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Abstract

In recent years, with the popularity of social media appli-
cations, massive digital images are available online, which
brings great convenience to image recreation. However, the
use of unauthorized image materials in multi-source compos-
ite images is still inadequately regulated, which may cause
significant loss and discouragement to the copyright owners
of the source image materials. Ideally, deep watermarking
techniques could provide a solution for protecting these copy-
rights based on their encoder-noise-decoder training strategy.
Yet existing image watermarking schemes, which are mostly
designed for single images, cannot well address the copy-
right protection requirements in this scenario, since the multi-
source image composing process commonly includes distor-
tions that are not well investigated in previous methods, e.g.,
the extreme downsizing.
To meet such demands, we propose MuST, a multi-source
tracing robust watermarking scheme, whose architecture in-
cludes a multi-source image detector and minimum external
rectangle operation for multiple watermark resynchronization
and extraction. Furthermore, we constructed an image mate-
rial dataset covering common image categories and designed
the simulation model of the multi-source image composing
process as the noise layer. Experiments demonstrate the ex-
cellent performance of MuST in tracing sources of image ma-
terials from the composite images compared with SOTA wa-
termarking methods, which could maintain the extraction ac-
curacy above 98% to trace the sources of at least 3 different
image materials while keeping the average PSNR of water-
marked image materials higher than 42.51 dB. We released
our code on https://github.com/MrCrims/MuST.

Introduction
With the rapid growth of entertainment and business de-
mand, the creation of composite images using different ma-
terials is common in all walks of life. Nonetheless, the incor-
poration of unauthorized image materials in composite im-
ages will infringe the copyright of the original authors and
even lead to commercial disputes. Therefore, how to trace
the copyright of image materials for image libraries and in-
dividual creators from composite images has become an ur-
gent problem in need of resolution.
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Figure 1: The schematic diagram of the multi-source tracing
process. The image watermarking scheme needs to be robust
to the multi-source image composing process to verify the
multi-source copyright ownership.

Digital watermarking is a commonly used technology to
protect the copyright of image owners. The existing water-
marking schemes (Zhu et al. 2018; Jia, Fang, and Zhang
2021; Ma et al. 2022) commonly focus on the robustness
of an entire image under a series of classical distortions. Yet
the composite image is commonly generated by multiple im-
age materials with complex image editing operations, which
poses challenges to the existing watermarking schemes.

As shown in Figure 1, the unauthorized user commonly
takes the primary component of different image materials
to create a composite image with a specific theme. These
unauthorized image materials commonly come from multi-
ple sources, including a vast number of personal images on
the internet (Kroll 2023) and various image libraries that are
being resold without authorization (Li 2019). To make the
composite image more natural, attackers will employ com-
plex image editing operations, which are summarized as two
main distortions: image pasting distortions and image fusion
distortions. Specifically, image pasting distortions (IPD) oc-
cur when unauthorized users paste image materials onto
background images, typically including irregular cropping,
resizing, and positional changes. The image fusion distor-
tions (IFD) commonly include complex image processing
operations, such as feathering and contrast transformation,
to better fuse the image material and the background im-
age. For the existing watermarking schemes, the image past-
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ing distortions are the main culprit of performance degrada-
tion, because irregular cropping, extreme resizing, and po-
sitional change operation make it difficult to recover the
watermarked image materials to the desirable input of the
decoder from the composite image. Therefore, this diffi-
culty leads to destroying the synchronization established in
the training process between the encoder and decoder and
causes the failure of multi-source image tracing.

In the context mentioned above, other methods for multi-
source tracing, such as image retrieval and image matching,
face a significant challenge. The images in these scenarios
undergo substantial distortion, making it difficult to achieve
precise results. Even with slight distortions, there may be
more accurate matches; however, due to numerous copies
of images spread across the Internet, tracing the source of
an image remains challenging as it could not verify if the
image copy owner is the actual copyright owner, even if it’s
an accurate match.

To address the shortcomings of current watermarking al-
gorithms in the aforementioned situations, we propose the
MuST, a multi-source tracing watermarking scheme with
a multi-source image detector and minimum external rect-
angle (MER) operations to resynchronize the image mate-
rials from the composite image. Then, watermark messages
are independently extracted from these synchronized image
materials for multi-source copyright protection. In summary,
we have the following contributions:

• We proposed a novel watermarking scheme, named
MuST, for multi-source image tracing. Based on the de-
tector and the MER operation, the proposed MuST can
resist the extreme distortions introduced by the multi-
source image composing process and achieve impressive
performance in various real-world composing scenarios.

• We designed a concise and effective simulation module
of the multi-source image composing process, which is
leveraged as the noise layer to enhance the robustness of
the proposed MuST.

• We selected and constructed a dataset of image mate-
rials with the mask of the primary component of the
images (Single-Object Image Material Dataset (SOIM))
based on the existing datasets to better simulate the multi-
source image composing process.

Related Work
Image Watermarking. Image watermarks can be used for
copyright statements. Traditional watermarking algorithms
typically embed information using image transformations,
such as DCT and DWT. LGDR (Ma et al. 2021) embed
symmetric watermarks to obtain robustness against local ge-
ometric distortions, global geometric distortions, common
image processing operations, and some kinds of combined
attacks. In recent years, with the development of deep learn-
ing, many works that aim to embed watermarks in images
have been developed, such as HiDDeN (Zhu et al. 2018)
and StegaStamp (Tancik, Mildenhall, and Ng 2020). Specif-
ically, HiDDeN proposed an autoencoder-like architecture
to jointly train an encoder and a decoder for information

embedding and extraction. Based on this, StegaStamp fur-
ther enhanced robustness to distortions resulting from real-
world printing and photography. Based on the encoder-
decoder framework, MBRS (Jia, Fang, and Zhang 2021),
utilizing the Squeeze-and-Excitation blocks (Hu, Shen, and
Sun 2018) and proposing a message processor to expand the
message in a more appreciated way, aims to enhance the ro-
bustness against JPEG compression. LIM (Jia et al. 2022)
is to hide information in a sub-image rather than the en-
tire image and include a localization module to correct the
shooting distortions in the end-to-end framework. Different
from mainstream encoder-decoder architectures, SSLWM
(Fernandez et al. 2022) embeds messages in the image fea-
tures extracted by ResNet-50 (He et al. 2016) and extracts
messages with a group of learnable secret keys. The robust-
ness of SSLWM comes from data augmentation. DIPW (Luo
et al. 2023) is designed to enhance the robustness of wa-
termarking methods under deliberate plagiarism. Similar to
LIM, DIPW also hides copyright evidence in a patch deter-
mined by SIFT. Although these schemes achieve good per-
formance on a single image with common distortions, they
are not up to the multi-source image materials tracing task
for three reasons: (1) lack of the ability to locate multi im-
ages in the composite image. (2) fragile synchronization. (3)
lack of robustness under extreme distortions.

Method
In this section, we will initially present the architecture of
our proposed MuST method and subsequently elaborate on
the training strategy for each model.

Framework Overview
Figure 2 shows the architecture of our proposed MuST,
including a Watermark Encoder ENC, a Discriminator
DIS, a Multi-source Image Composing Simulation Module
MIC, a Detector based on U-Net architecture DET , and a
Watermark Decoder DEC.

The inputs of encoder ENC include an image material
Ico of shape C ×H ×W and a watermark message Wm of
length L. The output of ENC is an encoded image Ien of
the same shape as Ico. Then, the multi-source image com-
posing process is simulated based on the proposed MIC,
in which the primary components of several Ien are reused
to generate a composite image Icom. After that, the detector
model DET locates and segments the possible reused im-
age materials Idis, which are distorted by image pasting dis-
tortions and image fusion distortions. Finally, DEC tries to
extract the corresponding watermark W ′

m from the detected
multiple Idis to verify the copyright of different owners.

Training Strategy
Encoder. The encoder is trained to encode the watermark
message of length L into the input image material, i.e., the
cover image Ico, while minimizing perceptual disparity be-
tween the input and the output to satisfy the requirement
of imperceptibly of the watermark algorithm. First, to en-
sure the robustness of MuST against image pasting distor-
tions, a preprocess is implemented. For each input image
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Figure 2: The framework of the proposed MuST. The encoder embeds the watermark messages into the minimum external
rectangle (MER) image to generate the encoded images. An adversary discriminator is used to improve the visual quality of
the image generated by the encoder. Then, multiple encoded images are fed into the proposed multi-source image composing
simulation model to generate the composite image. The detector estimates the image mask from the composite image to segment
the MER images. Finally, the decoder extracts the watermark message from each MER image.

denoted as Ico, its primary components are extracted using
the corresponding mask and subsequently resized to obtain
the minimum external image Imer. To simplify the represen-
tation, we define MER(·) to refer to this preprocessing, i.e.,
MER(Ico) = Imer. Then, these processed image elements
are fed into the following convolution layers to obtain an
intermediate image feature, in which SE Block (Hu, Shen,
and Sun 2018) is adopted to enable the learnable channel-
wise weights. After that, the intermediate image feature is
concatenated with the secret message expanded to the same
dimensions, and fed together into the subsequent convolu-
tion layers. Finally, the encoded image element is restored
through inverse resizing and then combined with the back-
ground of the cover image to generate the watermarked im-
age material Ien.

To guarantee the visual quality of the encoded image, we
introduce the basic loss LENC , which calculates the mean
squared error (MSE) between MER(Ico) and MER(Ien):

LENC = MSE(MER(Ico),MER(Ien)). (1)

Besides, inspired by the design of GAN (Goodfellow et al.
2020), we introduce the adversarial loss LENC2 to further
enhance the visual quality of Ien, which make ENC aim at
generating indistinguishable MER(Ien) by the additional
adversarial discriminator:

LENC2 = log(1−DIS(MER(Ien)). (2)

Meanwhile, the discriminator DIS aims to minimizing the

loss LDIS :

LDIS = log(DIS(MER(Ien))

+ log(1−DIS(MER(Ico)).
(3)

Image Composing Simulation. By conducting surveys,
interviews with design professionals, and studying widely
available Photoshop tutorials on the internet, we proposed
a succinct and universally applicable multi-source image
composing process and designed the corresponding model
as the noise layer of MuST, i.e., the Image Composing
Simulation module as shown in Figure 2. As mentioned in
Introduction, the multi-source image composing pro-
cess includes two main distortions: image pasting distortions
and image fusion distortions.

Concerning the resizing operations within the image past-
ing distortion, our analysis of the actual image composi-
tion process reveals a tendency among unauthorized users
to downsize the image materials for more optimal placement
on the background image. This is easy to understand because
enlarging image materials will only make them blurry, and
finding image materials with the exact right size is extremely
rare. Typically, unauthorized users look for image materi-
als with sufficient resolution and downsize them to obtain
the proper image components. Therefore, the image pasting
distortions in the noise layer include irregular cropping, ex-
treme downsize, and positional change.

After experiencing image pasting distortion, the primary
image component is placed on the background image to gen-
erate the composite image, whose overall aesthetics are im-
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proved by image fusion operations. Specifically, image fu-
sion operations, i.e., image fusion distortion for the water-
marking scheme, include edge moving, feathering, smooth-
ing, brightness variation, and contrast adjustment. Noticing
the relationship between certain distortions in the IFD and
common image processing operations, we design neural net-
work implementations corresponding to these image edit-
ing distortions. Specifically, the objective of edge moving
is to mitigate the remaining background residue on the pri-
mary image component following irregular cropping, which
is implemented through slight cropping in the noise layer.
The feathering operation is employed to create a smoother
transition between the cropped image material and the back-
ground. Within the noise layer, we utilize Gaussian blurring
with a mask to achieve a comparable effect. Commonly,
unauthorized users also employ global smoothing to make
each component of the composite image unobtrusive and
aesthetically pleasing. Similarly, the Gaussian filtering func-
tion is adopted to simulate the smoothing operation.

Considering that it is hard to simulate human aesthet-
ics, we just randomly place several image materials non-
overlapping on the background image and apply the two dis-
tortions described above to generate a composite image. It
should also be noted that according to the zigzag order of
image elements in the composite image, the corresponding
order of embedded watermark messages will also be rear-
ranged to facilitate the calculation of decoder loss.

Detector. We use the U-Net (Ronneberger, Fischer, and
Brox 2015) as our DET to predict the segmentation mask
M of reused image elements in the composite image. When
training DET , the ground truth Gt is generated by the im-
age composing simulation process and the loss is:

LDET = −Gt log(M)− (1−Gt) log(1−M). (4)

Decoder. According to the segmentation mask calcu-
lated by the detector, each distorted image component
MER(Icom)i = Iidis is extracted from the composite im-
age based on the connected component labeling algorithm.
Then, these extracted components are rearranged in zigzag
order and serve as inputs for the decoder. The decoder com-
prises multiple Res Blocks and SE Blocks, followed by the
application of global adaptive average pooling (GAP) to ob-
tain a channel-only feature. Finally, the recovered message
W ′

m is obtained through a linear mapping layer. The objec-
tive of decoder training is to minimize the MSE loss be-
tween Wm and W ′

m. The loss function LDEC is formulated
as follows:

LDEC = MSE(Wm,W ′
m). (5)

Training. We jointly train ENC, DEC, and DIS, and
the training loss of ENC and DEC can be formulated as
follows:

L = λENCLENC + λENC2LENC2 + λDECLDEC . (6)

More details of the network architectures and the noise
layer are given in the supplemental material.

3D-Scanned Photo Composed

(a) Different types of image materials and
the corresponding masks

Photo Pure color Generated

(b) Different types of background images

Figure 3: Examples of the image dataset. (a) Examples of
SOIM dataset; (b) Examples of background images used in
the noise layer.

Experiments
Experiment Settings
Datasets. To facilitate the network training of our pro-
posed scheme, we constructed a new dataset, namely the
Single-Object Image Material Dataset (SOIM). It comprises
6.5k image materials with white background, which were
selected from JD Product-10k (Bai et al. 2020), Google
Scanned-Objects (Downs et al. 2022), and GroceryStore-
Dataset (Klasson, Zhang, and Kjellström 2019). Further-
more, each image material in SOIM is paired with a cor-
responding mask of the primary component, as shown in the
first line in Figure 3. These masks are adopted to segment the
primary component, which is placed on the background im-
age to generate the composite image in the proposed multi-
source image composing simulation model. Some examples
of background images are shown in the second line of Fig-
ure 3. In our experiments, 6k image materials were used for
training and 0.5k were dedicated to testing. Besides, to val-
idate the generalization capability of MuST across different
types of image materials, the CASIA V2.0 dataset (Dong,
Wang, and Tan 2013; Pham et al. 2019) and Stanford Back-
ground dataset (ICCV09) (Gould, Fulton, and Koller 2009)
are used as extra testing datasets.

Implementation Details. The whole framework is imple-
mented by PyTorch (Paszke et al. 2019) and executed on
NVIDIA RTX A6000. We utilize AdamW (Loshchilov and
Hutter 2017) as the optimizer of our models. The water-
mark messages are randomly generated sequences of 30 bits.
In the proposed multi-source image composing simulation
model (MIC) implemented by Kornia(E. Riba and Bradski
2020), the input image materials are of size 3 × 640 × 640
pixels and the background images are of size 3 × 1000 ×
1000. The parameter settings in MIC are as follows:

• Gaussian blur: σ ∈ [0.1, 1]

• Resize: Scale Rate ∈ [0.3, 0.4]

• Brightness adjustment: [−0.2, 0.2]

• Contrast adjustment: [0.8, 1.2]
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Figure 4: Visual comparisons of watermarked images of
MuST and the comparison methods SSLWM, CIN, and
LGDR. The upper row showcases the cover image and the
watermarked images, while the lower row illustrates the wa-
termark residue. At the same distortion setting, the extrac-
tion accuracies of these watermarked images are 83.33%,
86.67%, 83.33%, and 100%, respectively.

Methods SSLWM CIN LGDR MuST

PSNR 35.12 42.56 42.10 42.89
SSIM 0.9571 0.9792 0.9854 0.9883

Table 1: The average PSNR (dB) and SSIM (%) of each
method tested on 556 images from SOIM, CASIA V2.0, and
ICCV09.

For the loss function in the Eq. (6) , we choose λENC =
0.7, λENC2 = 0.001, λDEC = 2.0. The batch size in the
training is set to 3, and the MuST models are trained for 500
epochs with an initial learning rate = 0.0001.

Baselines. Our baselines for comparison are SSLWM
(Fernandez et al. 2022), and, CIN (Ma et al. 2022), and
LGDR (Ma et al. 2021). All the methods except LGDR are
deep-learning-based. Although we attempted to conduct ex-
periments using CIN, we were unable to replicate their re-
ported best performance under conditions aligned to MuST.
Therefore, we used the well-trained model they had released
for comparison. For a fair comparison, we assisted CIN by
providing it with the encoded images segmented from the
composite images, as CIN lacks the ability to detect or seg-
ment the watermarked image components.

Metrics. The peak signal-to-noise ratio (PSNR (Almo-
hammad and Ghinea 2010)) and structural similarity (SSIM
(Wang et al. 2004)) are used to evaluate the visual quality
of the encoded image materials. The average extraction ac-
curacy (ACC), i.e., the correct percentage of the extracted
watermark message, is adopted to evaluate the robustness
under the multi-source image composing process.

Experimental Results
Visual Quality. Table 1 shows the average objective met-
rics of the visual quality of the comparative methods and the
proposed MuST. The proposed MuST has the highest PSNR
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(b) Impact of irregular cropping.

Figure 5: The performance of MuST and comparative water-
mark schemes under main distortions in image pasting dis-
tortions. CROP RATIO refers to the removed part.

ACC(%) Brightness Contrast Gaussian Blur (σ)

Parameters -50% +50% -50% +50% 0.1 1 2

SSLWM 95.70 95.13 95.53 95.56 99.66 97.39 94.02
CIN 98.09 98.76 98.34 98.08 99.71 98.17 97.73

LGDR 99.68 84.83 99.62 90.33 99.62 94.35 61.20
MuST 98.33 98.41 98.79 98.28 98.42 98.38 98.13

Table 2: For each single type of noise in IFD, we tested un-
der different ratios independently and exhibited some rep-
resentative results. Bold results indicate the best outcome
among the comparisons, while underlined results signify the
second-best outcome.

and SSIM of 42.89 dB and 0.9883, respectively. Figure 4
presents a representative example of the encoded image and
the watermark residue of each method. More examples can
be found in the supplementary material.

Robustness under Different Distortions of MIC. It
should be noted that the distortions introduced by the pro-
posed MIC pose serious challenges for most existing water-
marking schemes, resulting in poor extraction performance.
Therefore, in this subsection, we evaluate the robustness of
comparative watermarking schemes under several indepen-
dent distortions of MIC, aiming to derive meaningful ex-
perimental results for further analysis and discussion.

First, we evaluated the robustness of these watermark-
ing schemes under two main distortions belonging to im-
age pasting distortions: downsizing and irregular cropping,
meaning cropping along the edges of the primary component
of the image. As shown in Figure 5, MuST demonstrated
its SOTA performance with various distortion parameters,
indicating the excellent robustness of MuST under image
pasting distortions. Besides, we notice that both LGDR and
CIN exhibited unusually good performance when their wa-
termarked images were downsized to 50%. The watermark
generation process of LGDR leverages one doubly upsam-
pling 2D matrix to represent watermark bits for better ro-
bustness to image processing operations, which also results
in the watermark component being sharper at 50% down-
sizing. For CIN, we speculate that its watermark component
has similar characteristics, resulting in similar results. Be-
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ACC (%) Number of Materials

Scale Rate 1 2 3 4 5 6

0.2 96.37 95.92 95.71 95.23 95.32 95.07
0.3 98.22 98.17 98.25 98.03 97.85 -
0.4 98.34 98.02 98.25 97.87 - -
0.5 98.54 98.27 98.07 - - -
0.6 97.97 97.23 - - - -
0.7 97.72 98.02 - - - -
0.8 97.18 96.93 - - - -
0.9 96.38 96.29 - - - -

Table 3: The average extraction accuracy (ACC (%)) on dif-
ferent numbers of materials. ‘-’ means the background im-
age cannot hold all the image materials.

Type of Material SSLWM CIN LGDR MuST

SOIM 75.21 85.83 89.28 98.06
CASIA V2.0 75.42 86.15 89.38 96.23

ICCV09 74.79 85.31 88.54 97.46
Average 75.25 85.89 89.28 97.92

Table 4: The average extraction accuracy (ACC (%)) of
each type of materials under MIC.

sides, for all compared methods, as they lack the detector
and MER strategies in MuST, the input of their extractor is
an image cropped from the composite image, with the same
size as the cover image and centered on the primary compo-
nent. Therefore, the input image contains part of the back-
ground image, which may cause performance degradation.

Then, we mainly evaluated the impact of basic distortions
belonging to image fusion distortions on the watermark per-
formance. As shown in Table 2, in most tested parameters,
the proposed MuST has a similar performance with CIN and
is better than the rest of the compared schemes.

Overall, the proposed MuST demonstrates the best perfor-
mance among all the independent distortions within MIC,
indicating the excellent robustness of MuST to the multi-
source image composing process.

Robustness under Different Numbers of Image Materi-
als. Given that the baselines cannot automatically segment
different image materials from composite images, we have
not included them in this evaluation. Here, we focused on
testing the performance of our method under different num-
bers of image materials in one background image. The re-
sults displayed in Table 3 are the average values of ACC
extracted from all image materials in composite images, in-
dicating that the quantity of image materials does not nega-
tively impact the performance of our watermark extraction.

Robustness under Different Types of Image Materials.
To test our method with image materials of varying kinds
and styles, we selected image materials not only from our
SOIM dataset but also from the CASIA V2.0 and ICCV09
datasets. Samples from these datasets are presented in the
first row of Figure 6. For these experiments, we set the noise

SOIM CASIA V2.0 ICCV09

Figure 6: The first line exhibits examples of cover images
from three different datasets. The second line exhibits the
corresponding watermarked images of MuST.

Background photos pure color composed Average

MuST 98.39 98.03 97.83 98.25

Table 5: The extraction accuracy (ACC (%)) under different
types of background images.

factor to correspond with each method’s best performance,
as determined by previous experimental results. It could be
found in Table 4 that all the methods consistently exhibited
similar performance across varying image types. And among
them, the proposed MuST has the best extraction perfor-
mance. It is necessary to explain that results in Table 4 were
obtained under complete MIC unlike experiments in Table
2, thus leading decreased performance.

Robustness under Different Types of Background. As
shown in Figure 3 (b), we selected three types of differ-
ent background images, including photos, pure color back-
ground, and composed. We followed the same noise setting
in previous experiments. Because we have excluded the in-
fluence of background images for SSLWM, CIN, and LGDR
for fare comparison in the previous experiments, we only
test our proposed MuST. The results are shown in Table 5
demonstrating that the background has little influence to the
performance of MuST.

Real-World Performance Assessment with Commercial
Image Editors. We selected three commercial image edit-
ing software tools, namely Photoshop 1, Canva 2, and Pixso
3, to test our method under real-world scenarios. We used
these tools to combine several image materials, which are
embedded with different watermark messages, into the back-
ground images to generate the composite image. To better
simulate the real-world image composing process, the dis-
tortions in the composing process depend on image editors
rather than the proposed noise layer. Figure 7 presents some
examples along with their corresponding extraction accu-
racy. Additional examples are provided in the supplementary
materials. The results underscore the capacity of our pro-
posed MuST to effectively resist distortions of multi-source
composing process in the real world.

1https://www.adobe.com/products/photoshop.html
2https://www.canva.com
3https://pixso.cn/
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PhotoShop: 96.67% Pixso: 100% Canva: 95.00%

Canva: 97.78% Photoshop: 98.33% Pixso: 98.33%

Figure 7: The composite images using watermarked image
materials with different image editing software. Under each
composite image is the corresponding watermark extracted
accuracy of MuST.

Number 1 2 3 4 5 6

TPR (%) 100 100 100 100 98.90 99.16
IoU (%) 99.89 99.67 99.78 99.91 99.89 99.69

Table 6: The true positive rate (TPR) and Intersection over
Union (IoU) of the proposed detector with different number
of image materials in the composite image.

Detection Accuracy under MIC. In this subsection, we
evaluated the true positive rate (TPR) and intersection over
union (IoU) of the proposed detector under the MIC. In this
paper, TPR refers to the proportion of watermark-containing
image materials correctly detected by the proposed detector
out of the total actual watermark-containing materials. As
shown in Table 6, the proposed detector can accurately iden-
tify watermark-containing materials and effectively segment
them with accuracy over 98%. It also can be observed from
Table 6 that as the number of image materials in the back-
ground image increases, there is a slight decrease in TPR.
One possible reason is that in order to place more image
materials in a limited-size background image, the image ma-
terials are downsized further leading to difficult detection.

Ablation Study
Importance of the Noise Layer. As shown in Figure 8,
the introduction of the noise layer steers the network towards
embedding the watermark within the content area of the im-
age material, rather than across the entire image, which en-
sures that the watermark can still be extracted when the im-
age material is used in image composing process. The ex-
perimental results further prove the above conclusion. As
shown in Table 7, under the same distortions, MuST trained
with noise layer can achieve better extraction performance.

cover encoded residual cover encoded residual

Figure 8: Image materials encoded by the encoder trained
with and without noise layer.

Noise Layer MER(·) ACC (%)

% % 50.84
% ! 54.43
! % 86.37
! ! 98.25

Table 7: The ablation study of noise layer and MER(·).
ACC (%) is tested on the SOIM dataset under the noise set-
ting shown in the Implementation Details part.

Importance of the MER. The main idea of MER is to re-
construct the synchronization of image materials between
the encoder and decoder from composite images and im-
prove the robustness under image composing process. As
shown in Table 7, with the implementation of MER, all the
networks have an improvement of robustness under MIC.

Limitation
This section describes the limitations of MuST. When mul-
tiple interconnected image materials containing watermarks
are involved, it poses a significant challenge to MuST’s per-
formance because of its difficulty in automating the localiza-
tion and segmentation of watermark-containing materials.
Due to limitations on simulating the designer’s aesthetics,
it’s hard to use automated scripts to simulate complex real-
world scenarios, making real-world experiments relatively
basic. We’ll continue to enhance this work in the future and
introduce more types of noises, like JpeG compression and
change of colors, under which MuST could still maintain
good robustness, to evaluate the performance.

Conclusion
In this paper, we first introduced multi-source image ma-
terials tracing and analyzed the limitations of existing
watermark-based methods against it. In response to these
challenges, we introduced an end-to-end framework, MuST,
incorporating a unique noise layer specifically tailored to
withstand real-world image composing processes. The de-
tection network and MER operation help to reconstruct the
synchronization for image materials from composite im-
ages, thus enhancing the robustness under distortions. Com-
pared to existing methods, our framework exhibits robust
performance under simulated and real-world scenarios.
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