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Abstract

Point cloud salient object detection (PCSOD) is a newly pro-
posed task in 3D dense segmentation. However, the acquisi-
tion of accurate 3D dense annotations comes at a high cost,
severely limiting the progress of PCSOD. To address this is-
sue, we propose the first weakly supervised PCSOD (named
WeakPCSOD) model, which relies solely on cheap 3D
bounding box annotations. In WeakPCSOD, we extract noise-
free supervision from coarse 3D bounding boxes while mit-
igating shape biases inherent in box annotations. To achieve
this, we introduce a novel mask-to-box (M2B) transformation
and a color consistency (CC) loss. The M2B transformation,
from a shape perspective, disentangles predictions from la-
bels, enabling the extraction of noiseless supervision from la-
bels while preserving object shapes independently of the box
bias. From an appearance perspective, we further introduce
the CC loss to provide dense supervision, which mitigates the
non-unique predictions stemming from weak supervision and
substantially reduces prediction variability. Furthermore, we
employ a self-training (ST) strategy to enhance performance
by utilizing high-confidence pseudo labels. Notably, the M2B
transformation, CC loss, and ST strategy are seamlessly inte-
grated into any model and incur no computational costs for
inference. Extensive experiments demonstrate the effective-
ness of our WeakPCSOD model, even comparable to fully
supervised models utilizing dense annotations.

Introduction
Point Cloud Salient Object Detection (PCSOD) is a 3D seg-
mentation task newly proposed by Fan et al. (Fan, Gao, and
Li 2022), which aims to segment the most attractive objects
in point cloud scenarios. Compared with 2D salient object
detection (Wei, Wang, and Huang 2020; Wei et al. 2020b),
PCSOD can make full use of depth information, thus reduc-
ing the prediction ambiguity. Although formally similar to
3D semantic segmentation (3DSS), PCSOD has its own
unique characteristics. First, PCSOD is a class-agnostic
segmentation task and thus can be applied to a wide range
of scenarios without being limited to the semantic classes
of training data. Second, salient objects in point clouds de-
pend on views, and PCSOD is to segment the salient objects
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Figure 1: (a) shows the naive direct supervision with 3D
bounding box annotations for point cloud salient object de-
tection (PCSOD). (b) is our proposed WeakPCSOD model,
which conducts indirect supervision to overcome the box an-
notation bias through a mask-to-box (M2B) transformation.

of any given view in a 3D scene. Specifically, given a large
3D scene and an observer, salient objects are not constant
but change with the position and perspective of the observer.
Therefore, PCSOD deals with the subspace of a scene no-
ticed by the observer, rather than the entire scene. It stimu-
lates the attention mechanism of human eyes and avoids the
saliency ambiguity of large cluttered scenes, which has great
potential in VR/AR scenarios. For PCSOD data annotation,
it is necessary to involve multiple professional annotators to
jointly determine the salient object. An object is regarded
as a positive label only if more than 80% annotators verify
it. Otherwise, this sample will be ignored to avoid saliency
conflict. For more comparison between PCSOD and 3DSS,
and data annotation details, please refer to (Fan, Gao, and Li
2022). Due to the class-agnostic feature, PCSOD can pro-
vide the pre-processing results for many downstream tasks,
such as 3D shape classification, compression, and quality as-
sessment. Specifically, with the popularity of mobile phones
and virtual reality devices, PCSOD can capture what the user
watches at any time, and can also be exploited to build a 3D
avatar for live stream or display. Therefore, PCSOD has a
wide range of application prospects.
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Although promising, PCSOD requires point-level anno-
tations, which is time-consuming and laborious. For exam-
ple, it takes about 22.3 minutes to label a scene in Scan-
Net (Dai et al. 2017). The high labeling cost severely lim-
its the size of the dataset. To alleviate the model’s hunger
for dense annotations, a few works (Cheng et al. 2021; Hou
et al. 2021; Jiang et al. 2021; Liu, Qi, and Fu 2021; Zhang
et al. 2021) have explored the weakly supervised point cloud
analysis with sparse supervision, where only a few points
are labeled. However, the selection of points is subjective
and the sparse labels can not precisely limit the scope of
the object. Therefore, we contribute the first work (named
WeakPCSOD) to address the weakly supervised PCSOD
with 3D bounding boxes, which only requires two diagonal
points, i.e., (xmin, ymin, zmin) and (xmax, ymax, zmax), to
describe the scope of the object. Compared with full super-
vision, our WeakPCSOD greatly reduces the labeling cost.

Despite attractive, how to train the PCSOD model with
only 3D bounding boxes is a big challenge. One naive way is
to take all points inside the bounding box as salient points to
train a segmentation model, as shown in Fig. 1(a). However,
this direct supervision will mislead the model with a strong
box bias. This bias forces the model to predict box-shaped
salient objects, failing to preserve their original shapes. To
overcome the box bias of annotations, for the first time, we
propose the indirect supervision, as shown in Fig. 1(b).
Instead of supervising the prediction itself, we supervise
its outer box mask, which is achieved by the mask-to-box
(M2B) transformation. This design separates the predic-
tion from annotation, thus avoiding the misleading of box
bias. As a result, the prediction can preserve the shape of
salient objects well. Meanwhile, the annotation can indi-
rectly supervise the location and scope of objects in the pre-
diction through the outer box mask. Notably, M2B is our
main contribution, which is differentiable and can be in-
volved in gradient back-propagation during training.

However, this indirect supervision inevitably leads to non-
unique predictions, since one outer box mask can correspond
to multiple predictions. To alleviate the ambiguity, we pro-
pose a dense supervision based on color cues. Specifically,
any two points with similar colors are assumed to have the
same label. Given this, we design the color consistency
(CC) loss to explicitly reduce the feature distance between
points with the same labels. Surely, this supervision may
contain errors, so only point pairs with high color similar-
ity are involved in CC loss. Experiment results show that
CC loss largely reduces the non-uniqueness of predictions.
Note that, CC loss requires no annotations at all, and in CC
loss, the color of the points is not used as an input feature
but to generate constraints.

Taking above components together, we achieve the
WeakPCSOD model. The superiority of WeakPCSOD is
obvious in real applications: (1) Low cost. WeakPCSOD
only requires cheap bounding box annotations for segmenta-
tion, rather than expensive masks. (2) Efficiency. The com-
ponents of WeakPCSOD are only involved in the training
phase, incurring no computational cost to inference. (3) Uni-
versality. WeakPCSOD redesigns the supervision loss and
training strategy without any network modification, thus

it is plug-and-play to any model. (4) High Performance.
Although simple, WeakPCSOD surprisingly achieves high-
quality salient object masks, even comparable to fully super-
vised models. In summary, our contributions are three-fold:

• We contribute the first work to weakly supervised PC-
SOD using bounding box annotations, which greatly
reduces labeling cost and achieves comparable perfor-
mance to full supervision.

• We overcome the bias of bounding box annotations
through the proposed mask-to-box transformation and
color consistency loss, which are independent of specific
networks to achieve noise-free supervision.

• Extensive experiments on different backbone networks
have confirmed the effectiveness of our proposed
WeakPCSOD model.

Related Works
Salient Object Detection. Salient Object Detection (SOD)
aims to capture the most attractive targets in the scene.
For 2D images, many SOD works (Chen et al. 2020; Pang
et al. 2020) have been proposed. However, most of these
works (Tian et al. 2021) are limited to RGB images and ig-
nore 3D spatial geometry of objects. Therefore, researchers
extend SOD to 3D scenarios, including RGBD images (Fan
et al. 2020) and point clouds (Fan, Gao, and Li 2022). For
RGBD images, (Zhang et al. 2020b) adopts a two-stream
architecture to process RGB features and depth features
separately. Differently, (Li et al. 2020) proposes the cross-
modality modulation for better feature selection (Wang et al.
2021). For point clouds, previous works (Zheng et al. 2019)
mainly aim to predict the distribution heatmap of human at-
tention, failing to segment complete salient objects. Given
this, Fan et al. (Fan, Gao, and Li 2022) build the first SOD
benchmark on a large challenging point cloud dataset. Here,
we focus on PCSOD but with weak supervision. Compared
with fully supervised methods, our proposed WeakPCSOD
model greatly reduces labeling costs and is of practical
value.

Point Cloud Processing. Different from regularly ar-
ranged RGB images, point clouds are disordered. Recently,
PointNet (Charles et al. 2017) and PointNet++ (Qi et al.
2017) propose to process raw points directly and achieve
surprising performance across multiple tasks. Following
PointNet, PointCNN (Li et al. 2018) proposes to regularize
the points with an X-transformation and then process them
with typical convolutions. Differently, DGCNN (Wang et al.
2019) directly consumes raw points with an EdgeConv oper-
ation, which builds a dynamic graph to extract local geomet-
ric features, immune to the disorder. ShellNet (Zhang, Hua,
and Yeung 2019) uses the statistics of concentric spherical
shells to define representative features, thus allowing typical
convolutions to be performed. (Goyal et al. 2021; Qian et al.
2022) show the impact of training strategies on model per-
formance. However, all these methods are fully supervised,
requiring expensive dense annotations. In contrast, our pro-
posed WeakPCSOD model utilizes only 3D bounding boxes.

Weakly Supervised Learning. Due to the low cost of la-
beling, weakly supervised learning is gaining more and more
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attention. For RGB images, category-based (Zhou et al.
2016), scribble-based (Zhang et al. 2020a), and bounding
box-based (Hsu et al. 2019) methods are the most com-
mon paradigms. For point clouds, (Ren et al. 2021; Wei
et al. 2020a) explore the category-based paradigm, which
requires the minimum amount of labeling (i.e., semantic cat-
egories). However, SOD is a class-agnostic task, where se-
mantic categories are not available. Therefore, the category-
based paradigm is not applicable. Recently, (Hou et al. 2021;
Zhang et al. 2021) address the weakly supervised point
cloud analysis with only a small number of point annota-
tions. However, the selection of points for labeling is sub-
jective and sparse labels can not precisely describe the scope
of objects. Alternatively, the bounding box-based paradigm
strikes a good balance between labeling cost and annotation
accuracy, only requiring coordinates of two diagonal points
but gives a tight scope of the object. Therefore, we adopt
bounding box annotations for weakly supervised PCSOD.
Surprisingly, by redesigning supervision loss and training
strategies without modifying the network structures, our
model achieves comparable performance to full supervision.

Proposed Methodology
Baseline Models
Before introducing the proposed methods, we discuss three
baseline models. As shown in Fig. 2, each baseline model
consists of three parts: encoder, decoder, and supervision.
The only difference between these baseline models is the su-
pervision (i.e., three types of labels: gt mask, ellipsoid mask,
and cube mask). The encoder and decoder remain the same
because our design mainly focuses on the supervision loss.

Encoder. We adopt PointSOD (Fan, Gao, and Li 2022)
as the baseline network, which is the state-of-the-art model
in PCSOD. Its structure is shown in Fig. 2. PointSOD uses
the classical PointNet++ (Qi et al. 2017) as the encoder.
For input points with size (N, d), PointNet++ extracts four
scales of features {fi|i = 1, 2, 3, 4} with size (N/4i, 2i+5).
These features contain rich contextual information.

Decoder. To fuse the above features, PointSOD designs
the Feature Aggregation Block (FAB), which first upsamples
high-level features and low-level features to the same size
and then concatenates them along the channel dimension.
Besides, PointSOD proposes the Point Perception Block
(PPB) to further abstract global semantics and strengthen
the multi-scale representations. Given that the global seman-
tics can supplement the multi-scale features and alleviate the
distraction of non-salient background, a Saliency Perception
Block (SPB) is introduced to integrate multi-scale features
and global semantics to achieve the final predictions. Fig. 2
shows the pipeline. For the specific structures of FAB, PPB,
and SPB, please refer to (Fan, Gao, and Li 2022).

Supervision. We design three baseline models with dif-
ferent types of labels, i.e., one for full supervision and two
for weak supervision. Following PointSOD (Fan, Gao, and
Li 2022), the fully supervised model adopts dense labels
(i.e., ground-truth (gt) mask) for training, which is regarded
as the performance upper bound of weakly supervised mod-
els. However, dense labels are costly and sometimes not

Figure 2: Visualization of the baseline models. Three types
of labels are listed for comparison. Each baseline model is
trained with one type of label. Feature Aggregation Block
(FAB), Point Perception Block (PPB), and Saliency Percep-
tion Block (SPB) are proposed by (Fan, Gao, and Li 2022).

available. Therefore, we propose to use cheap 3D bound-
ing boxes to train the segmentation model. To achieve this,
we convert bounding boxes into binary masks. One naive
way is to generate an empty point cloud and set the label of
points inside the bounding box to 1 and the rest to 0 (named
cube mask). But the cube mask is box-biased since many
background points are wrongly labeled, which misleads the
model. To reduce the box bias, we further propose an el-
lipsoid mask, which is closer to the gt mask. Specifically,
we take the shape l × w × h and center point coordinate
(xc, yc, zc) of the bounding box to generate an object mask
with the ellipsoid formula (x−xc)

2

l2 + (y−yc)
2

w2 + (z−zc)
2

h2 ≤ 1,
where the label of points inside the ellipsoid is set to 1 and
the rest to 0. By discarding points in the corners, ellipsoid
masks contain less noise and lead to better generalization.
Fig. 2 shows the masks generated by the above methods.
For each baseline model, only one type of mask is involved.
Binary cross entropy loss and Dice loss are used to super-
vise these models. We have compared these models quanti-
tatively, where the gt mask leads to the best performance and
the ellipsoid mask outperforms the cube mask.

Model Pipeline
Fig. 3 shows the pipeline of our proposed WeakPCSOD
model, including the M2B transformation, CC loss, and self-
training strategy. To make the pipeline clear, we divide it into
two stages, using blue and green arrows to distinguish them.
In stage 1, cube masks are adopted to train a weakly su-
pervised segmentation model #1 with M2B transformation
and CC loss. In stage 2, we use model #1 to predict pseudo
masks for training samples and apply cube masks to filter out
their background noise. Then, these refined pseudo masks
are sent to train a fully supervised segmentation model #2.
Note that model #1 and model #2 are based on the same
backbone network. In inference, only model #2 is used to
segment the salient objects, and model #1 is abandoned.
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Figure 3: Pipeline of our proposed WeakPCSOD model which consists of two stages. In stage 1, as the blue arrow shows, we
train a weakly supervised segmentation model #1 with mask-to-box (M2B) transformation and color consistency (CC) loss,
using cube masks. Among them, M2B is used to construct the outer box mask of predictions, and CC loss is used to improve
the prediction consistency between points (i.e., p1 and p2) with high color similarity. In stage 2, as the green arrow shows, we
train a separate fully supervised segmentation model #2 from scratch, using the pseudo masks generated by model #1. To clean
the pseudo masks, we use cube masks to remove background false positives. In inference, only model #2 is adopted.

Mask to Box (M2B) Transformation
In Fig. 2, we convert bounding boxes into cube masks and
ellipsoid masks. However, both of them can not avoid noisy
labels, which is the inherent property of coarse annotations.
Given this, we abandon the way of directly supervising the
prediction and instead propose to supervise the outer box
mask of the prediction indirectly. The outer box mask can
decouple prediction from supervision, thus avoiding the bad
effects of box bias. To achieve this, we design mask-to-box
transformation, which is enabled by the following steps.

xn =

⌊
xL

xmax

⌋
, yn =

⌊
yH

ymax

⌋
, zn =

⌊
zW

zmax

⌋
(1)

Voxelization. Point cloud is disordered and requires a se-
rial traversal to achieve the outer box mask for each pre-
diction, which is quite slow. To accelerate this process, we
voxelize the predicted mask into an ordered representation,
as shown in Fig. 3. First, an empty tensor V p ∈ RL×W×H

is generated with all the elements set to 0. Then, for each
point in the predicted mask P , we normalize its coordinates
(x, y, z) into (xn, yn, zn) by Eq. 1, where xmax, ymax, zmax

are the maximum values of the coordinates in P . Finally, we
assign all values of P to V p by V p[xn, yn, zn] = P [x, y, z]
in parallel. Similarly, we voxelize the cube mask C to V c.

Note that only the final predicted mask is voxelized, thus the
memory footprint is acceptable.

Projection. After voxelization, we get two ordered ten-
sors V p and V c. However, V c is box-biased which can mis-
lead V p under direct supervision. To mitigate the mismatch,
we construct the outer box mask Op of V p by projection
and back-projection. In the projection, we reduce V p to vec-
tors by global max pooling along different axes, as shown in
Eq. 2. After projection, the original 3D V p ∈ RL×W×H

is reduced into three 1D vectors: V p
x ∈ RL×1×1, V p

y ∈
R1×W×1 and V p

z ∈ R1×1×H .

V p
x = max(V p, axis = (1, 2)) ∈ RL×1×1

V p
y = max(V p, axis = (0, 2)) ∈ R1×W×1

V p
z = max(V p, axis = (0, 1)) ∈ R1×1×H

(2)

Back Projection. V p
x , V

p
y and V p

z no longer contain the
shape information of objects, which are perfect for con-
structing outer box mask Op, as shown in Eq. 3. Specifi-
cally, V p

x , V
p
y , V

p
z are first repeated into V p′

x , V p′

y , V p′

z with
the same size as V P . Then, we element-wisely take the
minimum of V p′

x , V p′

y , V p′

z to achieve Op. Similarly, V c is
transformed into Oc. Note that, both projection and back-
projection are differentiable and therefore can be involved
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in gradient back-propagation.

V p′

x = repeat(V p
x , axis = (1, 2)) ∈ RL×H×W

V p′

y = repeat(V p
y , axis = (0, 2)) ∈ RL×H×W

V p′

z = repeat(V p
z , axis = (0, 1)) ∈ RL×H×W

Op = min(V p′

x , V p′

y , V p′

z ) ∈ RL×H×W

(3)

Supervision. Instead of using V c to supervise V p, we
exploit Oc to supervise Op with binary cross-entropy loss
LBCE = −[ylog(p) + (1 − y)log(1 − p)] and Dice loss
LDICE = 1− 2yp

p+y , as shown in Eq. 4. This design decouples
V p from V c, thus avoiding the misleading of box bias. As
a result, V p preserves the shape of objects. Meanwhile, V c

constrains the location and scope of objects in V p through
Op, without making any assumptions about their shape.

LSum = LBCE(O
p, Oc) + LDICE(O

p, Oc) (4)

Color Consistency Loss
However, M2B transformation may lead to non-unique pre-
dictions, because multiple predictions V p may correspond
to the same outer box mask Op. Therefore, we introduce the
color consistency (CC) loss to disambiguate. By considering
the color similarity between points, CC loss achieves a dense
supervision through point cloud cropping, similarity calcu-
lation and consistency constraining. Without manual label-
ing, CC loss largely reduces the variability of predictions.

Cropping. Since CC loss focuses on points inside the
bounding box, we first crop these points from input S
and prediction P . Specifically, given two extreme points
(xmin, ymin, zmin) and (xmax, ymax, zmax) of the bounding
box, for each point (x, y, z) in S, we check whether the point
satisfies Eq. 5. Those points that meet the condition will be
separated into a sub-point cloud Ssub. Similarly, a sub-point
cloud Psub is separated from P .

xmin ≤ x ≤ xmax; ymin ≤ y ≤ ymax; zmin ≤ z ≤ zmax (5)

Similarity Calculation. After cropping, we calculate the
color similarity between points within Ssub. To reduce the
computational cost, we adopt a random similarity calcula-
tion with O(n) complexity rather than the pairwise similar-
ity calculation with O(n2) complexity. Concretely, we first
shuffle the points in Ssub to get Sshu

sub . Then, we pair the
points that have the same position in Ssub and Sshu

sub , and
calculate their color similarity with the cosine similarity for-
mula ρ = α·β

||α||22·||β||22
, where α and β are the RGB color

vectors of the points in Ssub and Sshu
sub , respectively.

Supervision. Through the above calculation, we get the
color similarity ρ between points. Empirically, points with
highly similar colors usually belong to the same objects. As
shown in Fig. 3, point p1 and point p2 belong to the same
object and have a similar color, while p1 and p3 differ obvi-
ously. Of course, this assumption is not rigorous and would
bring some noise. Therefore, we only select the point pairs
with large ρ values (i.e., ρ > 0.9) to calculate CC loss LCC ,
as shown in Eq. 6, where (i, j) is a pair of point indexes and
N is the number of the selected pairs. Despite its simplic-
ity, CC loss explicitly reduces the variability of predictions

and surprisingly improves the robustness of the model. As
shown in Eq. 7, taking LSum and LCC together, we achieve
the total weak supervision loss Lw

total.

LCC =
1

N

∑
(i,j)

|P i
sub − P j

sub|, ρi,j > 0.9 (6)

Lw
total = LSum + LCC (7)

Self-Training Strategy
Equipped with M2B transformation and CC loss, we achieve
the weakly supervised PCSOD model #1. However, it still
faces two challenges. First, as shown in Fig. 3, the pre-
dictions contain some false positives. Second, the learn-
ing paradigm is inconsistent between sparse weak super-
vision and dense full supervision. Following the paradigm
of weakly supervised learning (Wei et al. 2021, 2022), we
further introduce the self-training (ST) strategy to alleviate
these problems. Specifically, we first generate pseudo masks
P for training samples through model #1. To clean P , cube
masks C are adopted to remove the background noise by
element-wise multiplication (i.e., P ×C). Finally, we adopt
P × C as the pseudo masks to train a fully supervised seg-
mentation model #2 from scratch, using traditional LBCE

and LDICE , as shown in Eq. 8.

Lf
total = LBCE + LDICE (8)

With pseudo label filtering and dense supervision, ST
greatly boosts the segmentation performance. Note that,
both model #1 and model #2 use the same network struc-
ture as the baseline model, but they are independent. Dur-
ing inference, only model #2 is used. Besides, pseudo labels
are generated for the training set, where bounding boxes are
available and the labels of the testing set are not leaked.

Model Summary
In general, WeakPCSOD is a two-stage pipeline. Combining
M2B transformation, CC loss, and ST strategy, WeakPC-
SOD overcomes the box bias of bounding box annota-
tions and realizes noise-free supervision. In the absence of
dense labels, WeakPCSOD even achieves comparable per-
formance to full supervision. Notably, the components of
WeakPCSOD are independent of network structures. There-
fore, WeakPCSOD is general and can be applied to other
models. Besides, these components are only used during
training, incurring no computational cost to inference.

Experiments and Results
Dataset and Backbone. To evaluate WeakPCSOD, we
adopt the large-scale dataset proposed in PointSOD (Fan,
Gao, and Li 2022) for experiments, which consists of 2,872
in-/out-door 3D scenes: 2000 for training and 872 for test-
ing. Each scene contains 240,000 points, with dense and
bounding box annotations. Note that, during training, only
bounding box annotations are involved, and dense annota-
tions are only used to quantify model performance. To verify
the universality of WeakPCSOD, two classical networks are
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Backbone Supervision Testing Set Training Set

Fm ↑ Em ↑ MAE↓ IoU↑ Fm ↑ Em ↑ MAE↓ IoU↑

PointNet++

gt mask 0.791 0.870 0.064 0.683 0.883 0.947 0.029 0.806
ellipsoid mask 0.653 0.789 0.105 0.512 0.686 0.813 0.091 0.546

cube mask 0.614 0.747 0.139 0.526 0.627 0.758 0.129 0.544
WeakPCSOD 0.780 0.869 0.068 0.649 0.836 0.912 0.053 0.718

PointMLP

gt mask 0.847 0.907 0.046 0.753 0.944 0.979 0.013 0.894
ellipsoid mask 0.675 0.811 0.098 0.525 0.773 0.882 0.071 0.638

cube mask 0.648 0.781 0.119 0.569 0.694 0.824 0.099 0.637
WeakPCSOD 0.804 0.896 0.058 0.706 0.863 0.940 0.039 0.794

Table 1: Quantitative comparison between the baseline models and our WeakPCSOD. The gt mask row represents the perfor-
mance upper bound. The WeakPCSOD row shows our model performance. ↑/↓ means larger/smaller is better.

Figure 4: Prediction comparison between WeakPCSOD
and weakly supervised models on PointNet++.

Figure 5: Prediction comparison between WeakPCSOD
and weakly supervised models on PointMLP.

adopted as the backbone, including PointNet++ (Qi et al.
2017) and PointMLP (Ma et al. 2022).

Training Details. We use the AdamW optimizer for
model training, where the initial learning rate and weight
decay are set to 1e-3 and 1e-4, respectively. Cosine anneal-
ing is used to adjust the learning rate. To reduce memory
footprint, we sample 4096 points from each point cloud dur-
ing training. We train the model from scratch with Xavier
initialization for 500 epochs, and the batch size is set to 64.
Following (Fan, Gao, and Li 2022), random rotation is used
to augment the input data. Codes will be released.

Evaluation Metrics. For fairness, we follow (Fan, Gao,
and Li 2022) to adopt four popular evaluation metrics to
quantify the model performance, including mean absolute
error (MAE), F-measure (Fm) (Margolin, Zelnik-Manor,
and Tal 2014), E-measure (Em) (Fan et al. 2018), and inter-
section over union (IoU). MAE estimates the point-wise ac-
curacy between the predicted segmentation map P and cor-
responding ground truth G, which is formulated as MAE=
1
N

∑N
i=1 |pi − gi|, where pi ∈ P and gi ∈ G. Fm is the har-

monic mean value of the precision (prec) and recall (reca),

i.e., Fm = (1−β2)·prec·reca
β2prec+reca , where β2 is set to 0.3 for em-

phasizing the importance of precision. Em captures both
the local matching and region-level matching information of
segmentation maps for assessment. IoU describes the extent
of overlap between two segmentation maps, defined as IoU
= inter

union , where inter and union indicate the intersection
and union of two segmentation maps, respectively.

Quantitative Comparison. Tab. 1 quantitatively com-
pares the performance between WeakPCSOD and the base-
line models on PointNet++ and PointMLP. Among them, the
performance on the testing set is the main measure for model
generalization. We also list the performance on the training
set because higher performance on the training set means a
higher quality of pseudo masks, which are beneficial for the
fully supervised model #2. In Tab. 1, the fully supervised
model (i.e., gt mask row) achieves the best performance
which is regarded as the performance upper bound. In con-
trast, the model supervised by coarse cube masks achieves
the worst performance which is regarded as the performance
lower bound. Surprisingly, under the settings of PointNet++
backbone and testing set, our WeakPCSOD outperforms the
model supervised by cube masks by 16.6%, and ellipsoid
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Model Years Sup. Fm ↑ Em ↑ MAE↓ IoU↑
PointNet CVPR17 F 0.634 0.770 0.116 0.520
PointNet++ NIPS17 F 0.741 0.817 0.077 0.610
PointCNN NIPS18 F 0.244 0.412 0.150 0.152
ShellNet ICCV19 F 0.756 0.850 0.073 0.650
RandLA PAMI21 F 0.635 0.742 0.127 0.519
PointSOD ECCV22 F 0.772 0.853 0.068 0.658
BCM CVPR19 W 0.653 0.786 0.104 0.552
BBTP NIPS19 W 0.676 0.802 0.084 0.574
Box2Mask ECCV22 W 0.721 0.812 0.079 0.604
WeakPCSOD-PointNet++ W 0.780 0.869 0.068 0.649
WeakPCSOD-PointMLP W 0.804 0.896 0.058 0.706

Table 2: Performance comparison with fully-supervised (F)
and weakly-supervised (W) models. Best scores are in bold.

Method M2B LCC ST Fm ↑ Em ↑ MAE↓ IoU↑
cube mask 0.614 0.747 0.139 0.526

✓ 0.736 0.857 0.082 0.589
✓ ✓ 0.748 0.860 0.079 0.603

WeakPCSOD ✓ ✓ ✓ 0.780 0.869 0.068 0.649

Table 3: Ablation studies for M2B transformation, color
consistency loss LCC and self-training strategy (ST).

masks by 12.7% on Fm metric, which largely closes the
gap with the fully supervised model and requires no dense
annotations. The overall performance ordering is gt mask >
WeakPCSOD > ellipsoid mask > cube mask.

Qualitative Comparison. Fig. 4 and Fig. 5 compare the
predictions of WeakPCSOD with the weakly supervised
models being PointNet++ and PointMLP, respectively. In-
tuitively, WeakPCSOD achieves the closest prediction to the
ground truth and works well in keeping the object structure.
As the 5th line of Fig. 5 shows, the legs of the chair are pre-
cisely segmented. However, the models supervised by cube
or ellipsoid masks are misled by the incorrect labels and ex-
hibit a tendency to overfit to background points. Fig. 6 visu-
alizes the predictions of WeakPCSOD and the fully super-
vised models, where the predictions of WeakPCSOD con-
tain fewer false positives. This is because the fully super-
vised models are easily affected by wrong labels in dense
annotations; but WeakPCSOD requires only coarse bound-
ing boxes, containing less wrong labels.

Compared with Fully/Weakly Supervised Models. To
demonstrate the effectiveness of WeakPCSOD, six fully su-
pervised models and three weakly supervised models are
adopted as the competitors, including PointNet (Charles
et al. 2017), PointNet++ (Qi et al. 2017), PointCNN (Li
et al. 2018), ShellNet (Zhang, Hua, and Yeung 2019),
RandLA (Hu et al. 2021), PointSOD (Fan, Gao, and Li
2022), BCM (Song et al. 2019), BBTP (Hsu et al. 2019) and
Box2Mask (Chibane et al. 2022). All these methods are eval-

Figure 6: Prediction comparison between WeakPCSOD and
fully supervised models with PointNet++ backbone.

uated on PCSOD testing set. As shown in Tab. 2, WeakPC-
SOD outperforms previous weakly supervised models by a
large margin, even achieving comparable performance to the
fully supervised models, which demonstrates the great po-
tential of weakly supervised PCSOD.

Ablation Studies. As shown in Tab. 3, to evaluate the
contribution of each module in WeakPCSOD, we conduct
ablation studies on the testing set with the PointNet++
backbone. Specifically, with only M2B transformation, our
model already improves the performance by 12.2%, com-
pared to cube supervision on the Fm metric. Furthermore,
CC loss reduces the variability of predictions, leading to
more robust training and improving Fm by 1.2%. Besides,
ST further cleans up the background noise in pseudo labels
and aligns the forms of weak supervision and full supervi-
sion. As a result, it brings strong regularization and improves
Fm by 3.2%. Taking all these components together, our
WeakPCSOD demonstrates superior performance in weakly
supervised point cloud SOD.

Conclusion
To reduce the labeling cost of PCSOD, we contribute the
first weakly supervised model (i.e., WeakPCSOD), using
only 3D bounding box annotations. However, these anno-
tations have a strong box bias. To remove the bias, we de-
sign the mask-to-box transformation to separate predictions
from labels. This indirect supervision preserves the object
shape free from box bias. Besides, to reduce the variabil-
ity of predictions, we introduce color consistency loss and
self-training strategy. Notably, all these components are used
only during training, incurring no computational cost to in-
ference, and are independent of networks, allowing their
portability to other models. We conduct extensive experi-
ments with different networks to verify their effectiveness.
Surprisingly, our WeakPCSOD model even achieves com-
parable performance to fully supervised ones, showing its
potential for point cloud analysis.
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