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Abstract

Multi-exposure image fusion (MEF) has emerged as a promi-
nent solution to address the limitations of digital imaging
in representing varied exposure levels. Despite its advance-
ments, the field grapples with challenges, notably the reliance
on manual designs for network structures and loss functions,
and the constraints of utilizing simulated reference images
as ground truths. Consequently, current methodologies of-
ten suffer from color distortions and exposure artifacts, fur-
ther complicating the quest for authentic image representa-
tion. In addressing these challenges, this paper presents a
Hybrid-Supervised Dual-Search approach for MEF, dubbed
HSDS-MEF, which introduces a bi-level optimization search
scheme for automatic design of both network structures and
loss functions. More specifically, we harness a unique dual re-
search mechanism rooted in a novel weighted structure refine-
ment architecture search. Besides, a hybrid supervised con-
trast constraint seamlessly guides and integrates with search-
ing process, facilitating a more adaptive and comprehensive
search for optimal loss functions. We realize the state-of-
the-art performance in comparison to various competitive
schemes, yielding a 10.61% and 4.38% improvement in Vi-
sual Information Fidelity (VIF) for general and no-reference
scenarios, respectively, while providing results with high con-
trast, rich details and colors. The code is available at https:
//github.com/RollingPlain/HSDS MEF.

Introduction
High dynamic range imaging (HDRI) has garnered exten-
sive attention and research in recent years, aiming to ac-
curately represent scenes from the direct sunlight to the
darkest shadows found in the real world. The sensors in
contemporary digital imaging devices capture a color spec-
trum far narrower than the intrinsic dynamic range of natu-
ral scenes (Shen, Cheng, and Basu 2012). This discrepancy
leads to low dynamic range (LDR) images that often fall
short in aspects of luminance and contrast, especially suf-
fering from detrimental effects under extreme over-/under-
exposure scenarios.

Rather than resorting to the costly and less efficient so-
lution of developing high dynamic range imaging hard-
ware to overcome traditional sensor limitations, e.g., (Nayar
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Figure 1: The coxcomb chart of visual results and key eval-
uation metrics. Our approach demonstrates the most visu-
ally pleasing and well-exposed fused results, with rich de-
tails that closely resemble human perception.

and Mitsunaga 2000), multi-exposure image fusion (MEF)
has emerged as a primary alternative for HDRI. This ap-
proach, propelled by advancements in digital image pro-
cessing, showcases extensive applicability across diverse do-
mains, such as image enhancement (Liu et al. 2020; Jiang
et al. 2022a; Ma et al. 2021b, 2022a, 2023) and object de-
tection (Piao et al. 2019, 2020; Zhang et al. 2020c), etc.
By merging a series of LDR images with varying exposure
levels, it sidesteps hardware constraints, producing images
more congruent with human visual perception. Neverthe-
less, in spite of the many methodologies that have surfaced
driven by deep learning, there still remain two significant
challenges in the current techniques.

First, existing multi-exposure image fusion methods pre-
dominantly rely on manually designed network structures
and loss functions, such as DeepFuse (Prabhakar, Sai Srikar,
and Venkatesh Babu 2017), PMGI (Zhang et al. 2020b),
TransMEF (Qu et al. 2022), etc. On one hand, such manu-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

5985



ally crafted network structures are often limited by the prior
experience and knowledge, which lack flexibility, struggle
to adapt to the diverse requirements of blending various ex-
posure levels, and can produce artifacts or color distortions.
Even more crucially, these designs may not be optimal, lead-
ing to wasted computational resources and decreased effi-
ciency. On another critical note, the loss function, serving as
the ultimate optimization objective for network learnable pa-
rameters, profoundly influences performance. Many studies
in multi-exposure image fusion combine various loss func-
tions based on MSE loss, meticulously adjust design weight
coefficients for balance. These approaches not only demand
substantial prior knowledge but also are time-consuming
and labor-intensive.

Due to manual intervention in these methods, model
adaptability is limited. Manually designed networks (Liu
et al. 2021a) may excel on specific datasets but falter under
varying conditions. Additionally, as technology advances,
new fusion demands and challenges (e.g. object detection
and semantic segmentation) may arise, and manually de-
signed approaches might struggle to adapt swiftly. Conse-
quently, continuous manual adjustments are required, in-
creasing research complexity.

Secondly, in current MEF datasets, such as the SICE
dataset (Cai, Gu, and Zhang 2018), the reference images are
typically generated through existing algorithms and manu-
ally selected, serving as pseudo ground truths. Such selec-
tions fall short of accurately simulating real-world condi-
tions and inadvertently cap the potential performance of su-
pervised fusion techniques. Meanwhile, unsupervised meth-
ods tend to derive fusion rules based on features or pixel-
level details of the source images. This often results in the
produced fused images closely mirroring their source coun-
terparts, limiting their efficacy in extreme exposure settings
and causing artifacts and distortion.

To address these challenges, we propose a bi-level op-
timization search scheme that automatically designs loss
functions and network structures for multi-exposure im-
age fusion. Specifically, we construct a weighted struc-
ture refinement architecture search unit, supplemented by
a structural search candidate space derived from simple
sub-operations to adaptively fit the network structure. We
then introduce a hybrid-supervised contrast constraint as the
guiding motif for the search loss function, enabling it to au-
tomatically choose suitable components in a broad loss func-
tion search space to enhance generalization capability to var-
ious exposure. Here, the loss function search can be modeled
as a choice of hyper-parameters. In short, our main contri-
butions can be summarized as:

• We introduce a bi-level optimization formulation for
adaptively searching loss functions and network struc-
tures, which accurately models and describes the rela-
tionships among losses, structures and parameters. To our
best knowledge, this is the first attempt of loss function
searching in MEF.

• The adaptation issues caused by pseudo ground truths are
explored from the perspective of guiding constraints in
loss function search: the guidance of hybrid-supervised

contrast constraints enables the searched components to
adaptively handle images of different exposure levels,
achieving high contrast while retaining rich details.

• A novel weighted structure refinement architecture
search (WSRAS) is proposed to preserve the combina-
tions of operations. This continuous structure search de-
sign takes into account the implicit associations between
various operations, effectively enhancing the representa-
tional power of the model.

Related Works
Deep Learning Based MEF Methods
Deep learning (Ma et al. 2022b; Liu et al. 2022a, 2023a;
Jiang et al. 2022b) has shown remarkable progress in the
realm of multi-exposure image fusion (MEF) due to its ro-
bust feature extraction capabilities hinged on neural net-
works. In recent years, many MEF methods based on deep
learning have emerged. DeepFuse (Prabhakar, Sai Srikar,
and Venkatesh Babu 2017) introduced deep learning into
the MEF task for the first time. MEF-GAN (Xu, Ma, and
Zhang 2020) applied generative adversarial networks and
self-attention mechanism. Then, transMEF (Qu et al. 2022)
utilized the transformer block and self-supervised multi-task
learning, while MEF-CL (Xu, Haochen, and Ma 2023) ap-
plied the contrastive learning, etc. But their network struc-
ture and loss function are completely dependent on man-
ual design. This is not only time-consuming and laborious,
but also requires the rich experience and knowledge of re-
searchers. Moreover, it is impossible to accurately find the
best network structure and make the network converge to
the best state, which will also cause the performance of the
network to decline. Although U2Fusion (Xu et al. 2020) has
proposed a preliminary study on loss function balance, it is
still not capable of fine adjustment of network structure and
loss function weight, nor can it avoid a series of problems
caused by manual design.

Network Architecture & Loss Function Search
With the rise of Neural Architecture Search (NAS), a se-
ries of methods have been developed, reinforcement learn-
ing (Guo et al. 2019), evolutionary algorithms (Chen et al.
2019), and differentiable search methods. Among them, dif-
ferentiable search strategy (Liu, Simonyan, and Yang 2018;
Liu et al. 2021c,b) has received high attention and applica-
tion for various image enhancement tasks, such as low-light
enhancement (Liu et al. 2021d), image restoration (Zhang
et al. 2020a; Liu et al. 2023c), and multi-exporsure fu-
sion (Liu et al. 2023d), etc. However, a common limitation
in current methods is that they focus only on the impact of
the architecture of the search on the model, ignoring the in-
teractions and implicit associations of the minor structure of
the search process. Thus, we propose a search method aimed
at weakening redundant connections and grasping internal
relationships, as well better preserving the optimal result of
the model search.

On the other hand, the loss function also plays a key role
in the model, so it has also attracted wide attention. It is
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worth noting that a few methods (Tang et al. 2021) sug-
gest the use of automation techniques to achieve the task
of dynamically and adaptively selecting the appropriate loss
function, while others (Wang et al. 2020) give a unified for-
mula for the loss of variant softmax and search for the best
loss using a reward-guided strategy. Additionally, AutoLoss-
Zero (Li et al. 2020) proposes to use variation evolution al-
gorithm to find loss function. Different from the above meth-
ods, we applied the hybrid contrast constraint as the evalua-
tion criterion for the search of loss, taking into account the
characteristics of MEF task.

The Proposed Method
Problem Formulation
We initially lay out the main components: image fusion net-
work F and the source images as Io, Iu, and fused im-
age as If. The fusion process can be symbolized as If =
F(Io, Iu;ω;α). The fusion lossLf is introduced to facilitate
the training of fusion network as Lf

(
F(Io, Iu;ω;α);β)

)
,

where ωf denotes the trainable parameters of F and α/β
represent the desired architecture/loss parameters deter-
mined in the defined search space A/B.

Overall, the specific nested form of the bi-level optimiza-
tion for MEF is formulated as follows:

min
α,β
Lsearch

(
F(α; Io, Iu;ω

∗);β
)
,

s.t. ω∗ ∈ argmin
ω
Lftrain

(
F(α; Io, Iu;ω);β

)
.

(1)

The upper-level objective is to minimize the weighted pa-
rameters with design requirements based on the measure-
ments of searching loss. The lower-level optimization is to
acquire the desired fusion parameters based on the given α
and guided by the loss function composed of β.

At its core, this bi-level optimization intuitively captures
the intrinsic relationship between the network structure and
its corresponding loss function. Such a formulating strategy
leverages the mutual feedback between these two levels to
derive a effective and robust solution. This bi-level approach
allows for a simultaneous search of both architecture and
loss function parameters and ensures that the final model
achieves a balanced interplay between the desired two opti-
mization targets, leading to superior performance and adapt-
ability in MEF task.

Dual Searching Solution Scheme
From the above modeling, it is evident that the choice of
Lsearch plays a crucial role in the entire optimization pro-
cess, thus requiring careful design and selection. In the pro-
cess of architecture search, there exists a close relationship
between the α and ω. In previous research, researchers often
employed the same task-specific loss (Lf here) to guide the
optimization of α, and we followed the similar approach in
our design. Considering that the loss function, as the global
learning objective of the network, holds a higher level of sig-
nificance in the structure, we decide the hybrid-supervised
contrastive constraint ΓH (will be introduced below) as the
validation to evaluate the effectiveness of the obtained loss

function during the search process. The specific solution
scheme is represented as follows:

βt+1 = min
β∈B

ΓH ∼ (ω;αt) ,

s.t. ω ∈ Sω (αt,βt) ,
αt+1 = min

α∈A
Lfval ∼

(
αt;ω;βt+1

)
,

s.t. ω ∈ Sω
(
αt,βt+1

)
,

(2)

where t denotes the iterations. In order to effectively solve
Eq. (2), inspired by the remarkably success of differentiable
architecture search (Liu, Simonyan, and Yang 2018), we
adopt the first-order one-step truncated approximation strat-
egy to compute the gradients of α and β. Specifically, the
whole procedure is shown in Algorithm 1.

Hybrid Contrastive Constraint
In the field of MEF, contrastive learning has demonstrated
significant application potential. We choose it as the evalua-
tion criterion to guide the search for the loss function since
its unique advantage lies in the model being trained to be
drawn to positive samples and repelled from negative ones.
This design deviates from traditional fusion losses, enabling
a higher-level and deeper extraction of discriminative fea-
tures. Furthermore, we propose a hybrid supervision strat-
egy, where the positive samples include both natural light
images and reference images from the dataset. This design
allows the model to draw rich information from diverse pos-
itive samples, ensuring the generation of highly natural and
authentic fusion results under various environmental and
lighting conditions.

In order to get the potential feature representation of im-
ages, we apply the pre-trained VGG-16 (Simonyan and Zis-
serman 2014) network, denoted as G. We introduced sim-
ulated reference images and natural images, denoted as Ir

Algorithm 1: Dual Search for Structure and Loss Function

Require: Fusion loss Lf, hybrid-supervised contrast con-
straint Γh, search spaces A and B, and other necessary
hyper-parameters.

Ensure: Optimal parameters α∗ and β∗.
1: while not converged do
2: % Optimizing the image fusion network
3: ω ← ω −∇Lftrain ∼ (α;ω;β)
4: % First-order approximation to optimize β
5: β ← β −∇βΓH ∼ (α;ω)
6: % First-order approximation to optimize α
7: α← α−∇αLfval ∼ (α;ω;β)
8: while |A| > P do
9: if minαi < θ then

10: % Prune the operation with the smallest weight
in search space A

11: A ← RefineSmallestWeight(A)
12: end if
13: end while
14: end while
15: return Top-P operations based on α∗, β∗.
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and In, as hybrid-supervised contrast constraints to serve as
positive samples, respectively. (i.e.Ip={Ir, In}) The source
images (Iu & Io) are used as negative samples. We construct
the following expression as the contrastive constraint:

ΓP =
N∑
i=1

∥Fi −Pi∥2∑M
m (∥Fi − um

i∥2 + ∥Fi − omi∥2)
(3)

where N and M stands for the number of layers of VGG
and negative samples, separately. Fi denotes the feature of
the fused image at the ith layer of G, which is defined as
Gi(If). m means the mth negative sample. Similarly, Pi,
um
i, omi corresponds to Ip, Imu and Imo, separately. ∥ · ∥2 de-

notes mean square error (MSE). Finally, the total hybrid con-
trastive constraint can be defined as: ΓH = ΓR + ΓN.

Weighted Structure Refine Architecture Search
As alluded to earlier, our framework is built upon DARTS,
in which the operation with the highest weight is directly
chosen to construct the final network architecture upon con-
vergence of the search. However, such a methodology over-
look the interplay between sub-operations in the weighted
sum of mixed operations and could potentially hinder the
latent performance of the final structure. To delve deeper
into the potential of sub-operations within mixed operations,
we propose the Weighted Structure Refinement Architecture
Search (WSRAS) approach. The essence of WSRAS lies in
its two specific strategies: the pruning refine and weight re-
tention operation.

Pruning Refinement Throughout the search, we contin-
uously eliminate sub-operations with the lowest weights.
Specifically, if the weight of a sub-operation is the minimum
for the current node and falls below a predetermined thresh-
old, it is pruned. This not only avoids potential interference
from redundant sub-operations in the search but also mini-
mizes the mutual influence between sub-operations, thus en-
hancing search efficiency.

Weight Retention Instead of merely selecting the opera-
tion with the highest weight at the end of our search, we
opt to retain the top P operations based on their weights
and integrate them into the final network architecture. The
benefit of this approach is twofold: it maintains a certain
level of network complexity while capitalizing on the com-
plementary nature between various operations. This method
thoroughly considers the implicit connections between op-
erations, effectively boosting the power of the model.

Overall Workflow
The network consists of two main components: the Fea-
ture Attention Module and a Dual-Stream Processing Net-
work inspired by the Retinex theory. The overall workflow
is shown in Figure 2. In the attention module, images with
different exposures are first transformed into feature repre-
sentations and subsequently integrated to form a comprehen-
sive feature representation. Then the dual-stream processing
network, grounded on the Retinex theory, decomposes the
image into intensity and illumination components. The in-
tensity component undergoes iterative enhancement, while

Figure 2: The overall workflow.

the illumination component is refined through repetitive op-
timization. The final results of both components are mul-
tiplied and transformed to yield the final fused image. All
intermediate nodes are searchable weight-retention nodes
based on WSRAS.

Search Space of Architecture and Loss
Loss Search Space Our search space for training loss
encompasses an image quality-oriented loss set, including
pixel-level metrics like L1, LMSE, and PSNR loss, ensuring
fusion image pixel intensity consistency with source images.
Structural metrics, such as SSIM (Wang et al. 2004) and
MEF-SSIM (Ma et al. 2019), gauge brightness, contrast, and
structural similarities. Gradient loss, widely recognized in
works like (Sun et al. 2022; Ma et al. 2021a), maintains tex-
ture details from source images. Additionally, we incorpo-
rate perceptual loss (Johnson, Alahi, and Fei-Fei 2016) for
feature domain disparities, color loss (Wang et al. 2019) for
color consistency with reference images, and TV loss (Osher
et al. 2005) to minimize noise. The detailed formulations are
depicted in Table. 1 and R represents the relevant images.
Unlike typical loss function designs, we also adhere to the
principle of hybrid supervision in the design of R to better
align with the modeling requirements and effectively search
for suitable loss function.

Architecture Search Space In designing the network ar-
chitecture, we judiciously opted for a set of lightweight oper-
ations, striving to strike a balance between enhancing search
efficiency and minimizing latent correlations introduced by
intricate operations. Although we did not incorporate intri-
cate operation primitives, the inclusion of weight-preserving
operations facilitates more probable coordination and com-
binations among operations. Specifically, our operation set
comprises convolutions with kernel sizes of 1×1, 3×3, 5×5,
7×7, as well as asymmetrical kernels of 1×3, 3×1, 1×5,
and 5×1. Additionally, we incorporated dilated convolutions
of sizes 3×3, 5×5, and 7×7 with a dilation rate set to 2.

Experiments
Implementation Details
We conducted experiments on the SICE dataset (Cai, Gu,
and Zhang 2018), and randomly selected 452 pairs of im-
ages as the training set and 113 as the testing set, and select
another 31 images without reference (Ma et al. 2017) as part
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Figure 3: Qualitative comparison with other state-of-the-art methods on the SICE dataset with reference images.

Expression Candidate set of R

① Lpixel : ∥If −R∥1/2 Io, Iu, Ir
② Lssim :1− SSIM or MEF SSIM(If,R) Io, Iu, Ir
③Lgrad : ∥∇If −R∥1 max(∇Io,∇Iu)

④Lper : ∥φl(If)− φl(R)∥2 Io, Iu, Ir
⑤Lpsnr :− PSNR(If,R) Ir

⑥Lcolor :
∑

i
̸ ((If)i, (R)i) Ir

⑦Ltv :
1

HW
((∇xIf)

2 + (∇yIf)
2) -

Table 1: Notations of the loss search space.

of the testing set. At the same time, we use CoCoval2017 as
a natural light image set. All images are randomly cropped to
the size of 256×256 during the search and training process,
and all parameters are updated using the Adam optimizer.
For searching, half of the training set is randomly selected
as the verification set, the batch size and epoch are set to
2 and 10, the learning rate of the network structure weight,
the loss function weight and the network parameter are set to
2e-1, 3e-2 and 2e-4, respectively. For training of 60 epoches,
the batch size and the learning rate are set to 10 and 1e-4.
The overall framework is implemented on Pytorch with an
NVIDIA Tesla V100 GPU.

Contrast Methods & Evaluation Metrics
We choose 9 state-of-the-art MEF methods as competi-
tors, which include a decompisiton-based method: DeFu-
sion (Liang et al. 2022), and 8 deep learning-based method:

DeepFuse (Prabhakar, Sai Srikar, and Venkatesh Babu
2017), PMGI (Zhang et al. 2020b), CF-NET (Deng et al.
2021), AGAL (Liu et al. 2022b), TransMEF (Qu et al. 2022)
, DPE-MEF (Han et al. 2022), HoLoCo (Liu et al. 2023b)
and U2Fusion (Xu et al. 2020).

In evaluation, we use eight metrics, which can be cate-
gorized into reference-based and no-reference-based indica-
tors. Among the former, correlation coefficient (CC)(Shah,
Merchant, and Desai 2011) indicates the correlation be-
tween the fused and reference images, tone-mapped im-
age quality Index (TMQI)(Yeganeh and Wang 2013) rep-
resents the tonal mapping effect of HDRI images, multi-
scale structural similarity index measure (MS-SSIM)(Wang,
Simoncelli, and Bovik 2003) evaluates the structure reten-
tion degree of the fused image across scales, and the task
specific MEF-SSIM(Ma, Zeng, and Wang 2015). On the
other hand, no-reference metrics include standard deviation
(SD)(Rao 1997) showcasing contrast ratio, visual quality fi-
delity (VIF)(Han et al. 2013) gauging the degree of match-
ing with human visual perception, entropy (EN)(Roberts,
van Aardt, and Ahmed 2008) estimating the total infor-
mation, and gradient-based (QAB/F)(Xydeas and Petrovic
2000) highlighting the detail quantity.

Comparisons on the SICE Dataset
Qualitative Comparisons In Figure 3, we present two se-
quences of typical visual results along with four zoomed
comparison regions. Overall, certain methods (e.g. Deep-
Fuse, U2Fusion, and TransMEF) exhibit noticeable under-
exposure, struggling to balance the impact of severely under-
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Figure 4: Qualitative comparison with other state-of-the-art methods on the dataset without reference.

Dataset SICE Dataset w/o reference
Method Source SD↑ VIF↑ CC↑ TMQI↑ MS-SSIM↑ MEF-SSIM↑ SD↑ VIF↑ EN↑ QAB/F ↑ MS-SSIM↑ MEF-SSIM↑

Deepfuse ICCV’17 9.968 1.433 0.923 0.894 0.918 0.888 9.856 1.467 6.999 0.648 0.921 0.948
PMGI AAAI’20 10.000 0.968 0.895 0.887 0.847 0.828 10.222 0.988 6.621 0.427 0.815 0.880

CF-NET TIP’21 9.922 1.241 0.938 0.916 0.926 0.890 9.913 1.408 7.250 0.694 0.913 0.941
AGAL TCSVT’22 9.782 1.405 0.927 0.922 0.937 0.898 9.836 1.485 7.311 0.606 0.929 0.912

TransMEF AAAI’22 9.682 1.215 0.922 0.856 0.860 0.839 9.458 1.306 6.857 0.566 0.906 0.934
DPE-MEF IF’22 10.187 1.316 0.928 0.900 0.921 0.877 9.992 1.485 7.321 0.685 0.945 0.949
HoLoCo IF’23 9.788 1.325 0.938 0.924 0.925 0.890 9.610 1.397 7.163 0.633 0.922 0.933
DeFusion ECCV’22 10.433 1.329 0.890 0.866 0.893 0.870 10.176 1.277 7.035 0.634 0.927 0.935
U2Fusion TPAMI’22 9.884 1.219 0.914 0.884 0.897 0.874 9.635 1.291 6.796 0.556 0.902 0.928

Ours Proposed 10.451 1.585 0.956 0.926 0.951 0.903 10.235 1.550 7.343 0.694 0.952 0.950
Improvement 0.018↑ 0.152↑ 0.018↑ 0.002↑ 0.014↑ 0.005↑ 0.013↑ 0.065↑ 0.022↑ - 0.007↑ 0.001↑

Table 2: Qualitative comparison with other state-of-the-art methods. Bold: the best; underline: the 2nd best.

exposed source images. On the other hand, some methods
(e.g. AGAL and DeFusion) tend to retain images from well-
exposed scenes with rich information, yet this still leads to
exposure misalignment.

Benefiting from the advantages brought by the dual
searching, our approach efficiently preserves useful infor-
mation from the source images, achieving retention of de-
tails and restoration of colors (evident in cloud layers in the
red and green regions of Figure 3). Additionally, driven by
the hybrid-supervised contrastive constraint, our approach
manages to surpass reference images in certain areas (build-
ings and grassland with high complexity as seen in the blue
and yellow regions of Figure 3). The high contrast in details
and richer colors contribute to improved depth perception in
the fused images.

Quantitative Comparisons Table 2 on the left presents
our superior results on the SICE datasets across all six met-
rics, with a notable enhancement in VIF, signifying our abil-
ity to offer fidelity akin to human vision. As illustrated in
Figure 3, our exposure emulates natural light more effec-
tively than the reference. Moreover, our approach outper-
forms others in SD, CC, and MS-SSIM, ensuring greater
contrast, information preservation, and image clarity.

Comparisons on the Dataset w/o Reference

Qualitative Comparisons To verify comprehensively, we
further evaluate the methods using the image sequences of
w/o reference images. The qualitative results are shown in
Figure 4. Our results demonstrate high contrast (e.g. clouds
in the blue region and light tubes in the green region),
rich details, and vibrant colors (flower bed in the red re-
gion). More importantly, we exhibit significant advantages
in handling extremely challenging exposure-compromised
areas (yellow part of the scene behind the door, including
tree trunks and architectural details). The hybrid-supervision
contrast constraint and loss function search space empower
us to handle a broader range of natural exposure images.
This capability somewhat diminishes limiting effect of the
reference images on algorithm performance, enabling the
production of fused images that more closely align with hu-
man visual perception.

Quantitative Comparisons The excellent results for met-
rics on this dataset, as displayed in the adjacent right table, as
shown in Table 2. These results exhibit a trend similar to that
of the SICE dataset. Notably, in the key metric MEF-SSIM
for the no-reference dataset, the proposed method achieves
an absolute leading advantage over all comparative methods,
demonstrating its superiority unequivocally.
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Condition
Loss Function Searching Ablation Neural Architecture Search Ablation

w/o ΓH only ΓR only ΓN Ours only WR only PR DARTS Ours
SD 9.671 9.841 9.761 10.451↑0.610 10.050 10.056 9.862 10.451↑0.395

VIF 1.308 1.392 1.176 1.585↑0.193 1.481 1.426 1.429 1.585↑0.104

CC 0.916 0.936 0.925 0.956↑0.020 0.943 0.937 0.941 0.956↑0.013

TMQI 0.912 0.921 0.906 0.926↑0.005 0.899 0.902 0.901 0.926↑0.024

MS-SSIM 0.909 0.934 0.905 0.951↑0.017 0.946 0.935 0.935 0.951↑0.005

MEF-SSIM 0.870 0.882 0.865 0.903↑0.021 0.908 0.889 0.902 0.903↓0.005

Table 3: Quantitative results of ablation experiments on the SICE dataset. Bold: the best; underline: the 2nd best.

Figure 5: Visual results of loss search ablation variants.

Figure 6: Visual results of architecture search variants.

Ablation Studies
Study on Loss Function Searching We evaluate three
other variants: 1) no loss function searching (w/o ΓH), 2)
reference constraint (only ΓR) and 3) natural constraint (only
ΓN). Qualitative results and quantitative results are shown in
Figure. 5 and Table. 3, respectively.

Due to the extreme difficulty in designing multiple
weights, w/o ΓH performs poorly. The similarity between
only ΓR and reference image is significantly imporved com-
pared with only ΓN, since reference constraint is no longer
interfered by natural constraint, as shown in the error maps.
Meanwhile, only ΓR shows well performance on the SICE
dataset with the second highest metrics. Additionally, only
ΓN shows better visual effect than other variants on dataset
without reference, as shown in the orange circle. Although
the metrics of only ΓN is not satisfactory, implicit guidance
introduced by natural images enhance the performance of

the model, which is reflected in the improvement of the met-
rics of Ours. In short, the two contrast constraints play a
complementary role, and either is indispensable.

Study on Architecture Searching We evaluated three
other variants: 1) repealing pruning refinement (only WR).
2) repealing weight retention (only PR). 3) repealing without
both (regular DARTS). Qualitative results and quantitative
results are shown in Figure. 6 and Table. 3, respectively.

As shown in the red box and blue box, since only WR
cannot eliminate hidden redundant connections between net-
work structures in the search process, while only PR can
not effectively retain the optimal structure obtained by the
search, their processing of exposure is far worse than Ours,
which is reflected in the loss of rich details and the blurring
of object boundaries. Their overall visual effect is also poor,
and DARTS is even less effective than these two. Judging
from the metrics value, only WR is the second highest be-
cause weight retention by increasing the number of param-
eters has an explicit effect, while pruning refine has an im-
plicit effect. In addition, the metrics of only PR and only WR
are both improved compared with DARTS, and are eventu-
ally reflected in the improvement of Ours, which prove their
effectiveness. In summary, pruning refinement and weight
retention are two complementary operations and both have
a positive effect on the proposed WSRAS.

Conclusion
In this paper, we introduced a Hybrid-Supervised Dual-
Search approach for MEF, enabling automated design of loss
functions and network structures. Our method, using hybrid-
supervision contrastive constraints, searches for precise loss
functions exceeding reference limits. We also incorporate
weighted structure refinement to find efficient network struc-
tures. Extensive evaluations demonstrate the superiority of
our approach over other advanced methods.
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