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Abstract

Recent text-to-image (T2I) diffusion models show outstanding
performance in generating high-quality images conditioned on
textual prompts. However, they fail to semantically align the
generated images with the prompts due to their limited com-
positional capabilities, leading to attribute leakage, entity leak-
age, and missing entities. In this paper, we propose a novel at-
tention mask control strategy based on predicted object boxes
to address these issues. In particular, we first train a BoxNet to
predict a box for each entity that possesses the attribute speci-
fied in the prompt. Then, depending on the predicted boxes, a
unique mask control is applied to the cross- and self-attention
maps. Our approach produces a more semantically accurate
synthesis by constraining the attention regions of each token
in the prompt to the image. In addition, the proposed method
is straightforward and effective and can be readily integrated
into existing cross-attention-based T2I generators. We com-
pare our approach to competing methods and demonstrate
that it can faithfully convey the semantics of the original text
to the generated content and achieve high availability as a
ready-to-use plugin. Please refer to https://github.com/OPPO-
Mente-Lab/attention-mask-control.

Introduction
Text-to-image (T2I) synthesis aims to generate realistic and
diverse images conditioned on text prompts. Recently, dif-
fusion models have achieved state-of-the-art results in this
area (Rombach et al. 2022; Croitoru et al. 2023; Yang et al.
2023). Compared to previous generative models, such as gen-
erative adversarial networks (GANs) (Goodfellow et al. 2020)
and variational autoencoder (VAE) (Doersch 2021), diffusion
models exhibit superior performance with respect to image
generation quality and diversity. They also enable better con-
tent control based on the input conditions such as grounding
boxes, edge maps, or reference images, while avoiding the
problems of training instability and mode collapse (Zhang,
Rao, and Agrawala 2023; Li et al. 2023).

Despite their success, diffusion-model-based synthesis
methods struggle to accurately interpret compositional text
descriptions, especially those containing multiple objects or
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“A black cat and a yellow dog”

attribute leakage entity leakage missing entities OURS

Figure 1: Example results from Stable Diffusion (first three
sets of images) and Our method (last set). Our method aims
to address three typical generation defects (attribute leakage,
entity leakage, and missing entities) and generate images that
are more semantically faithful to the image captions.

attributes (Feng et al. 2023; Han et al. 2023; Liu et al. 2023b;
Chefer et al. 2023; Jiménez 2023). The generation defects of
diffusion models such as Stable Diffusion (SD) (Rombach
et al. 2022)fall into three categories: attribute leakage, entity
leakage, and missing entities, as shown in Fig.1. Considering
the prompt “a black cat and a yellow dog”, attribute leakage
refers to the phenomenon where the attribute of one entity is
observed in another (e.g., a black dog). Entity leakage occurs
when one entity overlays another (e.g., two cats, one black
and one yellow). Missing entities indicate that the model fails
to generate one or more of the subjects mentioned in the input
prompt (e.g., only one black cat).

We attribute the infidelity issues in T2I synthesis to inaccu-
rate attention regions, i.e., the cross-attention regions between
text tokens and image patches, as well as the self-attention
regions within image patches themselves. Each entity and
its attribute should, ideally, correspond to a coherent image
region in order to generate multiple entities in a single image
correctly. Existing T2I diffusion models, such as SD, lack
explicit constraints on the attention regions and boundaries,
which may lead to overlapping attention activations. To ad-
dress these issues, we attempt to use parsed entities with
attributes and their predicted object boxes to provide explicit
attention boundary constraints for compositional generations.
Specifically, predicted object boxes define the interest areas
on images, while entities with attributes depict the interest
text spans where each text token shares a common cross-
attention region. By incorporating these boundary constraints,
we achieve high-fidelity T2I synthesis while addressing the
aforementioned problems.
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In this paper, we propose a novel compositional T2I ap-
proach based on SD (Rombach et al. 2022) with explicit
control of cross- and self-attention maps to ensure that the
attention interest areas are located within the predicted ob-
ject boxes, as shown in Fig.2. Specifically, we first train a
BoxNet applied to the forward process of SD on the COCO
dataset (Lin et al. 2014) to predict object boxes for entities
with attributes parsed by a constituency parser (Honnibal
et al. 2020). We then enforce unique attention mask control
over the cross- and self-attention maps based on the predicted
boxes (image regions) and entities with attributes (text spans).
The objective of BoxNet is to provide entity-bounding boxes
for subsequent attention mask control. During the diffusion
model’s inference process, random sampling is performed at
each step, so the box positions of each entity are constantly
changing (as shown in Fig.3). Consequently, the BoxNet
predicts the entity box positions at each step based on the
diffusion model’s intermediate features to avoid excessive
conflict between the current sampling result and the mask
control target. Our approach produces a more semantically
accurate synthesis by constraining the attention region of
each text token in the image. Furthermore, using the trained
BoxNet, our method can guide the diffusion inference pro-
cess on the fly without fine-tuning SD. We conduct compre-
hensive experiments on the publicly available COCO and
open-domain datasets, and the results show that our method
generates images that are more closely aligned with the given
descriptions, thereby improving fidelity and faithfulness. The
main contributions of our work can be concluded as follows:

• We propose BoxNet, an object box prediction module
capable of estimating object locations at any timestep
during the forward diffusion process. The predicted object
boxes closely match the locations of the entities generated
by the original SD.

• We develop an effective attention mask control strategy
based on the proposed BoxNet, which constrains the at-
tention areas to lie within the predicted boxes.

• The trained BoxNet and attention mask control of our
method can be easily incorporated into existing diffusion-
based generators as a ready-to-use plugin. We demonstrate
our model’s capability by integrating it into the original
SD and two variants: Attend-and-Excite (Chefer et al.
2023) and GLIGEN (Li et al. 2023).

Related Work
Text-to-Image Diffusion Models. Diffusion models are be-
coming increasingly popular in the T2I synthesis area due to
their exceptional performance in generating high-quality im-
ages (Ramesh et al. 2021; Esser, Rombach, and Ommer 2021;
Ramesh et al. 2022; Balaji et al. 2022; Saharia et al. 2022).
Generally, these models take a noisy image as input and itera-
tively denoise it back to a clean one while semantically align-
ing the generated content with a text prompt. SD (Rombach
et al. 2022) uses an autoencoder to create a lower-dimensional
space and trains a U-Net model (Ronneberger, Fischer, and
Brox 2015) based on large-scale image-text datasets in this
latent space, balancing algorithm efficiency and image qual-
ity. However, diffusion models have limited expressiveness,

resulting in generated content that cannot fully convey the
semantics of the original text. This issue is exacerbated when
dealing with complex scene descriptions or multi-object gen-
eration (Chefer et al. 2023; Feng et al. 2023; Ma et al. 2023).

Compositional Generation. Recent studies have explored
various approaches to enhance the compositional generation
capacity of T2I diffusion models without relying on addi-
tional bounding box input. StructureDiffusion (Feng et al.
2023) uses linguistic structures to help guide image-text
cross-attention. However, the results it produces frequently
fall short of addressing semantic issues at the sample level.
Composable Diffusion (Liu et al. 2022) breaks down complex
text descriptions into multiple easily-generated snippets. A
unified image is generated by composing the output of these
snippets. Yet, this approach is limited to conjunction and
negation operators. AAE (Chefer et al. 2023) guides a pre-
trained diffusion model to generate all subjects mentioned
in the text prompt by strengthening their activations on the
fly. Although AAE can address the issue of missing enti-
ties, it still struggles with attribute leakage and may produce
less realistic images when presented with an atypical scene
description. Unlike previous methods, our work proposes a
novel two-phase method of BoxNet and Attention Mask Con-
trol, gradually controlling the generation of multiple entities
during the diffusion model sampling process.

Layout to Image Generation. Through the use of artificial
input conditions such as bounding boxes, shape maps, or spa-
tial layouts, some existing methods can generate controllable
images. For instance, GLIGEN (Li et al. 2023) adds train-
able gated self-attention layers to integrate additional inputs,
such as bounding boxes, while freezing the original model
weights. Chen et al. (Chen, Laina, and Vedaldi 2023) propose
a training-free layout guidance technique for guiding the spa-
tial layout of generated images based on bounding boxes.
Shape-Guided Diffusion (Huk Park et al. 2022) leverages
an inside-outside attention mechanism during the generation
process to apply the shape constraint to the attention maps
based on a shape map. However, these works require prior
layout information to be provided as input, which is fixed
during the generation process. In order to directly control
the generation results of diffusion models, our work aims to
provide a pure text-to-image generation method that does not
require users to specify bounding boxes or layouts. Instead,
BoxNet estimates such information at each sampling step.

Layout-based Generation. Some work can directly gen-
erate the layout based on user input text information and
further generate images based on layouts. Wu et al. (Wu
et al. 2023) address the infidelity issues by imposing spatial-
temporal attention control based on the pixel regions of each
object predicted by a LayoutTransformer (Yang et al. 2021).
However, their algorithm is time-consuming, with each gen-
eration taking around 10 minutes. Also, Lian et al. (Lian et al.
2023) propose to equip diffusion models with off-the-shelf
pretrained large language models (LLMs) to enhance their
prompt reasoning capabilities. But this approach is highly de-
pendent on LLMs, which are hard to control and prohibitively
expensive to deploy.

Current layout-based approaches typically split image gen-
eration into two completely disrelated stages: prompt-to-
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Figure 2: Overview of our BoxNet-based T2I generation
pipeline. BoxNet consists of a text encoder and a U-Net
followed by an encoder-decoder transformer, as shown in
black dashed box. BoxNet takes as input a text prompt, a
noisy image, and a timestep and outputs boxes that specify
objects’ locations. The orange dashed box shows the attention
mask control strategy enforced over the cross-attention maps
conditioned on the boxes (image regions) and phrases (text
spans) as well as the self-attention maps.

layout and layout-to-image, while our method optimizes the
diffusion model itself by performing step-wise box prediction
and generation control at each sampling step to maintain the
original capability of the model while improving the entity
properties.

Method
Algorithm 1 shows the overall pipeline of our method, which
contains two main parts: BoxNet that predicts a box for each
entity with attributes, and attention mask control that ensures
the generation of accurate entities and attributes. A single
denoising step of our model is illustrated in Fig.2, in which
we use BoxNet to predict the bounding box for each entity
parsed from the input text and obtain unique masks. We then
perform explicit unique mask control over cross- and self-
attention maps on each attention layer of the SD (Rombach
et al. 2022), which enables to generate entities with their
attributes inside the unique mask areas.

The U-Net (Ronneberger, Fischer, and Brox 2015) de-
noiser contains both cross- and self-attention layers. Each
cross-attention layer generates a spatial attention map that
indicates the image region to which each textual token is pay-
ing attention. Similarly, each self-attention layer produces a
spatial attention map that represents the interdependence of
each patch and all patches. We assume the aforementioned
infidelity defects are caused by the inaccurate cross- and
self-attention regions in the U-Net. To alleviate the issues,
we enforce an attention mask control strategy over attention
maps based on the BoxNet during the diffusion backward pro-
cess, as shown in Fig.2. In the original SD, attention regions
for the entities “bear” and “bird” overlap, with the attention
of “bird” being significantly weaker than that of “bear”, lead-
ing to entity leakage (i.e., generation of two bears). However,
after using our method, the prompt “a red teddy bear is sitting
next to a black bird” is generated correctly.

Algorithm 1: Denoising Process of Our Method
Input: A text prompt p, a trained BoxNet B, sets of each
parsed entity’s token indices {s1, s2, ..., sN}, a trained diffu-
sion model SD
Output: Denoised latent z0.

1: for t← T, T − 1, ..., 1 do
2: boxes← B(SD, zt, p, t)
3: for (cx, cy, h, w) in boxes do
4: Convert box to zero-one masks mn

5: Gn ← Gaussian distribution 2D((cx, cy), h, w)

6: M ← argmax(Gn)
7: m′

n ← (M = n)⊙mn, n = 1, 2..., N ▷ unique
masks

8: SD′ ← SD
9: for each cross attention layer in SD′ do ▷ cross

attention mask control
10: Obtain Cross Attention Map C
11: Ci ← Ci ⊙m′

n ∀ i ∈ sn, n = 1, 2..., N

12: for each self attention layer in SD′ do ▷ self
attention mask control

13: Obtain Self Attention Map S
14: Si ← Si ⊙ flatten(m′

n) ∀ i ∈
{i|flatten(m′

n)i = 1}, n = 1, 2..., N

15: zt−1 ← SD′(zt, p, t)

BoxNet Architecture
Our BoxNet consists of a U-Net feature extractor, a text
encoder, and an encoder-decoder transformer (Carion et al.
2020) as shown in Fig.2. When training the BoxNet, the U-
Net and the text encoder are initialized and frozen from a
pretrained SD checkpoint. At each timestep t of the SD de-
noising process, the U-Net takes as input a noisy image zt, a
text prompt p, and a timestep t, and then we extract the output
feature maps from each down- and up-sampling layer of the
U-Net. All the extracted feature maps are interpolated to the
same size and concatenated together. A linear transformation
is then applied to acquire a feature tensor f that represents
the current denoised latent zt.

After that, we use a standard encoder-decoder transformer
to generate entity boxes. Note that the encoder expects a
sequence as input; hence, we flatten f to fit the size, refer
to (Carion et al. 2020). The decoder decodes boxes with
input entity queries. To acquire entity queries, the text prompt
input by a user is first parsed into N entities with attributes
manually or by an existing text parser (Honnibal et al. 2020).
Then, the entity phrases are encoded into embeddings by
the text encoder. Entity embeddings are pad with a trainable
placeholder tensor into a max length of M , and only the first
N of the output sequences are used to calculate entity boxes
by a weighted shared linear projection layer.

As to the training phase, we train the BoxNet in the for-
ward process of SD on the COCO dataset. It’s worth noting
that the primary goal of our BoxNet is to assign each entity a
reasonable bounding box during generation steps, which can
improve the attention map control to modify entity genera-
tion throughout the whole process. We don’t concern much
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Figure 3: BoxNet predicted box results and corresponding
cross-attention maps are presented. We can generate better
multi-entity images by controlling the attention map.

about achieving high object recognition accuracy, which dif-
fers from DETR. Since one input image may have multiple
instance-level ground-truth boxes in the same category, it
is necessary to define a proper loss function to constrain
our predicted boxes with ground-truth. Inspired by (Carion
et al. 2020), we first produce an optimal bipartite matching
between predicted and ground-truth boxes, and then we opti-
mize entity box losses. Let us denote by b the ground-truth
set of N objects, and b′ the set of top N predictions. To find
a bipartite matching between these two sets, we search for a
permutation of N elements σ ∈ PN with the lowest cost:

σ̂ = argmin
σ∈PN

N∑
i

Lmatch(bi, b
′
σ(i)), (1)

where Lmatch(bi, b
′
σ(i)) is a pair-wise matching cost. This op-

timal assignment is computed efficiently with the Hungarian
algorithm, following prior works (Carion et al. 2020; Stewart,
Andriluka, and Ng 2016). Different from (Carion et al. 2020),
since our BoxNet aims to assign a reasonable bounding box
to each object, a precise bounding box with a mismatched cat-
egory is meaningless. Therefore, we prioritize classification
accuracy over location accuracy by modifying the matching
cost to include an extremely high penalty for bounding boxes
with class mismatches:

Lmatch(bi, b
′
σ(i)) = λ · 1{ci ̸= cσ(i)}+ Lbox(bi, b

′
σ(i)) (2)

where ci is the target class label, cσ(i) the predicted class
label, and Lbox(·, ·) the entity box loss described below. We
assign λ an extremely high value to avoid class mismatches.
The next step is to compute the loss function of BoxNet. We
use a linear combination of the L1 loss and the generalized
IoU loss Lbox(·, ·) from (Rezatofighi et al. 2019).

Lbox(bi, b
′
σ̂(i)) = λiouLiou(bi, b

′
σ̂(i)) + λL1

∣∣∣bi − b′σ̂(i)

∣∣∣ (3)

where λiou, λL1 are hyperparameters.
Though the BoxNet is trained on the COCO dataset with

finite entity classification, we observe that it can also general-
ize well to unseen entities beyond the COCO dataset (NON-
COCO dataset), which implies that the BoxNet, trained on the
COCO dataset, establishes a mapping relationship between
entity name embeddings and the SD model’s intermediate
generation results. In addition, as shown in Fig.3, the pre-
diction results of the BoxNet match the location of entities

with attributes generated by the original diffusion model even
when infidelity problems occur. This provides us with the pos-
sibility to control the interest area of each entity on attention
maps through predicted boxes.

Attention Mask Control
Before performing attention mask control, the predicted
boxes need to be converted into zero-one masks. However,
for those entity boxes with severe overlap, it is hard to limit
each entity to its own area of interest, which may degrade the
multi-entity controllability. So we introduce a unique mask
algorithm that generates unique zero-one masks for attention
map control. This ensures that each entity has its own area of
interest and does not interfere with each other.

Unique Mask Algorithm. Assume we have predicted en-
tity boxes, and they are converted to zero-one masks mn,
n = 1, 2, ..., N . For each entity box (cx, cy, w, h), we em-
ploy an independent 2-dimensional Gaussian distribution
probability function Gn with two variances ν1 = w/2 and
ν2 = h/2, where cx, cy means the center coordinate of the
box and w, h means the width and height of the box.

Gn(x, y) =
1√

2πν1ν2
exp

[
−1

2

(
(x− cx)

2

ν1
+

(y − cy)
2

ν2

)]
(4)

x = 1, 2, ...,W ; y = 1, 2, ...,H where W,H represent the
spatial width and height of attention maps. Then we can get
the max index map M by

M(x, y) = argmax
i=1,2,...,N

(Gi(x, y)) (5)

The unique attention masks can be further computed with:

m′
n(x, y) = 1(M(x, y) = n)⊙mn(x, y), n = 1, 2..., N

(6)
Assume we have unique attention masks m′

n with shape
(H,W ) from Eq. 6, where n = 1, 2..., N indicates the unique
mask of the n-th entity.

Cross attention mask control. For cross attention, we get
the attention map C by:

C = softmax

(
QKT

√
d

)
(7)

In cross-attention, Q comes from the flattened feature map of
the model (the Unet of Stable Diffusion); assume the shape is
(L,C), where L = H ∗W . While K has the shape (K,C),
which represents the embedding of the input prompt p, K
here is the token number. 1√

d
is the scaling factor. The self-

attention map C has shape (L,K).
For each n-th entity, its token indices in the tokenization

of p is sn. We can aplly cross attention map control on the
cross attention map C by:

C[:, i] = C[:, i]⊙ flatten(m′
n) ∀ i ∈ sn (8)

Self attention mask control. As the Self Attention Mask
Control method. First of all, we get the self attention map S
as the same equation in eq. 7. Differently, in self-attention,
both Q and K are from the flattened feature map with shape
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a blue horse and a purple cakea blue car and an orange bench

StructureDiffusion

Stable Diffusion

Attend-and-Excite

Ours w/o Self-Attn Ctrl

Ours

A car and a large truck on a city street A playful kitten chasing a butterfly in a 
wildflower meadow

Figure 4: Qualitative comparison of self-built prompts in fixed format (first three columns) and complex prompts in COCO-style
(last two columns) with more than two entities and complex attributes. We display four images generated by each of the five
competing methods for each prompt, with fixed random seeds used across all approaches. The entities with attributes are
highlighted in blue.

(L,C). And the attention map S has shape (L∗L). For each n-
th entity, similar to cross-attention control, we need to choose
indices of attention map to be masked. Since K represents
the feature map itself, we use the unique mask m′

n to seek
indices to be masked instead of sn in cross-attention mask
control. As Fig.6 in Appendix A.1 shows, the self-attention
map can be controlled by:

S[:, i] = S[:, i]⊙flatten(m′
n) ∀ i ∈ {i|flatten(m′

n)i = 1}
(9)

Plugin Method
Once the BoxNet is trained, our method can act as a plugin
to guide the inference process of diffusion-based models
on the fly, improving the quality of multi-entity generation
with attributes. Our BoxNet can provide input conditions for
some layout-based generation models, reducing user input
and optimizing the efficiency of large-scale data generation.
Furthermore, the attention mask control based on predicted
boxes can also be directly applied to other T2I generators to
address the three infidelity issues. We introduce two plugin
solutions using existing models as examples and compare
their results. For more details, refer to Table 2.

AAE (Chefer et al. 2023) guides the latent at each de-
noising timestep and encourages the model to attend to all
subject tokens and strengthen their activations. As a denois-
ing step-level control method, our method can be combined
with AAE directly by adding AAE gradient control in our
generation algorithm process (both cross- and seld-attention
control based on BoxNet in Algorithm 1).

GLIGEN (Li et al. 2023) achieves T2I generation with
caption and bounding box condition inputs. Based on GLI-

GEN, we apply two-stage generation. In the first stage, given
the prompt input, we use BoxNet to predict the box for each
entity mentioned in the prompt. In the second stage, the pre-
dicted entity boxes and captions are fed into the GLIGEN
model, and then attention mask control is adopted during
generation to obtain layout-based images.

Experiments
Training and Evaluation Setup
All the training details and hyper-parameter determination
are presented in Appendix A.2. For evaluation, we construct
a new benchmark dataset to evaluate all methods with respect
to semantic infidelity issues in T2I synthesis. To test the multi-
object attribute binding capability of the T2I model, the input
prompts should preferably consist of two or more objects
with corresponding attributes (e.g., color). We come up with
one unified template for text prompts: “a [colorA][entityA]
and a [colorB][entityB]”, where the words in square brackets
will be replaced to construct the actual prompts. Note that
[entity#] can be replaced by an animal or an object word.
We design two sets of optional vocabulary: the COCO cat-
egory and the NON-COCO category (open domain). Every
vocabulary contains 8 animals, 8 object items, and 11 col-
ors, detailed in Appendix A.3. For color-entity pairs in one
prompt, we select colors randomly without repetition. For
each prompt, we generate 60 images using the same 60 ran-
dom seeds applied to all methods. For ease of evaluation, our
prompts are constructed of color-entity pairs and the conjunc-
tion “and”. Yet, our method is not limited to such patterns
and can be applied to a variety of prompts with any type of
subject, attribute, or conjunction.
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Stable Diffusion OURS

A woman in white shirt eating a red cake

A pink scooter with a black seat next to a blue car

A painting of a cat and a dog in the style of Van Gogh

a squirrel and a bird and a yellow candle

Figure 5: Comparison with complex prompts of more than
two entities or multiple attributes. For each prompt, we apply
the same set of random seeds on all methods. The entity-
attribute pairs are highlighted in blue.

Qualitative Comparisons

In Fig.4, we present the generated results using fixed format
self-built prompts as well as complex ones with more than
two entities or intricate attributes (e.g., object actions, spatial
relationships), which are taken from the AAE paper (Chefer
et al. 2023) and the test split of COCO datset (Lin et al.
2014). For each prompt, we show three images generated
by the SD, StructureDiffusion, AAE, Ours and Ours w/o
Self-Attn Ctrl, respectively. Ours denotes the method with
both cross- and self-attention mask control. As we can see,
StructureDiffusion tends to generate images with missing
entities and attribute leakage. For example, given “a blue
car and an orange bench”, its generated images may only
contain an orange bench or an orange car that mixes the
bench’s color with the car’s entity. As to AAE, its gener-
ated images still suffer from infidelity problems. Given “a
blue horse and a purple cake”, the AAE correctly generates
the two mentioned entities in some cases but fails to bind
each entity’s color correctly (e.g., generating a purple horse
or a white cake). In contrast, our method generates images
that faithfully convey the semantics of the original prompt,
showing robust attribute binding capability. This is because
we explicitly enforce cross- and self-attention mask control
over the attention areas to effectively alleviate attribute and
entity leakage. For instance, the generated images of Ours
correctly correspond with the prompt “a blue car and an or-
ange bench”, where the colors of the car and bench do not
leak or mix. Further more, Fig.5 and the last two columns of
Fig.4 show more comparisons with more than two entities
and complex backgrounds, demonstrating its effectiveness
when dealing with complicated prompts. Additionally, we
provide more generation results based on simple or complex
prompt descriptions in Appendix C.

Quantitative Analysis
Firstly, we quantify the performance of every competing ap-
proach through Average CLIP image-text similarities and
Average CLIP text-text similarities from AAE (Chefer et al.
2023). But since global CLIP image-text scores are insensi-
tive to entity missing and attribute leaking issues, we further
propose to use Grounding DINO score (Liu et al. 2023a) as
a more fine-grained evaluation metric which focus on local
object level. However, even Grounding DINO score takes
into account issues of entity missing and entity leakage, it’s
still insensitive to entity attributes so that it does not reflect
whether attributes such as color are generated correctly or
not. To measure the overall generation performance of both
entities and attributes, taking full account of the three infi-
delity issues, we futher conduct a user study. Additionally,
we use FID (Heusel et al. 2017) to assess the overall quality
of generated images on 10k samples of the COCO dataset
by calculating the distance between feature vectors of gener-
ated and real images. All detailed analysis and descriptions
of the evaluation metrics (both objective and subjective) are
presented and discussed in Appendix B.

DINO Similarity Scores. Grounding DINO is an open-set
object detection model, which accepts an image-text pair
and predicts object boxes. Each predicted object box has
similarity score ranging from 0 to 1 across all input words.
We use the DINO score for the most neglected entity as the
quantitative measure of multi-entity generation performance.
To this end, we compute the DINO score between every
entities exist in the original prompt of each generated image.
Specifically, given the prompt “a [colorA] [EntityA] and a
[colorB] [EntityB]”, we extract the names of the entities (e.g.,
“a [EntityA]” and “a [EntityB]”), and feed them with the
generated image into the DINO model to obtain boxes and
corresponding similarity scores. If one entity has multiple
detected boxes, we adopt the highest similarity score across
all boxes as its score. Conversely, if one entity has no detected
boxes, we assign a score of 0 to it. Given all the entity scores
(two in our case) for each image, we are more concerned with
the smallest one as this would correspond to the issues of
entity missing and entity leakage. The average of the smallest
DINO scores across all seeds and prompts is taken as the
final metric of each method, called Minimum Object Score.

User Study. We also perform a user study to analyze the
fidelity of the generated images. 25 prompts on COCO or
NON-COCO datasets are randomly sampled to generate 10
images, while each method shares the same set of random
seeds. For the results of each prompt “a [colorA] [EntityA]
and a [colorB] [EntityB]”, we ask the respondents to answer
two questions: (1) “is there a [colorA] [EntityA] in this pic-
ture?” and (2) “is there a [colorB] [EntityB] in this picture?”.
An answer of “YES” indicates both the color and entity can
match the given text prompt. Only if the answer to both ques-
tions is yes, can this generated image be considered correct.
We obtain Subjective Fidelity Score by counting the correct
proportion of all 25×10 images on COCO or NON-COCO
datasets.

Comparison to Prior Work. The quantitative results on
the COCO and NON-COCO datasets are summarized in
Table 1. We compare our method with three baselines (STA-
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No. Model Avg CLIP image-text Avg CLIP Min. Object Score Subj. Fidelity Score FID
Full Prompt Min. Object text-text COCO NON-COCO COCO NON-COCO COCO

[1] STABLE 0.337 0.241 0.778±0.092 0.397±0.002 0.400±0.005 0.302±0.076 0.370±0.100 17.79
StructureDiffusion 0.373±0.004 0.372±0.004 0.277±0.057 0.302±0.082 -

AAE 0.338 0.244 0.770±0.097 0.444±0.003 0.434±0.002 0.355±0.104 0.350±0.097 -

[2]
[1]+BoxNet

&Cross Attn Mask Ctrl - - - 0.401±0.003 0.431±0.004 - - -

[3] [2]+Uniq Mask 0.334 0.241 0.767±0.099 0.446±0.004 0.478±0.006 0.414±0.109 0.398±0.100 18.11
[4] [3]+Self Attn Ctrl(OURS) 0.343 0.252 0.786±0.101 0.603±0.005 0.599±0.004 0.433±0.140 0.431±0.121 17.47

Table 1: The quantitative evaluation results of five metrics for the six methods, including three baselines and three ablated variants
of our method. Avg CLIP image-text/text-text and Min. Object Score measure multi-entity generation quality based on CLIP and
the DINO score, respectively. Subj. Fidelity Score evaluates the correctness of entity and attribute generation through a user
study. FID assesses the quality of generated images by measuring the feature distance between generated and real images.

State COCO
STABLE AAE GLIGEN

BASE 0.397±0.002 0.444±0.003 0.505±0.002
BoxNet - - 0.579±0.001

w/ Cross-Attn Ctrl 0.446±0.004 0.483±0.003 0.620±0.001
w/ Cross&Self-Attn Ctrl 0.603±0.005 0.626±0.006 0.672±0.005

NON-COCO
BASE 0.400±0.005 0.434±0.002 0.458±0.006

BoxNet - - 0.559±0.002
w/ Cross-Attn Ctrl 0.478±0.006 0.496±0.002 0.633±0.001

w/ Cross&Self-Attn Ctrl 0.599±0.004 0.592±0.003 0.684±0.002

Table 2: Comparison of the Min. Object Scores for the pro-
posed plugin solutions, split by evaluation datasets. The first
column indicates different states of methods. We show the
performance of the three methods after being plugged with
our proposed techniques, respectively.

BLE, AAE, Structure) in terms of five metrics. We have
replicated the test dataset and metrics used in (Chefer et al.
2023), which are recorded in Table 1 as the Average CLIP
image-text similarities and Average CLIP text-text similari-
ties. Further, the Min. Object Score, Subj. Fidelity Score, and
FID distance are calculated for better comparison. As shown,
our method consistently outperforms all competing methods,
with significant improvements in the fidelity of multi-entity
generation and the correctness of attribute bindings between
colors and entities. StructureDiffusion obtains scores simi-
lar to those of SD (even slightly lower), which is consistent
with (Chefer et al. 2023). And AAE gains scores slightly
higher than SD. Although trained on the COCO dataset, our
method still performs well in the NON-COCO (open-domain)
dataset, exhibiting good generalization ability. Additionally,
our method achieves a slightly better FID than SD, indicating
that the generation quality does not decrease after applying
our attention mask control strategy.

Ablation Study. For the ablation study, we start with the
original SD model and gradually add constitutive elements
until we reach the complete OURS method. Whereas [1]
represents the SD model, [2] applies BoxNet and non-uniq
cross-attention mask control and can obtain experimental
results that are comparable to (slightly better than) those
of [1]. [3] applies uniq mask control based on [2], and can
achieve similar metric results to AAE. By finally adding the
self-attention control, we have the OURS method, marked as

[4].Table 1 shows the contribution of different components
of our model to the compositional T2I synthesis.

Plugin Experiments
In this section, we verify the effectiveness of our proposed
two plugin solutions by comparing the results of existing
models (AAE and GLIGEN) with and without our method.
The experiment results are shown in Table 2. The first column
indicates different states of methods. The BASE indicates
the original state of each method as described in their papers.
Note that in this state, we randomly generate object boxes
as additional input conditions for GLIGEN. In the BoxNet
state, the predicted boxes of BoxNet are used to replace
the input random boxes for GLIGEN, while the remaining
two states represent the results after imposing our attention
mask control strategy on the three methods. As we can see,
the generation quality of AAE and GLIGEN is significantly
improved after being plugged into our strategy. Both the
cross- and self-attention control can alleviate the infidelity
issues, while the self-attention control contributes more to
the improvement of Min. Object Score. However, in the open-
domain NON-COCO evaluation, AAE w/ Cross- and Self-Attn
Ctrl unexpectedly perform worse than its counterpart in SD.
We suspect that this is because the predicted boxes of the
BoxNet on the NON-COCO dataset do not overlap with the
region of interest in AAE, resulting in a conflict between
these two methods. More qualitative results can be found in
Appendix C.

Conclusion
In this paper, we present a novel attention mask control strat-
egy based on the proposed BoxNet. We first train a BoxNet
to predict object boxes when given the noisy image, timestep
and text prompt as input. We then enforce unique mask con-
trol over the cross- and self-attention maps based on the
predicted boxes, through which we alleviate three common
issues in the current Stable Diffusion: attribute leakage, entity
leakage, and missing entities. During the whole training pro-
cess of BoxNet, the parameters of diffusion model are frozen.
Our method guides the diffusion inference process on the fly,
which means it can be easily incorporated into other existing
diffusion-based generators when given a trained BoxNet.
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