27√ √ √
82.35√ √ √ √
84.51

Table 6: Effectiveness of dual branch.

AP(%) AVG(%)
Hand-crafted Prompt 81.06 22.46

Learnable-Prompt 84.51 24.70
Average-Frame Visual Prompt 81.34 21.57
Anomaly-Focus Visual Prompt 84.51 24.70

Table 7: Effectiveness of prompt.

capture different range temporal dependencies.

Effectiveness of Dual Branch. As shown in Table 6, our
method with only C-Branch belongs to the classification-
based paradigm, and can compete current state-of-the-art
methods on XD-Violence. On the other hand, our method
with only A-Branch achieves unsatisfactory performance in
terms of AP since it is mainly focus on fine-grained WS-
VAD. With the assistance of coarse-grained classification
on feature optimization in C-Branch, A-Branch obtains a
leap of about 7% AP improvement. By further adding the
learnable prompt and visual prompt that are ad-hoc designs
in A-Branch, we notice that a consistent performance im-
provement can be achieved, leading to a new state-of-the-art.
These results clearly show dual branch that contains coarse-
grained classification paradigm and fine-grained alignment
paradigm can boost the performance by leveraging the com-
plementary of different granularity.

Effectiveness of Prompt. As shown in Table 7, using
hand-crafted prompt results in a drop of 3.5% AP and
2.2% AVG, demonstrating that the learnable prompt has bet-
ter potential for adapting pre-trained knowledge from the
large language-vision model to WSVAD task. Furthermore,
simply using the average of frame-level features in visual
prompt (Ni et al. 2022) produces a drop of 3.2% AP and
3.1% AVG, such results show focusing on abnormal snip-
pets in the video can support VadCLIP to obtain more accu-
rate instance-specific text representations, which boosts the
ability of video-language alignment that is useful for WS-
VAD task.

Figure 3: t-SNE visualizations for XD-Violence. Left: Raw
CLIP features; Right: VadCLIP features.

Abuse Riot Normal Event

Shooting Robbery Normal Event

Figure 4: Qualitative results of coarse-grained WSVAD.

Qualitative Analyses
Feature Discrimination Visualization. We visualize the
feature distribution by using t-SNE for XD-Violence, and
present results in Figure 3, where star icons denote textual
label features. As we can see, although CLIP has learned
generalized capacities based on image-text pairs, such ca-
pacities still cannot allow it to effectively distinguish dif-
ferent categories for WSVAD due to intrinsic problems on
WSVAD task. After specialized optimization by VadCLIP,
these visual features have more distinguishable boundaries
and also surround the corresponding text class features.

Coarse-grained Qualitative Visualization. We illustrate
the qualitative visualizations of coarse-grained WSVAD in
Figure 4, where the blue curves represent the anomaly pre-
diction, and the pink regions correspond to the ground-truth
abnormal temporal location. As we can see, VadCLIP pre-
cisely detects abnormal region of different categories on two
benchmarks, meanwhile, it also produces considerably low
anomaly predictions on normal videos.

Conclusion
In this work, we propose a new paradigm named VadCLIP
for weakly supervised video anomaly detection. To effi-
ciently adapt the pre-trained knowledge and vision-language
associations from frozen CLIP to WSVAD task, we first de-
vise a LGT-Adapter to enhance the ability of temporal mod-
eling, and then we design a series of prompt mechanisms to
improve the adaptation of general knowledge to the specific
task. Finally we introduce the MIL-Align operation for facil-
itating the optimization of vision-language alignment under
weak supervision. We empirically verify the effectiveness
of VadCLIP through state-of-the-art performance and suffi-
cient ablations on two WSVAD benchmarks. In future, we
will continue to explore vision-language pre-trained knowl-
edge and further devote to open-set VAD task.
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