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Abstract

Online dense mapping of urban scenes is of paramount im-
portance for scene understanding of autonomous naviga-
tion. Traditional online dense mapping methods fuse sensor
measurements (vision, lidar, etc.) across time and space via
explicit geometric correspondence. Recently, NeRF-based
methods have proved the superiority of neural implicit rep-
resentations by high-fidelity reconstruction of large-scale city
scenes. However, it remains an open problem how to integrate
powerful neural implicit representations into online dense
mapping. Existing methods are restricted to constrained in-
door environments and are too computationally expensive to
meet online requirements. To this end, we propose Swift-
Mapping, an online neural implicit dense mapping frame-
work in urban scenes. We introduce a novel neural implicit
octomap (NIO) structure that provides efficient neural rep-
resentation for large and dynamic urban scenes while re-
taining online update capability. Based on that, we propose
an online neural dense mapping framework that effectively
manages and updates neural octree voxel features. Our ap-
proach achieves SOTA reconstruction accuracy while being
more than 10x faster in reconstruction speed, demonstrating
the superior performance of our method in both accuracy and
efficiency.

Introduction
For autonomous navigation in open urban scenes, it is essen-
tial to comprehend complex urban environments with high
accuracy and efficiency to meet the navigation requirements.
Online dense mapping, which involves the real-time con-
struction and updating of detailed scene representations, has
emerged as a critical component for achieving this level of
scene understanding.

In the field of online dense mapping, conventional meth-
ods have heavily relied on explicit geometric matching
to fuse sensor measurements over time and space. Tech-
niques like multi-view stereo and simultaneous localization
and mapping (SLAM) have been the cornerstones of these
approaches (Newcombe, Lovegrove, and Davison 2011;
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Figure 1: 3D reconstruction of urban scenes (KITTI) using
Swift-Mapping. Swift-mapping provides a high-fidelity and
accurate reconstruction for scene details while being capa-
ble of scaling to large scale city scenes utilizing the neural
implicit octomap structure (NIO).

Koestler et al. 2022; Lin and Zhang 2022). However, these
methods often struggle when dealing with the complex and
ever-changing nature of urban scenes, like efficiency and
memory challenges, rapid ego motion, occlusions, and scale
variations.

In contrast, recent advances in neural implicit representa-
tions, as exemplified by the pioneering NeRF-based tech-
niques (Mildenhall et al. 2021), have showcased remark-
able potential in reconstructing expansive urban landscapes
using naive and lightweight network structures and simple
losses. For instance, NeRF-W (Martin-Brualla et al. 2021)
introduces an innovative approach by combining Multilayer
Perceptrons (MLP) with latent vectors, enhancing NeRF’s
adaptability across diverse scenes and facilitating the re-
construction of high-quality city-scale environments. Block-
NeRF (Tancik et al. 2022) decomposes an urban scene into
independent MLPs by spatial location and composites mul-
tiple MLPs during inference. However, it is worth noting
that these methods primarily emphasize the fidelity of recon-
struction, often embracing intricate models and resource-
intensive training processes. Integrating neural implicit rep-
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resentations into online dense mapping for urban scenes re-
mains an ongoing challenge.

iMAP (Sucar et al. 2021) is a pioneering effort in integrat-
ing neural implicit representations into online SLAM sys-
tems. This method involves transforming a 3D query point
into an occupancy or color value using a single Multilayer
Perceptron (MLP) and optimizing this MLP through volume
rendering. In contrast, NICE-SLAM (Zhu et al. 2022) takes
a different route by utilizing uniform dense feature grids for
scene representation. This strategy provides a structured ap-
proach for seamlessly integrating multi-level scene intrica-
cies, resulting in enhanced efficiency and robustness. How-
ever, NICE-SLAM’s applicability is confined to controlled
indoor environments due to its dense feature representation
and localized voxel updates. To the best of our knowledge,
there is a noticeable absence of online dense mapping meth-
ods specifically tailored for urban scenes that fully leverage
the potential of neural implicit representations.

Current approaches encounter dual challenges, concern-
ing both efficiency and accuracy when dealing with exten-
sive urban scenes. Dense voxel-based methods like NICE-
SLAM struggle with maintaining high-resolution dense fea-
ture voxels for superior reconstruction quality. While this
ensures high fidelity, it hampers scalability and efficiency
in urban scenarios. On the other hand, Keyframe-based ap-
proaches like iMAP face the challenge of optimizing a sub-
stantial number of keyframes simultaneously. This complex-
ity can become burdensome when applied to expansive ur-
ban environments.

To confront the challenges of both efficiency and accu-
racy, we introduce Swift-Mapping, an innovative framework
for online neural implicit dense mapping in urban settings.
Our approach encompasses a novel feature representation
known as the neural implicit octomap (NIO). This octree
voxel grid not only facilitates efficient neural representation
for expansive and dynamic urban scenes but also preserves
the capability for real-time updates. Building upon this foun-
dation, we establish an online neural dense mapping frame-
work that continuously update neural octree voxel features.
A working example is shown in Fig. 1.

Our contributions can be summarized as follows:
• A novel neural implicit octomap (NIO) that provides ef-

ficient neural representation for large and dynamic urban
scenes while retaining online update capability.

• An online dense mapping framework that effectively
manages and updates neural octree voxel features, which
advances the frontier of online, high-fidelity scene under-
standing in dynamic outdoor urban settings.

• Extensive experiments compared to SOTA methods,
which validate the superior performance of our frame-
work, with higher accuracy while being orders of magni-
tude faster in terms of reconstruction speed.

Related Works
Implicit Dense Mapping
Neural Radiance Fields (NeRF) have gained substantial trac-
tion in the realm of realistic mapping. In the NeRF frame-
work (Mildenhall et al. 2021), a singular 5D coordinate

(x, y, z, θ, ϕ) is mapped to a volume density and its view-
dependent RGB color through a trainable Multilayer Per-
ceptron (MLP). This framework has been extended across
numerous subsequent studies (Bi et al. 2020a; Rudnev et al.
2022; Bi et al. 2020b; Zhang et al. 2021; Zeng et al. 2023),
encompassing tasks such as relighting and handling sparse
input views (Niemeyer et al. 2022; Roessle et al. 2022; Re-
bain et al. 2022), and more.

Nonetheless, a notable constraint persists concerning
computational time. The NeRF framework is primarily tai-
lored for offline reconstruction and novel view rendering. It
is not directly applicable to the domain of online dense map-
ping. To overcome this efficiency challenge, a slew of voxel-
based NeRF variants have been devised (Yu et al. 2021; Zhu
et al. 2022; Sun, Sun, and Chen 2022; Yang et al. 2022;
Zhang et al. 2022; Li et al. 2022; Jiang et al. 2023; Takikawa
et al. 2021). For instance, NVSF (Liu et al. 2020) introduces
a set of sparse voxel octree-structured implicit fields to en-
hance temporal efficiency and scalability. However, NVSF
remains confined to offline applications and lacks the capa-
bility for incremental and on-the-fly updates.

NICE-SLAM (Zhu et al. 2022), on the other hand, merges
a dense feature grid with an MLP decoder to boost ef-
ficiency. Yet, it’s important to note that NICE-SLAM is
largely restricted to indoor environments due to the con-
straints posed by dense feature voxels.

In light of these challenges, our paper proposes a neu-
ral implicit octomap (NIO). NIO not only facilitates photo-
realistic rendering but also exhibits the potential for seam-
less scalability to vast urban scenes, all while permitting in-
cremental expansion in an online fashion. This innovation
paves the way for unlocking new avenues for online, high-
fidelity urban scene understanding and mapping.

Urban Scale Mapping
Urban scale mapping remains a formidable challenge due
to the vastness, dynamic elements, and inherent difficulty
in acquiring depth information within such environments.
Nonetheless, there have been efforts to deploy NeRF in
urban contexts. For instance, (Rematas et al. 2022) lever-
ages lidar data to supervise geometry learning. Meanwhile,
READ (Li, Li, and Zhu 2023) employs a rendering network
known as w-net to glean neural descriptors from sparse data.
DNMP (Lu et al. 2023) introduces a neural variant of the
traditional mesh representation. S-NeRF (Xie et al. 2023)
simultaneously addresses novel view synthesis for both ur-
ban scenes and moving vehicles in the foreground. Notably,
both (Li, Li, and Zhu 2023) and (Lu et al. 2023) exhibit
scene editing capabilities.

However, despite these strides, the inherent complexity of
their network architectures inhibits swift convergence and
rapid urban reconstruction. Thus, even with the accomplish-
ments achieved by (Li, Li, and Zhu 2023; Lu et al. 2023),
the pursuit of achieving fast convergence and efficient ur-
ban reconstruction in an online manner remains a standing
challenge.

In this paper, we introduce a sparse hybrid sampling strat-
egy and hierarchical latent vectors based on NIO, which
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Figure 2: The Swift-Mapping pipeline utilizes RGB and LiDAR streams along with pose data as inputs, and incrementally
builds the neural implicit octomap (NIO) structure. Valid octree voxels are associated with latent features. Hierarchical latent
vectors can be queried from NIO, which are fed to MLP decoders for volume rendering. The feature vectors of NIO and MLP
decoders can be supervised through simple photometric loss. Furthermore, the framework has another side product. It is capable
of modeling moving obstacles and even achieves scene editing through manipulating the feature voxels of NIO.

enable incremental update of NIO while preserving high-
fidelity photo-realistic scene understanding.

Method
We present an overview of our method in Fig. 2. Initially,
RGB-D or RGB-SparseD (LIDAR) stream is fed into our
system. We employ the neural implicit octomap (NIO) as the
scene representation to conduct incremental spatial and tem-
poral fusion on input streams. During online dense mapping,
we utilize a NeRF-like update scheme. For each sample ray,
we extract hierarchical latent vectors from NIO and train two
MLP decoders for occupancy and color prediction. More-
over, our framework supports volume rendering, 3D mesh
extraction, and dynamic obstacle modeling.

Neural Implicit Octomap
The NIO is essentially a neural hierarchical voxel map based
on an octree structure. We incorporate two types of features
in NIO, namely, depth feature Φd

ω and color feature Φc
ω . For

each type of feature, we use a separate MLP with learnable
parameters to represent the geometrical and photometric in-
formation, respectively.

Octree-based Voxel Grid Traditional methods like
NICE-SLAM adopt dense uniform voxel grids, which scale
poorly in urban scenes. In this paper, we employ a hierarchi-
cal voxel grid where feature voxels are organized using oc-
trees, as depicted in Fig. 2. We denote the depth of the octree
as K and the resolution of the smallest voxel as l. Readers
may refer to (Hornung et al. 2013) for details of octrees.

With the point clouds produced by a camera pose and the
corresponding depth map, we allocate voxels based on the
octree structure. To reduce the impact of sensor measure-
ments, a voxel at the k-th level is marked as valid only if
more than two k−1-th level subvoxels are valid. Invalid vox-
els are filtered and no longer processed. This strategy helps
avoid excessive memory consumption due to outliers. The
octree-based voxel grid is built incrementally. In the con-
tinuous mapping process, if a point is related to a particular
valid voxel that already exists, no operation is performed. If
no invalid voxel is related, we activate the voxel at that po-
sition and randomly initialize a latent feature vector, adding
it to the octree structure.

We find that the octree structure facilitates information
propagation between consecutive frames, especially under
fast ego motion. When using dense feature grids, totally dif-
ferent voxels may be sampled for adjacent frames, which is
problematic for fusing temporal information in dense map-
ping. Leveraging the octree structure, it is much easier to
sample related voxels (possibly at different levels) between
adjacent frames, and spatial and temporal information is
fused through the expansion of the octree.

Distance Adaptive Voxel Initialization Traditional meth-
ods like NICE-SLAM adopt the same resolution for nearby
regions and distant areas. For indoor scenes, this scheme is
acceptable since the scale variation is small. However, for
large urban scenes, there exist large scale variations. For
NeRF-based optimization, a ray through a particular pixel
in the image plane will affect distinct volumes for nearby re-
gions and distant areas. Using a global coarse voxel resolu-
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tion will hinder the fidelity of nearby regions while a global
fine-grained resolution will pose unacceptable memory re-
quirements. What is worse, using fine-grained resolution for
distant areas may hinder the spatial temporal information fu-
sion since correlated samples are scattered across different
fine-grained voxels due to imperfect depth measurements.

In NIO, there are K different voxel resolutions for dif-
ferent levels of octree. When allocating a new voxel for a
particular point, the voxel resolution is chosen based on the
scheme that nearby regions use dense small voxels, while
distant areas adopt sparse large voxels. Suppose the maxi-
mum sampling distance is dmax which corresponds to the
minimum resolution l · 2K−1. The voxel resolution is cal-
culated in line with the scale variation at different distances.
The voxel resolution for level k ∈ {0, 1, ...,K − 1} covers
points sampled from distance 2k−K ·dmax to 2k−K+1 ·dmax.
More details are provided in the supplementary materials.

Dense Mapping Using Hierarchical Latent Vectors
In the traditional methods, keyframe selection plays a piv-
otal role in ensuring long-term map consistency and prevent-
ing catastrophic forgetting (Yang et al. 2022). However, for
large urban scenes, a large number of keyframes are required
to prevent forgetting, which results in a highly inefficient
optimization process, especially when using neural implicit
representation. Instead of maintaining a keyframe list, we
propose using hierarchical latent vectors to learn the scene
appearance and geometry. As introduced in NIO, each voxel
is associated with a latent feature vector.

Sparse Hybrid Voxel Sampling Traditional SLAM meth-
ods using neural implicit representations often require
RGBD inputs. However, for online dense mapping, depth
information is often noisy. Especially, for urban scenes, per-
fect depth is hard to obtain. To this end, we do not assume
perfect depth is always available. Our method can cope with
sparse depth input (i.e., from LIDAR measurements) in-
stead of dense RGBD. We adopt CompletionFormer (Zhang
et al. 2023) depth completion to interpolate the sparse depth
to dense depth, which facilitates the sampling process in
NeRF-style update. Note that completed depth maps often
contain noise.

Due to the noise in depth input, simply sticking to surface
sampling is insufficient. To this end, we propose using a hy-
brid sampling strategy, namely, combining random sampling
with surface sampling. As a result, more accurate depth val-
ues for a certain spatial point are more likely to be sampled.
Given a single frame, we perform hybrid sampling based on
the camera pose Ti and the imperfect depth map Di. Along
each ray, we compute surface samples Ns points from the
depth map, and randomly sample Nr points, resulting in a
total of N = Ns +Nr points.

Due to the sparse nature of NIO, not every point can be
associated with a valid grid. Instead of directly computing
the intersection between a sampled ray and NIO which can
be computationally expensive, we adopt a sparse point-wise
sampling strategy which is compatible with NIO. Specifi-
cally, we randomly sample a large number of points along
each ray and check their validity. Note that checking whether

a point falls into a valid voxel is a simple division opera-
tion and is extremely efficient. For points in invalid voxels,
we skip the subsequent hierarchical latent vector extraction
and MLP update and use zero padding for volume rendering.
This operation will significantly reduce computational costs
for volume rendering.

Hierarchical Latent Vector Extraction For point p
which is successfully associated with a valid voxel, we can
extract hierarchical latent vectors from relevant voxels up
to K levels (incl. all super voxels). For a particular level k,
we extract two fused latent vectors, namely, ϕd

k(p) for depth
feature and ϕc

k(p) for color feature. The latent vectors are
extracted using tri-linear interpolation among eight neigh-
boring voxels at the same level. For the sub-voxels of lower
levels which are not associated with this point, a dummy
zero-filled latent vector filled is adopted.

After acquiring hierarchical latent vectors, the fusion of
features from various levels becomes necessary. For NIO,
we design the dimension of the feature vector to scale with
the level. The dimension of the latent vector at level k is
twice that of level k − 1. According to this design, for each
level k, we form the expanded latent vector ϕdepth

k and ϕcolor
k

as follows:

ϕdepth
k (p) = (ϕd

k(p), αkϕ
d
k(p), ..., α

2K−k

k ϕd
k(p))

ϕcolor
k (p) = (βc

k(p), βkϕ
c
k(p), ..., β

2K−k

k ϕc
k(p))

ϕd(p) = max
k

(|ϕd
k(p)|), ϕc(p) = max

k
(|ϕc

k(p)|)
(1)

where αk and βk denotes learnable memorization param-
eters. Each frame is associated with learnable αk and βk

which controls the memorization and forgetting of NIO. We
adopt max pooling operator to fuse the concatenated latent
vectors from different levels.

MLP Decoder The point p is first processed through po-
sition encoding. Then, the encoded position representation
is concatenated with ϕd(p) or ϕc(p), and fed into two sepa-
rated MLPs f d

θ and f c
ω to decode occupancy probability and

color value:

op = f d
θ (p, ϕ

d(p)), cp = f c
ω(p, ϕ

c(p)). (2)

For the network structure of f d
θ and f c

ω , we follow the de-
sign of the ConvOnet (Peng et al. 2020) decoder, and use
5 fully-connected blocks, with residual connections added
for the third block. θ and ω denote the trainable parame-
ters of the two MLPs. Based on a series of decoded density
op and color cp along a sampled ray, volume rendering is
conducted. We refer interested readers to (Mildenhall et al.
2021) for details of volume rendering. Finally, for each ray,
depth value D̂m and RGB color Îm are estimated. The pre-
dicted results are then compared with the ground truth depth
Dm and RGB values Im to calculate the L2 loss:

Ld =
1

M

M∑
m=1

(Dm − D̂m)2

Lp =
1

M

M∑
m=1

(Im − Îm)2

(3)
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Figure 3: NIO not only supports modeling dynamic obsta-
cles, and also supports scene editing functionality by manip-
ulating the octree feature grid as depicted above. We high-
light that this feature is highly promising for fast simulation
from sensor measurements.

where Ld denotes the geometric loss and Lp denotes the
photometric loss. Finally, we optimize the trainable parame-
ters {θ, ω, α, β, ϕd, ϕc} as follows:

min
θ,ω,α,β,ϕd,ϕc

(λdLd + λpLp) (4)

Modeling Dynamic Urban Scenes
Moving Octree NIO is capable of modeling dynamic ob-
stacles. We implement MOTSFusion(Luiten, Fischer, and
Leibe 2020) to obtain the semantic labels for each vehicle in
each frame. Suppose we need to customize the i-th vehicle
according to the pose sequence {τ ti } within time sequence
{t}. We first train NIO and freeze all the features and MLPs.
Then we project the depth of the i-th vehicle into world co-
ordinate to calculate corresponding point clouds Pi and get
the voxels Vi belonging to the i-th vehicle as follows:

P t
i = τ tiP

t−1
i , V t

i =

⌊
P t
i − 0

l · 2k

⌋
V t
i − V t−1

i ≈
⌊
(τ ti − I)P t−1

i

l · 2k

⌋ (5)

V t
i represents the voxel index of the i-th vehicle and P t

i
represents the point cloud. We reconstruct dynamic vehi-
cles by moving vehicle’s voxels and corresponding fea-
tures on the octree structure. We only move fine-level vox-
els, which avoids affecting coarse-level background vox-
els. Meanwhile, benefiting from the sparse structure, only a
few static voxels are occluded and replaced by moving vox-
els.Different future scenes can be rendered at very low cost
without computationally expensive training. The interesting
part is that we can further achieve scene editing functionality
based on the NIO structure.

Experiments
Experiment Settings
Datasets We conduct experiments on both indoor and ur-
ban datasets. For indoor testing, we employ the synthetic

iMAP NICE-SLAM Ours

Figure 4: Reconstruction results on the Replica Dataset.

Replica dataset (Straub et al. 2019) and the real-world Scan-
Net dataset (Dai et al. 2017). We also include datasets con-
taining diverse urban scenes such as KITTI (Geiger et al.
2013), VKITTI2 (Cabon, Murray, and Humenberger 2020),
and nuScenes (Caesar et al. 2019).

Baselines We conduct comparisons against two sophisti-
cated NeRF-based SLAM methods, namely iMAP (Sucar
et al. 2021) and NICE-SLAM (Zhu et al. 2022), both of
which employ RGB-D images as inputs. Since the scope
of this paper is dense mapping, we feed ground truth poses
to all the methods. Additionally, we compare our method
against two offline NeRF-based reconstruction methods,
Instant-NGP and Mip-NeRF-360 (Müller et al. 2022; Barron
et al. 2022). Note that Instant-NGP and Mip-NeRF-360 are
both computationally expensive and not targeted for online
applications. We include them to serve as strong baselines in
terms of reconstruction accuracy.

Metrics We evaluate both the accuracy and efficiency of
all the methods. For 2D metrics, we employ Peak Signal-
to-Noise Ratio (PSNR), Mean Squared Error (MSE). For
3D metrics, we include Accuracy (Acc), Completion Ra-
tio (Comp Ratio < 5cm %). Due to space limitations, inter-
ested readers may find detailed descriptions for the metrics
in (Zhu et al. 2022). For urban datasets (KITTI, VKITTI2,
nuScenes), due to the lack of ground truth meshes, only 2D
metrics are evaluated.

Evaluation
Indoor Reconstruction For indoor experiments on
Replica dataset, we follow the settings of NICE-SLAM.
Since indoor datasets have ground truth 3D meshes, 3D
metrics are calculated. A qualitative example of the recon-
structed 3D mesh is shown in Fig. 4. Although our method
is suitable for large urban scenes, it still has comparable
performance against NICE-SLAM which is primarily
designed for indoor scenes. Quantitative results are shown
in Table 1. Thanks to the sparsity nature of NIO, our method
has a higher convergence speed and much lower memory
usage. Reaching comparable accuracy, our method only
consumes one-third memory of NICE-SLAM.

Urban Scene Rendering For KITTI and nuScenes (both
including real-world urban scenes), due to the unknown
depth in the sky region, we masked out the rendering for the
sky region. In Table 2, we evaluate two 2D metrics, L2 Loss
and PSNR, with rendered images shown in Fig. 5. For urban
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Figure 5: Volume rendering results on the ScanNet (Dai et al. 2017), nuScenes (Caesar et al. 2019), VKITTI2 (Cabon, Murray,
and Humenberger 2020), and KITTI (Geiger et al. 2013) datasets. We compare our method with two online methods (NICE-
SLAM (Zhu et al. 2022), iMAP (Sucar et al. 2021) and two offline methods (Mip-NeRF-360 (Barron et al. 2022) and Instant-
NGP (Müller et al. 2022)). The two offline methods take 10 minutes for training.

iMAP NICE-SLAM Ours
Acc.↓ 6.9872 1.7510 1.6219

Comp. Ratio↑ 62.5970 86.0861 84.4212
FPS↑ 0.11 0.45 0.71

Table 1: Reconstruction results for the Replica Dataset (av-
erage over 8 scenes). FPS is evaluated on a single RTX3090.

scenes, both Mip-NeRF (Barron et al. 2022) and Instant-
NGP (Müller et al. 2022) take 10 minutes for training on
a single NVIDIA RTX3090. It is worth noting that, even
compared to offline methods, our method still offers superior
rendering quality while being at least 10x faster. Compared
to iMAP and NICE-SLAM these online methods, our ap-
proach also outperforms them significantly in urban scenes.

Performance Analysis
Using NIO structure instead of using keyframe list is an im-
portant design choice for method. The motivation of using
keyframe list is to avoid catastrophic forgetting. In this sec-
tion, we show that the NIO structure can effectively avoid
catastrophic forgetting while being scalable and sparse. We
further show the robustness of NIO under fast ego motion.

Avoiding Catastrophic Forgetting To assess the effect of
forgetting, we propose a PSNR metric PSNRmem which is

given by PSNRmem = PSNR(Itrain, Iinfer), where Itrain denotes
the rendered image during training and Iinfer denotes the ren-
dered image during inference. Higher PSNRmem represents
less information is forgotten after optimizing NIO and MLP
decoders, which indicates a higher capability of remember-
ing scene appearance and geometry. The detailed results are
shown in Table 3. We can find that our method achieves
higher PSNRtrain, PSNRinfer and PSNRmem in urban scenes,
which validates the superiority of using NIO for avoiding
catastrophic forgetting.

Fast Ego Motion Unlike indoor scenes, there may be
high speed ego movement in urban scenes. Fast ego motion
causes a smaller overlap between adjacent frames, which
poses challenges for spatial and temporal information fu-
sion. To validate the performance of different methods un-
der fast ego motion, we uniformly sample frames using dif-
ferent sampling frequencies from original datasets (ScanNet
and VKITTI2), which approximates different speeds of ego-
motion. As shown in Fig 7, for higher ego-motion speed,
the accuracy of NICE-SLAM drops quickly, especially for
large-scale outdoor environments. In contrast, the accuracy
of our method is stable, indicating the robustness of our
method against fast ego motion.

Ablation Study
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ScanNet(indoor) Replica(indoor) VKITTI2(urban) nuScenes(urban) KITTI(urban)

L2 Loss↓ PSNR↑ L2 Loss↓ PSNR↑ L2 Loss↓ PSNR↑ L2 Loss↓ PSNR↑ L2 Loss↓ PSNR↑ FPS↑
iMAP 547.43 20.45 566.25 20.71 637.92 20.02 681.40 20.07 1022.54 18.03 0.02

NICE-SLAM 340.47 22.81 179.51 25.59 930.32 19.15 483.95 21.25 993.18 18.25 0.05

Mip-NeRF 720.08 19.59 432.68 21.76 687.59 19.91 727.14 19.54 847.13 19.68 -

Instant-NGP 669.74 19.80 187.07 24.04 566.44 20.87 306.74 22.95 516.54 21.09 -

Ours 245.19 24.23 88.32 28.67 307.10 23.12 290.66 23.15 359.68 22.78 0.14

Table 2: Quantitative evaluation of volume rendering on two indoor datasets (Dai et al. 2017; Straub et al. 2019) and three urban
datasets (Caesar et al. 2019; Cabon, Murray, and Humenberger 2020; Geiger et al. 2013).

Method NICE-SLAM Ours

Dataset ScanNet VKITTI2 ScanNet VKITTI2

PSNRtrain ↑ 21.86 18.21 23.76 22.84

PSNRinfer ↑ 22.32 14.54 21.96 21.95

PSNRmem ↑ 22.61 17.25 21.37 23.29

Table 3: Comparison between NICE-SLAM (Zhu et al.
2022) using a keyframe list and our method using hierar-
chical latent vectors.

Figure 6: Qualitative results on VKITTI2.

Figure 7: Comparison of PSNR for different sampling inter-
vals (representing different movement speeds).

Octree Depth We validate the performance of our method
by varying the octree depth while maintaining the same res-
olution for the smallest voxel. We control the number of it-
erations to be the same (i.e., 10 iterations) and compare the
efficiency, accuracy under different octree depth setups. As
shown in Table 4, deeper octree results in higher accuracy in
limited iterations, indicating better convergence.

Level 1 2 3 4 5

FPS↑ 0.46 0.39 0.36 0.30 0.26

L2 Loss↓ 712.09 535.32 420.03 339.68 317.01

PSNR↑ 19.56 20.91 21.95 22.62 23.02

Table 4: Ablative study on using different octree depth.

Dataset ScanNet VKITTI2

αk, βk × √ × √

PSNRtrain ↑ 23.75 23.76 21.91 22.84

PSNRinfer ↑ 20.20 21.96 18.62 21.95

PSNRmem ↑ 16.52 21.37 17.83 23.29

Table 5: Ablation study on αk, βk.

Trainable Memorization Parameters αk, βk The role of
trainable memorization parameters is to control the mem-
orization and forgetting of NIO across multiple frames. To
validate this functionality, we replace αk with an all-one ma-
trix and replace βk with a matrix drawn from a random nor-
mal distribution to examine the performance without using
αk, βk. The results are shown in Table 5, where we can find
that by using learnable parameters for memorizing history
information, it effectively preventing network forgetting and
ensuring map consistency.

Conclusion

We propose Swift-Mapping, a novel online neural implicit
dense mapping method in urban scenes. To address chal-
lenges of dense mapping in large scale urban scenes, we in-
troduce the neural implicit octomap (NIO) feature represen-
tation, which is sparse, efficient and facilitates spatial tempo-
ral information fusion. Based on NIO, we propose a neural
online dense mapping process based on the hierarchical la-
tent vectors extracted from NIO. Additionally, we showcase
that our framework is robust to fast ego-motion, and is capa-
ble of modeling dynamic obstacles and providing scene edit-
ing capabilities. Through extensive experiments, our method
achieves SOTA performance in both efficiency and accuracy.
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