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Abstract

3D Semantic Scene Completion (SSC) has emerged as a
novel task in vision-based holistic 3D scene understanding.
Its objective is to densely predict the occupancy and cate-
gory of each voxel in a 3D scene based on input from ei-
ther LiDAR or images. Currently, many transformer-based
semantic scene completion frameworks employ simple yet
popular Cross-Attention and Self-Attention mechanisms to
integrate and infer dense geometric and semantic informa-
tion of voxels. However, they overlook the distinctions among
voxels in the scene, especially in outdoor scenarios where
the horizontal direction contains more variations. And vox-
els located at object boundaries and within the interior of ob-
jects exhibit varying levels of positional significance. To ad-
dress this issue, we propose a transformer-based SSC frame-
work called H2GFormer that incorporates a horizontal-to-
global approach. This framework takes into full considera-
tion the variations of voxels in the horizontal direction and
the characteristics of voxels on object boundaries. We intro-
duce a horizontal window-to-global attention (W2G) module
that effectively fuses semantic information by first diffusing
it horizontally from reliably visible voxels and then propa-
gating the semantic understanding to global voxels, ensuring
a more reliable fusion of semantic-aware features. Moreover,
an Internal-External Position Awareness Loss (IoE-PALoss)
is utilized during network training to emphasize the criti-
cal positions within the transition regions between objects.
The experiments conducted on the SemanticKITTI dataset
demonstrate that H2GFormer exhibits superior performance
in both geometric and semantic completion tasks. Our code
is available on https://github.com/Ryanwy1/H2GFormer.

Introduction
Holistic 3D understanding has emerged as a crucial chal-
lenge in computer vision, advancing notably in scenarios
like autonomous driving, robot behavior planning, and vir-
tual reality applications. However, occlusions and incom-
plete observations pose challenges in acquiring precise 3D
information.

To address these challenges, SSCNet (Song et al. 2017)
pioneered the introduction of 3D semantic scene completion
and demonstrated scene completion and semantic labeling
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Figure 1: The isometric view, camera view, and bird’s-eye
view of SemanticKITTI (Cai et al. 2021). In outdoor scenes,
voxel categories exhibit greater variation along the horizon-
tal direction than along the vertical ground direction.

within this task are tightly intertwined. Subsequent methods
(Li et al. 2019a; Garbade et al. 2019; Li et al. 2020b) con-
tinue this perspective and place a greater emphasis on indoor
scenes. Other works (Roldao, de Charette, and Verroust-
Blondet 2020; Cheng et al. 2021; Yan et al. 2021; Yang et al.
2021; Xia et al. 2023) leverage 3D geometric data, such as
LiDAR point clouds, extending this task to outdoor scenes.
Compared to the relatively higher cost of LiDAR sensors, vi-
sual cameras not only offer cost-effective solutions but also
provide abundant visual cues of the scene. It has prompted
recent research endeavors to shift towards vision-based solu-
tions. MonoScene (Cao and de Charette 2022) was the pio-
neering approach that introduced semantic scene completion
utilizing monocular images as input. Other works (Huang
et al. 2023; Li et al. 2023) aimed to improve the model’s
ability to generate dense 3D scenes from sparse observations
by refining the design of the network architecture.

However, these Transformer-based visual approaches
predominantly focus on holistic voxel feature modeling,
thereby overlooking distinctions between voxels along the
horizontal and vertical directions, as well as the dispari-
ties between voxels within objects and those outside. Hence,
these methods encounter inherent challenges such as the in-
ability to accurately and efficiently diffuse 2D image fea-
tures into 3D voxels. In reality, the uniform treatment of all
voxels is not tenable, especially in outdoor scenarios where
the horizontal dimension exhibits more variations, as shown
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in Figure 1. In addition to the presence of more variations
in object categories, there is also a considerable difference
in the scales of objects in the horizontal direction. This re-
quires the model to be capable of modeling longer-distance
contextual semantics. And the outdoor images encompass a
wider range of the real-world environment. This accentuates
the imperative for dependable exploitation of semantic fea-
tures at object edges.

Motivated by the above analysis, we propose a horizontal-
to-global voxel reconstruction network (H2GFormer) that
leverages 2D image features more reliably and efficiently,
thereby achieving semantic scene completion. The key idea
of H2GFormer involves a gradual focus on the reconstruc-
tion of voxel features at diverse directions and positions. Ini-
tially, we perform extensive contextual semantic modeling
along the horizontal direction, subsequently expanding lo-
cal information to encompass height-related regions. Conse-
quently, H2GFormer achieves a more dependable and pre-
cise diffusion of 2D image features into 3D voxels. The
2D image features correspond to the visible region within
the voxel, and these features are relatively reliable. How-
ever, the number of voxels in the invisible region is signifi-
cantly greater than those in the visible region. Our horizontal
window-to-global attention (W2G) module first diffuses the
features from the visible region horizontally and then glob-
ally, thereby enhancing the retention of effective features.

Another constraint of prior approaches lies in their dis-
regard for the variation in the importance of voxels at dif-
ferent positions. From a human perceptual standpoint, the
features in transition regions between different objects are
more pronounced. To address this objective, we introduce
the notion of Internal-External indicators (IoE) to quanti-
tatively ascertain the significance of a given position along
the horizontal and vertical dimensions. Divergent from the
Local Geometric Anisotropy (LGA) (Li et al. 2019b), our
Internal-External indicators (IoE) prioritize the transitional
changes in position rather than the position itself, and they
are comparatively more straightforward to implement. And
we further introduce the Internal-External Position Aware-
ness Loss (IoE-PALoss).

Our contributions can be summarized as follows:

• We propose a novel H2GFormer to leverage the RGB
data for semantic scene completion. H2GFormer effec-
tively utilizes 2D features through a progressive feature
reconstruction process across various directions.

• We introduce horizontal window-to-global attention
(W2G) module to enhance the model’s focus on varia-
tions of voxels along the horizontal direction.

• We introduce a novel Internal-External Position Aware-
ness Loss (IoE-PALoss), which highlights voxels in tran-
sition between different directions of objects and allevi-
ates the excessive focus on redundant internal object in-
formation.

• H2GFormer achieves a performance improvement of
19.7% over the state-of-the-art VoxFormer-S (Li et al.
2023) and 8.9% over VoxFormer-T on the Se-
manticKITTI (Behley et al. 2019) dataset.

Related Work
3D Semantic Scene Completion
SSCNet (Song et al. 2017) was the first to introduce the task
of 3D semantic scene completion, considering both scene
completion and semantic labeling jointly. The initial works
(Li et al. 2019a; Chen, Garbade, and Gall 2019; Wang et al.
2019; Chen, Xing, and Zeng 2020; Li et al. 2020a; Chen
et al. 2020; Cai et al. 2021; Dourado et al. 2021) mostly
relied on 3D CNN volume networks, used for processing
relatively smaller-scale indoor datasets like NYUv2 (Silber-
man et al. 2012) and NYUCAD (Firman et al. 2016). Re-
cently, with the release of large-scale datasets such as Se-
manticKITTI (Behley et al. 2019), there has been a grow-
ing interest in outdoor semantic scene completion tasks
(SSC). Some research studies employ LiDAR data as input
for scene completion (Roldao, de Charette, and Verroust-
Blondet 2020; Xia et al. 2023; Yang et al. 2021). However,
LiDAR sensors can be costly. Hence, other research is con-
tinuously exploring the possibility of utilizing only 2D im-
ages as input for scene completion.

MonoScene (Cao and de Charette 2022) utilizes projec-
tion to model 2D images into 3D. TPVFormer (Huang et al.
2023), OccFormer (Zhang, Zhu, and Du 2023) and Sur-
roundOcc (Wei et al. 2023) have explored the use of multi-
view semantic information such as tri-perspective view
(TPV) and bird’s eye view (BEV) to enhance SSC tasks.
OccDepth (Miao et al. 2023) introduces a stereo alloca-
tion module to enhance the fusion of depth perception. Vox-
Former (Li et al. 2023) designs transformer-based networks
to more effectively elevate 2D features to 3D.

Compared to the previous works, our camera-based per-
ception network focuses on the positional importance of
voxels within the scene, enabling a more effective feature
extraction and diffusion.

Loss Function for 3D Dense Prediction
In outdoor scenes, 3D SSC differs significantly from 2D seg-
mentation. The importance of voxels at different directions
and positions varies significantly for 3D SSC. And voxel
counts in transition regions between objects are smaller than
within object interiors or exteriors. Thus, selecting an appro-
priate loss function is crucial for effective and accurate net-
work training in SSC. Currently, various classical loss func-
tions are available for this purpose.

1) Weighted Cross-Entropy Loss: The weighted cross-
entropy loss introduces class-specific weighting factors ωc ∈
[0, 1] upon the foundation of cross-entropy loss. This ap-
proach emphasizes the significance of less-sampled cate-
gories, thereby addressing class imbalance to some extent.
And the weighting parameters can be manually configured.

2) Scene-Class Affinity Loss: (Cao and de Charette 2022)
introduces the Scene-Class Affinity Loss, which is aimed at
the simultaneous optimization of class-wise derivable preci-
sion, recall, and specificity metrics.

3) Position Aware loss: The Position Aware Loss intro-
duced by (Li et al. 2019b) employs the Local Geometric
Anisotropy factor to amplify the response toward voxels
containing intricate details.
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Figure 2: (a) The overall architecture of H2GFormer. The image backbone and pixel decoder extract features from single or
multiple images, which are then fed into the DeformCrossAttn Stage using a hierarchical multi-scale feature allocation strategy.
Subsequently, the predefined features of the visible region are combined with a mask token and propagated through the W2G
stage to diffuse the features. Finally, upsampling and projection are performed to obtain the semantic scene completion results.
(b) The structure of the W2G stage, which involves windowed self-attention (WSA) and deformable self-attention (DSA).

Methodology
In this section, we present the architecture of H2GFormer.
H2GFormer predicts the occupancy and semantic category
of each 3D voxel from 2D images for SSC based on the
Transformer. Each 3D voxel will be mapped to one of (N+1)
semantic labels C = {c0, c1, ..., cN}, where c0 represents
an empty voxel, and N is the number of semantic cate-
gories. Specifically, as illustrated in Figure 2, we input the
2D images into ResNet50 to extract features. Then, the RGB
features are fused through the pixel-decoder module and hi-
erarchically fed into the Deformable Cross-Attention mod-
ule (Zhu et al. 2020). By utilizing the Deformable Cross-
Attention module, we are enable to transform 2D image fea-
tures into 3D visible region features. Subsequently, the hor-
izontal window-to-global attention (W2G) module diffuses
the voxel with Mask Token from a horizontal to a global se-
quence, covering the entire voxel representation. Finally, the
features are processed through linear projection to obtain the
dense semantic prediction map Yt ∈ RH×W×Z×(N+1) for
voxel.

Below, we introduce the details of H2GFormer from the
following aspects: 1) Predefined Parameters, 2) Pixel De-
coder, 3) Deformable Cross-Attention module, 4) Horizon-
tal Window-to-Global Attention module, 5) Loss Function.

Predefined Parameters
Query Proposal. The voxels in the three-dimensional
space corresponding to the two-dimensional image features

are sparse. As a result, the feature extraction for visible-
occupied voxels is more reliable. Following the same ap-
proach as the Class-Agnostic Query Proposal Stage in (Li
et al. 2023), we define a total of Np voxel queries Qp ∈
RNp×d, where d denotes the feature dimension.

Mask Token. Opting to extract features solely for visible-
occupied voxels from the image features implies that the
features for the remaining voxels need to be initialized us-
ing another set of learnable parameters. Similar to (Li et al.
2023; He et al. 2022), we introduce mask token m ∈ Rd, to
indicate the learnable vector representing the missing voxel
features that need to be predicted based on the features of
visible voxels.

Pixel Decoder
High-resolution features can enhance the predictive perfor-
mance of the model (Ronneberger, Fischer, and Brox 2015;
Wang et al. 2020; Zou et al. 2021), particularly concerning
small-sized objects. Experiments conducted in VoxFormer
demonstrate that directly inputting high-resolution feature
maps into the Cross-Attention module yields superior per-
formance compared to utilizing multi-scale feature maps.
However, we consider that due to the sparse mapping of
information from 2D images to the 3D real-world space, a
step-wise extraction of 3D features from 2D image features
is necessary. This design entails initially extracting the over-
all information from the image before capturing localized
details. Inspired by Mask2Former (Cheng, Schwing, and
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Figure 3: (a) The fused allocation; (b) The direct allocation;
(c) Our hierarchical multi-scale feature allocation strategy.

Kirillov 2021; Cheng et al. 2022), we have devised a pixel
decoder that receives image features from the backbone net-
work. It incrementally upsamples low-resolution features to
acquire high-resolution pixel features. Subsequently, these
features of varying resolution scales are sequentially fed
into the Cross-Attention module, following an ascending or-
der from low to high resolution. Specifically, the structural
distinction between this design and the direct utilization of
high-resolution features is depicted in Figure 3. Figure 3(a)
illustrates early fusion followed by feature extraction using
a single-resolution feature map. Figure 3(b) illustrates the
repeated utilization of multi-level feature maps. Figure 3(c)
illustrates our designed structure capable of hierarchical fea-
ture extraction, thus capturing more intricate details.

Deformable Cross-Attention Module
Upon obtaining feature maps from the pixel decoder, we uti-
lize query proposals Qp to learn the 3D features from image
features. Here, we employ deformable attention (Zhu et al.
2020), which selectively samples Ns points around the refer-
ence point for attention computation, thereby enhancing ef-
ficiency. Mathematically, deformable attention(DA) update
the query q using the following equation:

DeformAttn(q, p, F ) =

Ns∑
s=1

AsWsF (p+ δps) (1)

where p represents the reference point, F denotes the input
feature, Ns indicates the number of sampled points. Ws and
As are learnable weights, and F (p+δps) represents the fea-
ture of sampled point locations extracted through bilinear
interpolation.

Specifically, within the deformable cross-attention mod-
ule, drawing inspiration from (Li et al. 2023), we employ
the same settings to select reference points p for each query
proposal qp. In the case of utilizing multiple frames of view,
we perform a weighted summation of the features sampled
on views where selected reference points exist, resulting in
the output of the deformable cross-attention.

(a) Overall

0

1 0 1 0 1

(b) Direction (c) Direction (d) Direction

Figure 4: Internal-External indicator: indicate the positional
significance of object transition edge voxels and object inter-
nal voxels. (a) Current voxel and surrounding voxels; (b)-(d)
Values computed for IoE along the w, h, and z directions.

Horizontal Window-to-Global Attention Module
After several layers of deformable cross-attention modules,
the query proposals extract 3D features of the visible re-
gions from the 2D features and are updated as Q̂p. Subse-
quently, we integrate the predefined mask tokens of the in-
visible regions with the updated query proposals to obtain
the complete voxel features, which serve as the initial input
F 3D ∈ Rh×w×z×d for the Horizontal Window-to-Global
Attention module. This module comprises two steps. First,
for the input 3D features, semantic information is aggregated
along the horizontal direction. Subsequently, the semantic
information is propagated to global voxels. In specific terms,
we merge the height dimension into the batch dimension, re-
sulting in the feature F 3D−H ∈ Rz×h×w×d and apply win-
dowed self-attention (Liu et al. 2021) to each height-level
feature map. This step can be formalized as follows:

F 3D−H = WMSA(F 3D−H) (2)
where WMSA is multi-head windowed self attention mod-
ules.

Subsequently, we restore the reshaped 3D features back
to their original shape F 3D ∈ Rh×w×z×d and further refine
them using deformable self-attention, resulting in the feature
tensor F̂ 3D ∈ Rh×w×z×d:

DSA(F 3D, F 3D) = DA(f, p, F 3D) (3)
where f represents the updated query proposal located at the
reference point p.

Loss Function
Given the sparse arrangement of objects between outdoor
scenes, compared to indoor scenarios, voxels at object
edges and transitions hold higher positional significance.
To address this, drawing inspiration from PALoss (Li et al.
2019b), we introduce a variant that measures whether a
voxel is located at an object edge. To quantify the Internal-
External indicators (IoE) for specific voxels, we focus on
the semantic categories of voxels located around the current
voxel along the three coordinate axes. Specifically, for each
direction, if the semantic categories of the voxels before and
after the current voxel are different, we consider it as an edge
voxel, as illustrated in Figure 4. Given a voxel p, its IoE is
calculated based on six neighboring voxels along the three
directions and can be expressed as the following formula:

MIoE(p) =
3∑

i=1

(cip−1 ⊕ cip+1) (4)
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Methods H2GFormer-T (Ours) H2GFormer-S (Ours) VoxFormer-T VoxFormer-S MonoScene

Range 12.8m 25.6m 51.2m 12.8m 25.6m 51.2m 12.8m 25.6m 51.2m 12.8m 25.6m 51.2m 12.8m 25.6m 51.2m

IoU (%) 67.49 58.51 44.69 66.42 58.61 44.57 65.38 57.69 44.15 65.35 57.54 44.02 38.42 38.55 36.80
Precision (%) 82.00 73.98 62.26 79.02 74.24 62.17 76.54 69.95 62.06 77.65 70.85 62.32 51.22 51.96 52.19
Recall (%) 79.23 73.66 61.29 80.64 73.58 61.16 81.77 76.70 60.47 80.49 75.39 59.99 60.60 59.91 55.50

mIoU 23.43 20.37 14.29 20.49 18.39 13.73 21.55 18.42 13.35 17.66 16.48 12.35 12.25 12.22 11.30
car 48.81 40.15 28.21 45.07 39.30 27.60 44.90 37.46 26.54 39.78 35.24 25.79 24.34 24.64 23.29
bicycle 1.76 1.73 0.95 0.59 1.86 0.50 5.22 2.87 1.28 3.04 1.48 0.59 0.07 0.23 0.28
motorcycle 9.75 2.27 0.91 3.61 2.40 0.47 2.98 1.24 0.56 2.84 1.10 0.51 0.05 0.20 0.59
truck 10.29 15.06 6.80 15.24 9.34 10.00 9.80 10.38 7.26 7.50 7.47 5.63 15.44 13.84 9.29
other-veh. 16.54 10.71 9.32 16.22 7.71 7.39 17.21 10.61 7.81 8.71 4.98 3.77 1.18 2.13 2.63
person 2.00 2.75 1.15 2.00 3.06 1.54 4.44 3.50 1.93 4.10 3.31 1.78 0.90 1.37 2.00
bicyclist 0.52 0.86 0.10 2.78 3.89 2.88 2.65 3.92 1.97 6.82 7.14 3.32 0.54 1.00 1.07
motorcyclist 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
road 80.17 71.72 57.00 76.83 70.79 56.08 75.45 66.15 53.57 72.40 65.74 54.76 57.37 57.11 55.89
parking 27.90 28.42 21.74 18.96 19.03 17.83 21.01 23.96 19.69 10.79 18.49 15.50 20.04 18.60 14.75
sidewalk 55.61 41.18 29.37 49.72 39.68 29.12 45.39 34.53 26.52 39.35 33.20 26.35 27.81 27.58 26.50
other-grnd 0.00 0.50 0.34 0.01 0.72 0.45 0.00 0.76 0.42 0.00 1.54 0.70 1.73 2.00 1.63
building 26.66 33.12 20.51 21.83 28.80 19.74 25.13 29.45 19.54 17.91 24.09 17.65 16.67 15.97 13.55
fence 17.96 12.27 7.98 14.88 11.30 7.24 16.17 11.15 7.31 12.98 10.63 7.64 7.57 7.37 6.60
vegetation 46.53 40.34 27.44 43.00 37.51 26.25 43.55 38.07 26.10 40.50 34.68 24.39 19.52 19.68 17.98
trunk 21.37 15.18 7.80 13.38 12.16 6.80 21.39 12.75 6.10 15.81 10.64 5.08 2.02 2.57 2.44
terrain 48.46 44.66 36.26 43.45 41.75 34.42 42.82 39.61 33.06 32.25 35.08 29.96 31.72 31.59 29.84
pole 21.46 16.91 9.88 15.10 13.12 7.88 20.66 15.56 9.15 14.47 11.95 7.11 3.10 3.79 3.91
traf.-sign 9.33 9.16 5.81 6.45 7.06 4.68 10.63 8.09 4.94 6.19 6.29 4.18 3.69 2.54 2.43

Table 1: Quantitative comparisons against the camera-based baseline methods on SemanticKITTI validation set. We compare
performance across three volume ranges, from short-range to long-range regions. The performance of the top two models is
indicated using bold and underlined formatting.

where cip−1 represents the semantic label of the voxel be-
fore the current voxel along direction i, cip+1 represents the
semantic label of the voxel after the current voxel along di-
rection i. If voxel cip−1 and cip+1 have the same semantic
label, then cip−1 ⊕ cip+1 = 0, otherwise cip−1 ⊕ cip+1 = 1.

Based on IoE values, IoE PA-Loss is defined as follows:

LIoE = − 1

N

N∑
n=1

cM∑
c=c0

αMn
IoE ŷnclog(

eync∑
c e

ync
) (5)

where N is the total number of voxels used for computing
this loss, c indexes class, α represents the scaling coefficient
and Mn

IoE is the IoE of voxels n. ŷnc, ync are the one-hot
vector of the ground truth labels and the corresponding pre-
dictions in class c.

We also employed the scene-class affinity loss (Cao and
de Charette 2022) and the universal weighted cross-entropy
loss (Roldao, de Charette, and Verroust-Blondet 2020). And
the overall loss is the sum of these terms.

Experiments
Experimental Setup
Dataset. We evaluate the performance of H2GFormer on
the SemanticKITTI (Behley et al. 2019) dataset, which com-
prises densely annotated semantic labels for each LiDAR
scan from 22 outdoor driving scenes of the KITTI Odometry
Benchmark (Geiger, Lenz, and Urtasun 2012). This dataset
voxelizes point clouds and labels the entire scene within a

size of 51.2m×51.2m×6.4m, resulting in a voxel grid of
dimensions 256×256×32. Furthermore, the voxel grid an-
notations encompass a total of 20 categories, which include
19 semantic classes and 1 empty class. Regarding the sparse
input to an SSC model, SemanticKITTI provides RGB im-
ages and LiDAR scans. In this study, we investigated image-
based SSC similar to (Li et al. 2023).

Implementation Details. In the predefined portion of the
Query proposal for deformable cross-attention, we directly
utilize the same approach as in (Li et al. 2023) to obtain
the initial query proposal for the visible region. In the im-
age backbone section, we employ ResNet50 (He et al. 2016)
to process the input RGB images of size 1220×370 and ex-
tract image features. In the pixel decoder module, we di-
rectly utilize FPN (Lin et al. 2017) to process image features
and obtain three feature maps of sizes 1/4, 1/8, and 1/16 of
the input image. Subsequently, these feature maps are se-
quentially inputted into a concatenated sequence of three de-
formable cross-attention modules. The feature dimension is
set as d = 128. The number of cross-attention modules is
3, and the number of W2A modules is 2. The W2A module
alternates between using windowed self-attention with regu-
lar window and shifted window (Liu et al. 2021). We trained
the model for 20 epochs with a learning rate of 2 × 10−4.
Similar to (Li et al. 2023), we also provided two versions of
H2GFormer, one that takes only the current image as input
(H2GFormer-S), and another that takes the current image
along with the previous 4 images as input (H2GFormer-T).
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LMSCNet* 31.38 7.07 14.30 0.00 0.00 0.30 0.00 0.00 0.00 0.00 46.70 13.50 19.50 3.10 10.30 5.40 10.80 0.00 10.40 0.00 0.00
3DSketch* 26.85 6.23 17.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 37.70 0.00 19.80 0.00 12.10 3.40 12.10 0.00 16.10 0.00 0.00
AICNet* 23.93 7.09 15.30 0.00 0.00 0.70 0.00 0.00 0.00 0.00 39.30 19.80 18.30 1.60 9.60 5.00 9.60 1.90 13.50 0.10 0.00
JS3C-Net* 34.00 8.97 20.10 0.00 0.00 0.80 4.10 0.00 0.20 0.20 47.30 19.90 21.70 2.80 12.70 8.70 14.20 3.10 12.40 1.90 0.30

MonoScene 34.16 11.08 18.80 0.50 0.70 3.30 4.40 1.00 1.40 0.40 54.70 24.80 27.10 5.70 14.40 11.10 14.90 2.40 19.50 3.30 2.10
SurroundOcc 34.72 11.86 20.60 1.60 1.20 1.40 4.40 1.40 2.00 0.10 56.90 30.20 28.30 6.80 15.20 11.30 14.90 3.40 19.30 3.90 2.40
Symphonies 41.07 13.02 22.10 1.70 1.30 1.90 5.80 2.20 1.30 0.50 55.70 25.30 26.80 4.90 21.30 13.10 22.90 8.20 19.50 6.80 5.80
TPVFormer 34.25 11.26 19.20 1.00 0.50 3.70 2.30 1.10 2.40 0.30 55.10 27.40 27.20 6.50 14.80 11.00 13.90 2.60 20.40 2.90 1.50
OccFormer 34.53 12.32 21.60 1.50 1.70 1.20 3.20 2.20 1.10 0.20 55.90 31.50 30.30 6.50 15.70 11.90 16.80 3.90 21.30 3.80 3.70
VoxFormer-S 42.95 12.20 20.80 1.00 0.70 3.50 3.70 1.40 2.60 0.20 53.90 21.10 25.30 5.60 19.80 11.10 22.40 7.50 21.30 5.10 4.90
VoxFormer-T 43.21 13.41 21.70 1.90 1.60 3.60 4.10 1.60 1.10 0.00 54.10 25.10 26.90 7.30 23.50 13.10 24.40 8.10 24.20 6.60 5.70

H2GFormer-S (Ours) 44.20 13.72 23.40 0.80 0.90 4.80 4.10 1.20 2.50 0.10 56.40 26.50 28.60 4.90 22.80 13.30 24.60 9.10 23.80 6.40 6.30
H2GFormer-T (Ours) 43.52 14.60 23.70 0.60 1.20 5.20 5.00 1.10 0.10 0.00 57.90 30.00 30.40 6.90 24.00 14.60 25.20 10.70 25.80 7.50 7.10

Table 2: Quantitative comparisons with the state-of-the-art methods on SemanticKITTI hidden test set. * indicates the results
obtained from the official code of these methods when using RGB inputs, reported in MonoScene.

Evaluation Metrics. We employed Intersection over
Union (IoU) and mean IoU (mIoU) metrics to evaluate the
SSC task. IoU metric evaluates scene completion quality
by examining occupancy prediction maps. In SSC, mIoU
more effectively gauges the model’s scene understanding
ability, enhancing its applicability to advanced tasks. Ad-
ditionally, we evaluated the IoU and mIoU within volumes
of sizes 12.8m×12.8m×6.4m, 25.6m×25.6m×6.4m, and
51.2m×51.2m×6.4m.

Comparison against Baseline Methods
Our H2GFormer maintains consistency with VoxFormer
(Li et al. 2023) in terms of depth estimation (Shamsa-
far et al. 2022), thereby validating the superior perfor-
mance of our approach in aggregating 3D semantic features.
Therefore, in Table 1, we compare H2GFormer with recent
camera-based VoxFormer (Li et al. 2023) and MonoScene
(Cao and de Charette 2022) on the SemanticKITTI vali-
dation dataset. We evaluate and compare the performance
of these various baseline methods in both short-range and
long-range regions. Our H2GFormer consistently outper-
forms VoxFormer inside three volumes (51.2m, 25.6m, and
12.8m). Specifically, H2GFormer-S achieves improvements
of mIoU of 11.17%, 11.59%, and 16.02% over VoxFormer-
S in the three volumes, respectively. Furthermore, our ap-
proach demonstrates excellent performance in classes that
exhibit horizontal scene layouts, such as road, terrain, side-
walk, parking, and building.

Comparisons with the State-of-the-Art Methods
In Table 2, we compare our proposed method with state-of-
the-art camera-based approaches on SemanticKITTI hidden
test set, including MonoScene (Cao and de Charette 2022),
SurroundOcc (Wei et al. 2023), Symphonies (Jiang et al.
2023), TPVFomer (Huang et al. 2023), OccFormer (Zhang,
Zhu, and Du 2023), and VoxFormer (Li et al. 2023). Our

Methods Spatial resolution IoU mIoU1
4

1
8

1
16

1
32

Original FPN ✓ 44.29 10.67
Original FPN ✓ 44.19 11.85
Original FPN ✓ 44.47 12.06
Original FPN ✓ 44.30 11.85

Original FPN ✓ ✓ ✓ 44.34 11.98
Original FPN ✓ ✓ ✓ 44.23 12.13
Original FPN ✓ ✓ ✓ ✓ 44.01 12.23

Pixel Decoder ✓ ✓ ✓ 44.19 12.02
Pixel Decoder ✓ ✓ ✓ 44.20 12.36

Table 3: Ablation study for pixel decoder. The pixel decoder
utilizes our hierarchical multi-scale feature allocation strat-
egy. Spatial resolution is relative to the input image size.

H2GFormer achieves the highest mIoU (14.60), surpassing
the previous highest of 13.41 (Li et al. 2023) by an 8.87%
improvement.

Ablation Study
In this section, we conduct ablation studies on the Se-
manticKITTI validation set to validate the effectiveness of
the aforementioned components.

Ablation on the Pixel Decoder. The ablation study for
the pixel decoder component is presented in Table 3. The
three sections in Table 3 correspond to the three structures
in Figure 3 from top to bottom. We primarily compared the
performance difference between the proposed hierarchical
output multi-scale feature map Pixel decoder and the origi-
nal FPN. We observe that the use of the original FPN does
not effectively leverage the multi-scale resolution features,
whereas our proposed hierarchical multi-scale strategy ef-
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Input Ground Truth H2GFormer-T (ours) VoxFormer-T

parking sidewalk other-grnd building fence vegetation trunk terrain pole traf.-sign

car bicycle motorcycle truck other-veh. person bicyclist motorcyclist road

Figure 5: Qualitative results of our method and VoxFormer (Li et al. 2023) on SemanticKITTI validation set. H2GFormer
demonstrates enhanced capability in distinguishing horizontal variations, such as road, terrain, and sidewalk. Simultaneously,
H2GFormer also excels in completing small objects like traffic signs.

W2G module 1 W2G module 2 Layer IoU mIoU

- DSA - DSA 2 44.34 12.61
WA DSA - DSA 2 44.68 12.75

- DSA SWA DSA 2 44.72 12.95
DSA DSA DSA DSA 2 43.89 12.71
WA DSA WA DSA 2 44.92 13.38

SWA DSA SWA DSA 2 45.14 13.32
WA DSA SWA DSA 2 44.57 13.73
WA DSA SWA DSA 4 44.86 13.58

Table 4: Ablation study for W2G module. DSA, WA, and
SWA respectively indicate deformable self-attention, win-
dow attention, and shifted window attention. Layer indicates
the number of W2G modules.

fectively utilizes features of different resolutions. Further-
more, employing feature maps at 1/4, 1/8, and 1/16 resolu-
tions achieves higher mIoU values.

Ablation on the Horizontal Window-to-Global Attention
Module. The ablation study of the W2G module is pre-
sented in Table 4. We conducted a comparative analysis
of the performance differences between directly using de-
formable self-attention, using window attention, and using
shifted window attention during the process of feature prop-
agation in the horizontal direction. We observe that alter-
nating between the two types of window attention leads to
better performance.

Ablation on the Architecture. The ablation study of the
architecture is presented in Table 5. We observe that both
in H2GFormer-S and H2GFormer-T, the pixel decoder, the
Horizontal Window-to-Global Attention module, and the
Internal-External Position Awareness Loss contribute to the
best results. Furthermore, H2GFormer-T achieved a perfor-
mance improvement of 15.7% (+0.67 IoU, +1.94 mIoU)
over the baseline VoxFormer-S (Li et al. 2023) and a 7%
(+0.54 IoU, +0.94 mIoU) improvement over VoxFormer-T.

Methods IoU (%) mIoU (%)

Ours-S 44.57 13.73
Ours-S w/o pixel decoder 44.63 13.42
Ours-S w/o W2G module 44.34 12.61
Ours-S w/o IoEPALoss 44.74 13.38
VoxFormer-S (Li et al. 2023) 44.02 12.35

Ours-T 44.69 14.29
Ours-T w/o pixel decoder 44.90 14.19
Ours-T w/o W2G module 44.43 13.69
Ours-T w/o IoEPALoss 44.76 13.95
VoxFormer-T (Li et al. 2023) 44.15 13.35

Table 5: Ablation study for architecture.

Qualitative Visualizations
The qualitative comparison of our H2GFormer-T and
VoxFormer-T on the SemanticKITTI validation set is visu-
ally illustrated in Figure 5. As evident from the black rectan-
gular boxes, H2GFormer demonstrates a stronger capability
in distinguishing horizontal variations such as roads, terrain,
and sidewalks. Additionally, H2GFormer excels in complet-
ing small objects like traffic signs.

Conclusion
In this paper, we present H2GFormer, a powerful and ef-
ficient camera-based 3D semantic scene completion frame-
work. To better utilize image features of different resolu-
tions, we proposed a hierarchical multi-scale feature allo-
cation strategy. Additionally, we focused on the variations
of the importance of voxels at different spatial positions in
3D space through Horizontal Window-to-Global Attention
and Internal-External Position Awareness Loss, achieving
improved geometric and semantic performance. Experimen-
tal results show that our method contributes to the under-
standing of semantic information on the horizontal plane
and achieves excellent performance on the SemanticKITTI
dataset.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

5728



Acknowledgments
This study is partially supported by National Natural Sci-
ence Foundation of China (62176016, 72274127), National
Key R&D Program of China (No. 2021YFB2104800),
Guizhou Province Science and Technology Project: Re-
search and Demonstration of Sci. & Tech Big Data Min-
ing Technology Based on Knowledge Graph (supported by
Qiankehe[2021] General 382), and Capital Health Develop-
ment Research Project(2022-2-2013).

References
Behley, J.; Garbade, M.; Milioto, A.; Quenzel, J.; Behnke,
S.; Stachniss, C.; and Gall, J. 2019. Semantickitti: A dataset
for semantic scene understanding of lidar sequences. In Pro-
ceedings of the IEEE/CVF international conference on com-
puter vision, 9297–9307.
Cai, Y.; Chen, X.; Zhang, C.; Lin, K.-Y.; Wang, X.; and
Li, H. 2021. Semantic scene completion via integrating
instances and scene in-the-loop. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 324–333.
Cao, A.-Q.; and de Charette, R. 2022. Monoscene: Monoc-
ular 3d semantic scene completion. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 3991–4001.
Chen, X.; Lin, K.-Y.; Qian, C.; Zeng, G.; and Li, H.
2020. 3d sketch-aware semantic scene completion via semi-
supervised structure prior. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
4193–4202.
Chen, X.; Xing, Y.; and Zeng, G. 2020. Real-time semantic
scene completion via feature aggregation and conditioned
prediction. In 2020 IEEE International Conference on Im-
age Processing (ICIP), 2830–2834. IEEE.
Chen, Y.-T.; Garbade, M.; and Gall, J. 2019. 3d semantic
scene completion from a single depth image using adver-
sarial training. In 2019 IEEE International Conference on
Image Processing (ICIP), 1835–1839. IEEE.
Cheng, B.; Misra, I.; Schwing, A. G.; Kirillov, A.; and Gird-
har, R. 2022. Masked-attention mask transformer for univer-
sal image segmentation. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
1290–1299.
Cheng, B.; Schwing, A.; and Kirillov, A. 2021. Per-pixel
classification is not all you need for semantic segmenta-
tion. Advances in Neural Information Processing Systems,
34: 17864–17875.
Cheng, R.; Agia, C.; Ren, Y.; Li, X.; and Bingbing, L. 2021.
S3cnet: A sparse semantic scene completion network for li-
dar point clouds. In Conference on Robot Learning, 2148–
2161. PMLR.
Dourado, A.; De Campos, T. E.; Kim, H.; and Hilton, A.
2021. EdgeNet: Semantic scene completion from a single
RGB-D image. In 2020 25th international conference on
pattern recognition (ICPR), 503–510. IEEE.

Firman, M.; Mac Aodha, O.; Julier, S.; and Brostow, G. J.
2016. Structured prediction of unobserved voxels from a
single depth image. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 5431–5440.
Garbade, M.; Chen, Y.-T.; Sawatzky, J.; and Gall, J. 2019.
Two stream 3d semantic scene completion. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition Workshops, 0–0.
Geiger, A.; Lenz, P.; and Urtasun, R. 2012. Are we ready
for autonomous driving? the kitti vision benchmark suite.
In 2012 IEEE conference on computer vision and pattern
recognition, 3354–3361. IEEE.
He, K.; Chen, X.; Xie, S.; Li, Y.; Dollár, P.; and Girshick,
R. 2022. Masked autoencoders are scalable vision learners.
In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 16000–16009.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770–778.
Huang, Y.; Zheng, W.; Zhang, Y.; Zhou, J.; and Lu, J. 2023.
Tri-perspective view for vision-based 3d semantic occu-
pancy prediction. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 9223–
9232.
Jiang, H.; Cheng, T.; Gao, N.; Zhang, H.; Liu, W.; and
Wang, X. 2023. Symphonize 3D Semantic Scene Com-
pletion with Contextual Instance Queries. arXiv preprint
arXiv:2306.15670.
Li, J.; Han, K.; Wang, P.; Liu, Y.; and Yuan, X. 2020a.
Anisotropic convolutional networks for 3d semantic scene
completion. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 3351–3359.
Li, J.; Liu, Y.; Gong, D.; Shi, Q.; Yuan, X.; Zhao, C.; and
Reid, I. 2019a. Rgbd based dimensional decomposition
residual network for 3d semantic scene completion. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 7693–7702.
Li, J.; Liu, Y.; Yuan, X.; Zhao, C.; Siegwart, R.; Reid, I.; and
Cadena, C. 2019b. Depth based semantic scene completion
with position importance aware loss. IEEE Robotics and
Automation Letters, 5(1): 219–226.
Li, S.; Zou, C.; Li, Y.; Zhao, X.; and Gao, Y. 2020b.
Attention-based multi-modal fusion network for semantic
scene completion. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, 11402–11409.
Li, Y.; Yu, Z.; Choy, C.; Xiao, C.; Alvarez, J. M.; Fidler,
S.; Feng, C.; and Anandkumar, A. 2023. Voxformer: Sparse
voxel transformer for camera-based 3d semantic scene com-
pletion. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 9087–9098.
Lin, T.-Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.;
and Belongie, S. 2017. Feature pyramid networks for ob-
ject detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition, 2117–2125.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

5729



Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin,
S.; and Guo, B. 2021. Swin transformer: Hierarchical vi-
sion transformer using shifted windows. In Proceedings of
the IEEE/CVF international conference on computer vision,
10012–10022.
Miao, R.; Liu, W.; Chen, M.; Gong, Z.; Xu, W.; Hu, C.; and
Zhou, S. 2023. Occdepth: A depth-aware method for 3d se-
mantic scene completion. arXiv preprint arXiv:2302.13540.
Roldao, L.; de Charette, R.; and Verroust-Blondet, A. 2020.
Lmscnet: Lightweight multiscale 3d semantic completion.
In 2020 International Conference on 3D Vision (3DV), 111–
119. IEEE.
Ronneberger, O.; Fischer, P.; and Brox, T. 2015. U-net:
Convolutional networks for biomedical image segmenta-
tion. In Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Conference,
Munich, Germany, October 5-9, 2015, Proceedings, Part III
18, 234–241. Springer.
Shamsafar, F.; Woerz, S.; Rahim, R.; and Zell, A. 2022. Mo-
bilestereonet: Towards lightweight deep networks for stereo
matching. In Proceedings of the IEEE/CVF Winter Confer-
ence on Applications of Computer Vision, 2417–2426.
Silberman, N.; Hoiem, D.; Kohli, P.; and Fergus, R. 2012.
Indoor segmentation and support inference from rgbd im-
ages. In Computer Vision–ECCV 2012: 12th European Con-
ference on Computer Vision, Florence, Italy, October 7-13,
2012, Proceedings, Part V 12, 746–760. Springer.
Song, S.; Yu, F.; Zeng, A.; Chang, A. X.; Savva, M.; and
Funkhouser, T. 2017. Semantic scene completion from a
single depth image. In Proceedings of the IEEE conference
on computer vision and pattern recognition, 1746–1754.
Wang, J.; Sun, K.; Cheng, T.; Jiang, B.; Deng, C.; Zhao,
Y.; Liu, D.; Mu, Y.; Tan, M.; Wang, X.; et al. 2020. Deep
high-resolution representation learning for visual recogni-
tion. IEEE transactions on pattern analysis and machine
intelligence, 43(10): 3349–3364.
Wang, Y.; Tan, D. J.; Navab, N.; and Tombari, F. 2019.
Forknet: Multi-branch volumetric semantic completion from
a single depth image. In Proceedings of the IEEE/CVF in-
ternational conference on computer vision, 8608–8617.
Wei, Y.; Zhao, L.; Zheng, W.; Zhu, Z.; Zhou, J.; and Lu, J.
2023. Surroundocc: Multi-camera 3d occupancy prediction
for autonomous driving. arXiv preprint arXiv:2303.09551.
Xia, Z.; Liu, Y.; Li, X.; Zhu, X.; Ma, Y.; Li, Y.; Hou, Y.;
and Qiao, Y. 2023. SCPNet: Semantic Scene Completion on
Point Cloud. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 17642–17651.
Yan, X.; Gao, J.; Li, J.; Zhang, R.; Li, Z.; Huang, R.; and
Cui, S. 2021. Sparse single sweep lidar point cloud segmen-
tation via learning contextual shape priors from scene com-
pletion. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, 3101–3109.
Yang, X.; Zou, H.; Kong, X.; Huang, T.; Liu, Y.; Li, W.;
Wen, F.; and Zhang, H. 2021. Semantic segmentation-
assisted scene completion for lidar point clouds. In 2021
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 3555–3562. IEEE.

Zhang, Y.; Zhu, Z.; and Du, D. 2023. OccFormer: Dual-
path Transformer for Vision-based 3D Semantic Occupancy
Prediction. arXiv preprint arXiv:2304.05316.
Zhu, X.; Su, W.; Lu, L.; Li, B.; Wang, X.; and Dai, J. 2020.
Deformable detr: Deformable transformers for end-to-end
object detection. arXiv preprint arXiv:2010.04159.
Zou, H.; Yang, X.; Huang, T.; Zhang, C.; Liu, Y.; Li, W.;
Wen, F.; and Zhang, H. 2021. Up-to-Down Network: Fus-
ing Multi-Scale Context for 3D Semantic Scene Comple-
tion. In 2021 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), 16–23. IEEE.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

5730


