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Abstract

Adversarial training (AT) is an effective defense method
against gradient-based attacks to enhance the robustness of
neural networks. Among them, single-step AT has emerged
as a hotspot topic due to its simplicity and efficiency, requir-
ing only one gradient propagation in generating adversarial
examples. Nonetheless, the problem of catastrophic overfit-
ting (CO) that causes training collapse remains poorly un-
derstood, and there exists a gap between the robust accuracy
achieved through single- and multi-step AT. In this paper,
we present a surprising finding that the taxonomy of adver-
sarial examples reveals the truth of CO. Based on this con-
clusion, we propose taxonomy driven fast adversarial train-
ing (TDAT) which jointly optimizes learning objective, loss
function, and initialization method, thereby can be regarded
as a new paradigm of single-step AT. Compared with other
fast AT methods, TDAT can boost the robustness of neural
networks, alleviate the influence of misclassified examples,
and prevent CO during the training process while requiring
almost no additional computational and memory resources.
Our method achieves robust accuracy improvement of 1.59%,
1.62%, 0.71%, and 1.26% on CIFAR-10, CIFAR-100, Tiny
ImageNet, and ImageNet-100 datasets, when against pro-
jected gradient descent PGD10 attack with perturbation bud-
get 8/255. Furthermore, our proposed method also achieves
state-of-the-art robust accuracy against other attacks. Code is
available at https://github.com/bookman233/TDAT.

Introduction
Deep neural networks have made significant progress in
many fields and achieved remarkable performance. How-
ever, they are vulnerable to adversarial examples (AEs) with
carefully designed perturbations (Ding et al. 2023; Li et al.
2023; He et al. 2023; Chen et al. 2023). Adversarial train-
ing (AT) (Mao et al. 2022; Tsiligkaridis and Roberts 2022)
has emerged as the most effective approach to enhance the
robustness of neural networks against the threat from worst-
case perturbations. Furthermore, AT methods are classified
into two categories based on the method used to generate
AEs for training: multi-step and single-step AT (Gao et al.
2022; Zhang et al. 2019a; Ding et al. 2022). While multi-
step AT is found to be more advantageous in improving the
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Figure 1: Catastrophic Overfitting (CO) and Label Flipping.
The red line indicates the proportion of Case 4 (as shown in
Fig. 3) to all misclassified examples, which infers the pro-
portion of label flipping examples explodes once CO occurs.
The robust accuracy is evaluated against PGD-10 attack.

robustness of neural networks, it requires more time to com-
pute gradients of the neural network’s input multiple times
(Park and Lee 2021; Yu and Sun 2022; Izmailov et al. 2018;
Zhang et al. 2020). As a result, single-step AT methods gain
significant attention as a research hotspot due to their effec-
tiveness and efficiency (Phan et al. 2023; Chiang, Chan, and
Wu 2021; Qin et al. 2023).

Despite the single-step AT achieving impressive perfor-
mance on both efficiency and improving the robustness of
neural networks, it still suffers from a serious and puzzling
problem: catastrophic overfitting (CO) (Madry et al. 2018).
This problem leads trained models vulnerable to multi-step
attacks on test dataset despite remaining robust to single-
step attacks on training dataset after a few batches, which
is shown in Fig.1. It has been reported that CO is due to
the sharp decrease in the generalization ability of the neural
network during AT (Zhang et al. 2022). Recently, there are
new perspectives and solution schemes presented to prevent
CO, containing prior-guided initialization method (Jia et al.
2022a), subspace adversarial training (Li et al. 2022), noise
fast adversarial training (de Jorge Aranda et al. 2022), etc.

Although considerable efforts have been made to explain
the CO problem and enhance the robustness of neural net-
works (Chen and Ji 2022; Athalye, Carlini, and Wagner
2018; Mei et al. 2023; Pang et al. 2022; Rice, Wong, and
Kolter 2020; Chen et al. 2021), its underlying mechanisms
remain inadequately identified. From the perspective of fail-
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ure phenomenon of standard single-step AT, the robust accu-
racy against fast gradient sign method (FGSM) (Goodfellow,
Shlens, and Szegedy 2015) on the training dataset is exces-
sively high and the robust accuracy against projected gradi-
ent descent (PGD) (Madry et al. 2018) on the test dataset
almost approaches zero. Consequently, CO is attributed to
the overfitting of the neural network to AEs during AT,
thereby causing the collapse of generalization to AEs from
the test dataset. However, the following two questions are
still unidentified.

• Why does robust accuracy fluctuate drastically within
such a small number of batches?

• Why does the CO problem have almost no effect on the
clean accuracy of the test dataset?

These two problems prompt us to find a new perspective to
explain and resolve the CO in single-step AT.

To this end, this paper presents a taxonomy of the AEs and
analyzes the impact of different categories of training exam-
ples during single-step AT, which shows that the changing
pattern of accuracy in CO is directly mapped to changes in
the number of specific examples. Moreover, the label flip-
ping phenomenon (as presented in the red line of Fig.1) is
revealed and investigated, which leads to that the adversar-
ial noise generated by FGSM contradicts the original goal
of maximizing loss. On this basis, we propose Taxonomy
Driven fast Adversarial Training (TDAT) which incorpo-
rates dynamic label relaxation, batch momentum initializa-
tion, and taxonomy driven loss function. Finally, compre-
hensive experiments demonstrate that our method helps neu-
ral networks achieve better robust and clean accuracy than
other state-of-the-art defense methods. The main contribu-
tions are summarized as follows.

• To understand and explain the problem of CO, we present
a taxonomy to investigate the impact of different AEs to
single-step AT and identify the changes in the quantity of
which examples lead to the occurrence of CO.

• Based on the above analysis, we propose the TDAT
which systematically improves AT across initialization,
label relaxation, and loss function.

• The systemic experiments are designed and performed
on standard datasets to evaluate our TDAT with other
state-of-the-art AT methods. Results show that the TDAT
achieves better robust accuracy than state-of-the-art
single-step and even multi-step AT methods.

Related Work
Adversarial Training
AT is a technique that aims to improve the robustness of neu-
ral networks against adversarial attacks by introducing ad-
versarial perturbations during the training process. Formally,
let D = {xi,yi}ni=1 be a dataset consisting of n examples
and L classes with xi ∈ Rd as the benign example in the
d-dimensional space and yi is the corresponding one-hot la-
bel. The objective of AT is to train a neural network f(·)
with parameters ϕ to be robust against adversarial attacks.

Mathematically, AT is formulated as a min-max problem:

min
ϕ

E(x,y)∼D

[
max

δ∈N (x,ϵ)
L(f(x+ δ, ϕ),y)

]
, (1)

where D represents the data distribution, N (·) is the norm
constraint with maximum perturbation budget ϵ, δ denotes
the adversarial perturbation, and L(·) denotes the loss func-
tion. Specifically, the objective of the inner maximization is
generating the worst adversarial perturbations for the neural
network, while the outer minimization updates the model to
improve robustness (Bai et al. 2021; Pang et al. 2021; Li
and Liu 2023; Kim, Lee, and Lee 2021). There are two cate-
gories of AT based on the number that adversarial perturba-
tions are optimized: single-step and multi-step AT.

Single-step AT The FGSM is one of the most famous
methods for generating AEs and is used in the single-step
AT. The principle of the FGSM is formulated as

xadv = x+ ϵ · sign
(
∇xL(f(x, ϕ),y)

)
, (2)

where xadv is adversarial example. Since the FGSM only
requires one-step gradient propagation for generating AEs,
the associated AT is classified as the single-step version.
However, this scheme is vulnerable to CO when faced with
multi-step adversarial attacks, as reported in (Wong, Rice,
and Kolter 2020; Müller, Kornblith, and Hinton 2019; Srira-
manan, Gor, and Feizi 2022).

Multi-step AT On the other aspect, Madry et al. utilize
the multi-step adversarial attack to achieve the inner maxi-
mization problem of AT (as defined in equation (1)), which
is implemented as the PGD method (Madry et al. 2018):

xt+1
adv = Πϵ

(
xt

adv + α · sign
(
∇xt

adv
L(f(xt

adv, ϕ),y)
))

, (3)

where t and α represent the t-th iteration step and step size,
respectively. The projection operation Πϵ(·) is utilized to en-
sure that the perturbation is within a certain bound. It has
been reported that multi-step AT (Cui et al. 2021; Zhang
et al. 2019b) can help neural networks achieve stronger ro-
bustness than single-step AT, due to its better attack strength.
Nonetheless, the implementation process of multi-step AT
requires more computational and time resources, as it in-
volves performing multiple back and forward propagations.

Catastrophic Overfitting
AT suffers from CO, leading to training instability and even
failure in the training process. In (Wong, Rice, and Kolter
2020), Wong et al. identify the mode that causes CO in
single-step AT and present FGSM-RS to prevent CO. Af-
ter that, Andriushchenko et al. present a new regulariza-
tion method, GradAlign, that improves the quality of AEs
generation to prevent CO via maximizing the gradient align-
ment (Andriushchenko and Flammarion 2020). As a result,
the problem of CO attracts much attention, and solutions are
presented (Miyato et al. 2018; Jia et al. 2022a). One of the
effective approaches is to develop regularization methods
(Sankaranarayanan et al. 2018; Herrmann et al. 2022). For
instance, Sriramanan et al. present a relaxation method to
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𝑦𝑎𝑡𝑘
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Figure 2: Taxonomy of adversarial examples during single-step AT. The five cases in this figure correspond to Case 1 to Case
5, from top to bottom. ygt represents ground truth.

standard loss, that finds more appropriate gradient directions
to increase attack efficiency (Sriramanan et al. 2020). NuAT
(Sriramanan et al. 2021) adopts a nuclear norm regularizer
to enforce function smoothing in the vicinity of data exam-
ples. Nonetheless, these methods require additional compu-
tational resources for worse AEs, limiting their expandabil-
ity. In addition, it has been reported that the initialization
method of AEs is significant (Wong, Rice, and Kolter 2020;
Tramèr et al. 2018). Jia et al. explore the difference between
the training process of vanilla AT and fast AT to explain the
reason for CO and propose a prior-guided FGSM initializa-
tion method to avoid CO (Jia et al. 2022a).

Problem Description and Analysis
In this section, a taxonomy is defined that divides all AEs
used for AT into five categories. The connection between
CO and the proposed taxonomy is then analyzed in detail.

Taxonomy and Catastrophic Overfitting
CO problem that occurs during single-step AT leads to the
robust accuracy of the neural network against PGD rapidly
decreasing and training accuracy rapidly increasing within
a few epochs. Currently, CO is explained as the overfitting
of the neural network on the AEs generated by FGSM when
performing training. However, this explanation fails to iden-
tify the reason for the drastic degradation of robust accuracy
and the negligible impact of clean accuracy on test dataset.
Therefore, these problems motivate us to explore a new per-
spective to explain CO in single-step AT.

Subsequently, we divide examples into five categories
from the perspective of whether the clean examples are cor-
rectly classified by the neural network before being attacked
and whether these examples are successfully attacked. On
this basis, we observe the quantity change of each category
examples when performing single-step AT. First, the five
cases are defined as

• Case 1: The clean example is correctly classified by the
network, and the corresponding adversarial example is
misclassified by the network.

• Case 2: The clean example is correctly classified by the
network, and the corresponding adversarial example is
also correctly classified by the network.

• Case 3: The i-class clean example is misclassified as j-
class example by the network, and the corresponding ad-
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Figure 3: Numbers of the five cases for each epoch during
single-step AT. For each epoch, the sum of the number of
five cases equals the size of the training dataset.

versarial example is classified by the network as j-class
example.

• Case 4: The i-class clean example is misclassified as j-
class example by the network, and the corresponding ad-
versarial example is classified by the network as i-class
example.

• Case 5: The i-class clean example is misclassified as j-
class example by the network, and the corresponding ad-
versarial example is classified by the network as k-class
example where k ̸= i, j.

Fig. 2 is provided to better illustrate the taxonomy of ex-
amples in the single-step AT procedure. After that, we per-
form the single-step AT using ResNet-18 on the CIFAR-10
dataset against the FGSM attack with perturbation budget of
8/255, step size of 8/255, and random initialization (Wong,
Rice, and Kolter 2020). The quantity change of the five cases
with epoch is presented in Fig. 3. Specifically, the green and
purple lines in Fig. 3(a) represent the number of examples in
cases 1 and 2, respectively. The dark blue, red, and orange
lines in Fig. 3(b) denote the number of examples in cases 3,
4, and 5, respectively.

Concretely, as observed from Fig. 3(a), when CO occurs
in the 91th epoch, FGSM possesses an extremely low at-
tack success rate (as indicated by the green line), thereby
the number of AEs is too small to maintain single-step AT.
Meanwhile, according to Fig. 3(b) and Fig.1(b), we observe
a surprising phenomenon of label flipping, where most mis-
classified clean examples are attacked to ground truth. In this
situation, the inner maximization problem as presented in
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Figure 4: Clean (left) and robust (right) accuracy on test
dataset when performing FGSM-RS.

(1) is ineffective. AEs are generated to satisfy the objec-
tive of the outer minimization problem instead of its ini-
tial objective, leading to the sudden collapse of single-step
AT and counterintuitive phenomena. Specifically, a substan-
tial number of unsuccessfully attacked examples (Case 2)
and almost offenseless AEs (Case 4) ensure that the model
continues to only learn the distribution around clean exam-
ples, thereby leading to minor impacts on the clean accu-
racy of test dataset and degradation of robustness. Under the
min-max optimization paradigm of AT (1), we recognize
an inherent imbalance between inner and outer optimiza-
tion, whereby the intensity of minimization optimization
surpasses that of maximization optimization. Consequently,
it is significant to strengthen the maximization problem by
exploiting the diversity of AEs and improve the minimiza-
tion problem to better learn AEs through label adjustment.
We then introduce dynamic label relaxation and batch mo-
mentum initialization, which respectively enhance the mini-
mization and maximization optimization.

Misclassified Examples and Training Instability
In order to further investigate the impact of different kinds
of AEs on training stability, the correctly classified and mis-
classified clean examples are respectively used to generate
AEs for performing single-step AT. To this end, the ResNet-
18 is trained by the FGSM-RS (Wong, Rice, and Kolter
2020) method with perturbation budget 8/255 and step size
4/255 on CIFAR-10 dataset. The clean and robust accuracy
of the neural network is presented in Fig. 4. The blue line
represents the accuracy of standard single-step AT, while the
green line denotes the accuracy of neural networks trained
with AEs from cases 1, 2, and misclassified clean examples.
The purple line represents the accuracy of neural networks
trained with clean examples correctly classified by the neu-
ral network and AEs from cases 3, 4, and 5. Compared with
green and blue line in Fig. 4, the violent oscillations of the
purple line indicate AEs from misclassified examples cause
the instability of single-step AT. Meanwhile, we realize the
decrease in the number of AEs impairs the robust accuracy.
Additionally, as the solid blue line in Fig. 3, the number
of clean examples misclassified by the neural network oc-
cupies a considerable proportion of total training examples.
Therefore, it is valuable to completely utilize misclassified
examples rather than not using them to generate AEs, which
motivates us to introduce the taxonomy driven loss.

Methodology
In this section, we present the TDAT from the perspective of
initialization method for AEs, dynamic label relaxation, and
loss function. The implementation of our proposed method
is outlined in Algorithm 1 and presented in detail as follows.

Batch Momentum Initialization
Considerable works have demonstrated the significance of
example initialization methods in single-step AT. Appropri-
ate initialization methods effectively mitigate the problem
of CO, where the radius and distribution of initialization
methods respectively determine the strength and diversity of
AEs. Recently, it has been reported that the approach for
addressing CO by exploiting prior perturbation information
improves initialization and enhances robust accuracy (Jia
et al. 2022a). Nonetheless, this method requires extensive
memory resources to load the entire dataset, making it in-
feasible for larger scale datasets.

In light of the diversity of AEs, it is critical when achiev-
ing the maximization of the single-step AT as defined in (1).
Generative adversarial perturbations can well satisfy the di-
versified distribution of AEs and reduce the memory require-
ment simultaneously. Following this, we leverage batch his-
torical perturbation information and momentum method to
further improve AEs diversity. The adversarial perturbation
is defined as

δ = arg max
δ∈N (x,ϵ)

L(f(x+ δm-1 + δ, ϕ),y), (4)

δm = α · δm-1 + (1− α) · δ, (5)
where δ denotes adversarial perturbations generated by
clean examples initialized with momentum perturbation
δm-1 from last batch. The momentum perturbation δm is up-
dated with factor α and employed as the initialization pertur-
bation for next batch. This initialization approach stabilizes
AT and prevents CO via enhancing diversity and improving
the directional changes of adversarial perturbations.

Dynamic Label Relaxation
Owing to the inherent unbalance under AT and inner maxi-
mization performance limited by the attack step of FGSM,
we propose a dynamic label relaxation method to find a bet-
ter gradient updating scheme for the neural network by low-
ering the classification expectation against the AEs. The pro-
posed dynamic label relaxation method is formulated as

ŷ = y · γ + (y − 1) · γ − 1

L− 1
, (6)

where ŷ denotes the relaxation label, y signifies one-hot la-
bel, L represents the number of classes for the training, and
γ represents the label relaxation factor, which is formulated
as

γ =

β · tanh(1 −
epoch

EPOCHs
), if β · tanh(1 −

epoch

EPOCHs
) ≥ γmin,

γmin, if β · tanh(1 −
epoch

EPOCHs
)<γmin,

(7)
where epoch denotes the current epoch number, EPOCHs
denotes the total number of epochs for training, parameter β
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Algorithm 1: Taxonomy Driven Fast Adversarial Training
Parameters: clean example x and one-hot label y
with length L; learning rate µ; number of total epochs
EPOCHs; previous momentum perturbation from last
batch δm-1; current momentum perturbation δm for next
batch; relaxation factor γ; dynamic relaxation label ŷ;
momentum factor α; scale factor β;
Return: parameter ϕ of the neural network f(·);

1: Initialize momentum perturbation δ0 with uniform dis-
tribution (−ϵ, ϵ).

2: for epoch in EPOCHs do
3: γ ← β · tanh(1− epoch

EPOCHs );
4: if γ < γmin then
5: γ ← γmin;
6: end if
7: m← 1;
8: for batch in BATCHes do
9: p← Softmax(f(x)) [i] , where y [i] = 1;

10: ŷ ← y · γ + (y − 1) · γ−1
L−1 ;

11: gx ← sign
(
∇xL(f(x+ δm-1, ϕ), ŷ)

)
;

12: δ ← Clip
(
δm-1 + ϵ · gx,−ϵ, ϵ

)
;

13: L ← LCE +λ · ∥f(x+ δ)− f(x)∥2 · tanh(1− p);
14: gϕ ← ∇ϕL;
15: ϕ← ϕ− µgϕ;
16: δm ← α · δm-1 + (1− α) · δ;
17: m← m+ 1.
18: end for
19: end for
20: Return parameter ϕ.

is utilized to control the relaxation extent of label, parameter
γ is dynamically changed with AT process and its minimum
value γmin ensures the relaxed label correctly guide the neu-
ral network to update. Hence, the value of γmin can decrease
with increasing the class number of the training dataset for
lower expectations and boosting robustness. The function
tanh(·) is adopted to accelerate the decrease of γ.

Specifically, the parameter of our dynamic label relax-
ation method decreases as training progresses and converges
to γmin. In the early stage of training, dynamic label re-
laxation helps the neural network obtain better clean accu-
racy, which is essentially achieved by reducing the impact
of noisy examples on the neural network. As the training
process proceeds, the parameters of dynamic label relax-
ation become smaller (label smoothness increases), which
prompts the neural network to correctly classify the adver-
sarial examples without pursuing high confidence.

Taxonomy Driven Loss
Motivated by analysis of misclassified examples and training
instability, we develop regularization terms with relaxation
labels to mitigate the training instability caused by misclas-
sified examples and prevent CO. First, we review the math-
ematical representation of the standard cross entropy loss

LCE = −
∑L

i=1 ŷi log f(x + δ), where the parameter ŷi
denotes the ith elements of relaxed label ŷ. After that, the
taxonomy driven loss is established to relieve the influence
of AEs generated by the misclassified clean examples as

LTD = LCE + λ · ∥f(x+ δ)− f(x)∥2 · tanh(1− p), (8)

where p ∈ [0, 1] (line 9 in Algorithm 1) denotes the desired
class confidence of example x, with LTD degrades to stan-
dard cross entropy loss for p = 1. λ is a trade-off hyperpa-
rameter to balance value of regularization term. Introducing
the faster descending term tanh(1 − p) is aimed at sepa-
rating and penalizing examples with lower value of p more
severely. This loss focuses more on examples that may be
misclassified to reduce the negative influence of misclassi-
fied examples to single-step AT and enhance stability.

Experiments and Analysis
Experimental Setup
Datasets and Training Analysis and comparison exper-
iments are performed and evaluated on the CIFAR-10
(Krizhevsky, Hinton et al. 2009), CIFAR-100 (Krizhevsky,
Hinton et al. 2009), Tiny ImageNet (Le and Yang 2015),
and ImageNet-100 (Deng et al. 2009) datasets, which are
standard datasets for AT. We adopt ResNet-18 as the back-
bone to perform all experiments. Furthermore, we evaluate
the best and last epoch of different methods to validate train-
ing stability. The Last and Best are obtained from two dif-
ferent model checkpoints during training stage. Specifically,
the Best denotes that the model achieves the best robust-
ness against PGD attack and the Last denotes the model’s
robustness against PGD attack in the last epoch. Bold num-
bers indicate the best results of single-step AT. For hyper-
parameters of CIFAR-10, CIFAR-100, Tiny ImageNet, and
ImageNet-100, relaxation factor γmin is set to 0.15, 0.05,
0.025, and 0.05, respectively. They are dependent on the
number of classes in the corresponding dataset. Momentum
factor is set to 0.75 for all experiments. More training details
are shown in the Supplementary Materials.

Attacks for Evaluation Representative and state-of-the-
art adversarial attack methods are considered to evaluate
the performance of the TDAT method, i.e., FGSM (Good-
fellow, Shlens, and Szegedy 2015), MIFGSM (Dong et al.
2018), PGD with 10-step, 20-step, and 50-step versions
(Madry et al. 2018), BIM (Kurakin, Goodfellow, and Ben-
gio 2017), AutoAttack (Croce and Hein 2020), C&W (Car-
lini and Wagner 2017), APGD (Croce and Hein 2020), and
Square (Andriushchenko et al. 2020) attacks. For each at-
tack method, the perturbation budget is constrained by ℓ∞
norm with budget ϵ = 8/255 to evaluate the robust accuracy
of the neural network and compare it with other existing AT
methods. For the single-step attack methods, the step size is
set to 8/255, while it is set to 2/255 against the multi-step
attack methods.

Baselines The systemic experiments are provided for per-
forming comparisons among our TDAT with other typical or
state-of-the-art single-step AT methods, covering FGSM-RS
(Wong, Rice, and Kolter 2020), Free (Shafahi et al. 2019),
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Methods Steps Clean Acc FGSM MIFGSM BIM PGD AA C&W APGD Square10 20 50

FGSM-RS 1 Best 51.67 31.02 23.05 22.42 22.61 22.04 21.75 18.72 20.92 21.87 23.00
Last 51.67 31.02 23.05 22.42 22.61 22.04 21.75 18.72 20.92 21.87 23.00

Free(m=8) - Best 52.06 32.13 25.06 24.48 24.74 24.09 24.04 20.23 22.43 23.99 24.86
Last 52.06 32.13 25.06 24.48 24.74 24.09 24.04 20.23 22.43 23.99 24.86

GAT 1 Best 57.49 36.77 29.63 28.91 29.14 28.60 28.30 23.11 25.14 28.42 27.69
Last 57.58 36.85 29.55 28.87 29.06 28.43 28.30 23.02 24.97 28.43 27.64

FGSM-SDI 1 Best 58.64 37.23 29.19 28.60 28.78 27.99 27.67 23.27 25.85 27.83 29.00
Last 58.54 37.19 29.17 28.53 28.71 28.00 27.72 23.18 25.55 27.89 28.94

FGSM-PGI 1 Best 58.78 40.02 31.84 31.43 31.94 31.30 31.19 25.65 28.23 31.21 30.35
Last 58.82 39.83 31.56 31.22 31.65 31.18 30.89 25.43 27.75 30.93 30.27

GradAlign 1 Best 54.90 35.28 27.50 26.77 27.13 26.52 26.22 22.30 25.01 26.39 27.20
Last 55.22 35.51 27.40 26.82 27.12 26.42 26.24 22.19 24.94 26.52 27.62

N-FGSM 1 Best 54.41 35.00 27.59 26.99 27.01 26.55 26.34 22.81 25.08 26.31 27.42
Last 54.41 35.00 27.59 26.99 27.01 26.55 26.34 22.81 25.08 26.31 27.42

Ours 1 Best 57.32 40.29 33.73 33.33 33.56 33.17 33.06 26.61 28.47 33.15 31.06
Last 57.32 40.29 33.73 33.33 33.56 33.17 33.06 26.61 28.47 33.15 31.06

MART 10 Best 54.51 38.62 32.37 32.00 32.18 31.68 31.59 26.07 28.01 31.55 29.92
Last 54.75 38.52 32.18 31.75 31.85 31.37 31.21 25.71 27.81 31.22 29.87

LAS-AWP 10 Best 58.75 40.66 32.98 32.42 32.58 31.91 31.74 27.23 29.59 31.74 32.30
Last 58.75 40.66 32.98 32.42 32.58 31.91 31.74 27.23 29.59 31.74 32.30

Table 1: Accuracy Comparisons of Different AT Methods on CIFAR-100. Bold numbers in this table indicate the best results
of single-step AT. Best indicates the best accuracy during training stage and Last indicates the accuracy from last epoch.
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Figure 5: Comparison of robust accuracy (PGD-10), training
time, and GPU memory of different single-step AT methods
on CIFAR-10 dataset. The method in upper left corner of
each subfigure denotes the better robustness and efficiency.

GAT (Sriramanan et al. 2020), FGSM-SDI (Jia et al. 2022c),
FGSM-PGI (Jia et al. 2022a), GradAlign (Andriushchenko
and Flammarion 2020), and N-FGSM (de Jorge Aranda et al.
2022). Furthermore, the multi-step AT is also considered
for demonstrating the extension of TDAT, which contains
MART (Wang et al. 2020) and LAS-AWP (Jia et al. 2022b).
Specially, FGSM-RS (Wong, Rice, and Kolter 2020) are im-
plemented with larger step size 10/255 to avoid CO.

Comparison Experiments and Analysis
Due to page limitations, the performance of TDAT com-
pared with other AT methods on CIFAR-10, Tiny ImageNet,
and ImageNet-100 is presented in the Tables 1, 2, and 3 of
Supplementary Materials, respectively.

Results on CIFAR-10 Our method achieves the best
robust accuracy in the best checkpoint against FGSM
(+1.13%), MIFGSM (+1.92%), BIM (+1.70%), PGD-
10 (+1.59%), PGD-20 (+1.51%), PGD-50 (+1.52%), and
APGD (+1.32%) attacks compared to other single-step AT
methods. Meanwhile, our method exhibits competitive ro-
bust accuracy against AA, C&W, and Square attacks, with
only a slight decrease of 0.27%, 0.7%, and 0.29% com-
pared to the best method. Furthermore, the results also ver-
ify that our proposed method yields better robust accuracy
compared to multi-step AT. Moreover, as shown in Fig. 5,
TDAT can obtain the state-of-the-art robustness while re-
quiring less time and memory resources.

Results on CIFAR-100 The experiment results of TDAT
compared with other AT methods on the CIFAR-100 dataset
are presented in Table 1. Our methods demonstrate com-
petitive performance compared to single- and multi-step
AT methods. Specifically, our method achieves the best
robust accuracy when defending against FGSM (0.27%),
MIFGSM (+1.89%), BIM (+1.90%), PGD-10 (+1.62%),
PGD-20 (+1.87%), PGD-50 (+1.87%), AA (+0.96%),
C&W (+0.24%), APGD (+1.94%), and Square (+0.71%)
attacks compared with other existing single-step AT meth-
ods. Moreover, its best performance is generated by the
checkpoint obtained from the last epoch, which avoids early
stopping method and eliminates comparing the performance
of each checkpoint.

Results on Tiny ImageNet Our method achieves a com-
petitive robust accuracy in the best checkpoint against
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FGSM (+1.83%), MIFGSM (+1.05%), BIM (+0.77%),
PGD-10 (+0.71%), PGD-20 (+0.6%), PGD-50 (+0.58%),
APGD (+0.64%), and Square (+1.17%) attacks compared
to the other single-step AT methods. On the other aspect,
there is only a small gap between the performance obtained
at the last training epoch and the best epoch. Specifically,
our method achieves state-of-the-art results against FGSM
(+2.2%), MIFGSM (+2.48%), BIM (+2.43%), PGD-10
(+2.35%), PGD-20 (+2.35%), PGD-50 (+2.33%), AA
(+1.19%), C&W (+1.45%), APGD (+2.29%), and Square
(+1.94%) attacks from the last epoch.

Results on ImageNet-100 TDAT achieves a competi-
tive robust accuracy in the best checkpoint against FGSM
(+0.14%), MIFGSM (+1%), BIM (+1.24%), PGD-10
(+1.26%), PGD-20 (+1.22%), PGD-50 (+1.4%), APGD
(+1.3%), and Square (+1.06%) attacks compared to the
other single-step AT methods. Furthermore, our proposed
method obtains the best robust accuracy against all consid-
ered adversarial attacks compared to other AT methods in
term of the last training epoch.

Ablation Study
Effects of Each Component First, when only batch mo-
mentum initialization is involved, the training stability is en-
hanced with CO eliminated, and the robustness of the neural
network is improved. However, the robust accuracy is still
unsatisfactory. Second, only utilizing the proposed loss or
dynamic label relaxation is able to improve the clean accu-
racy and accelerate convergence, yet cannot void CO, lead-
ing to a breakdown in robust precision. The results demon-
strate a noticeable improvement in the clean accuracy of the
neural network upon employing the proposed loss but at the
expense of robust accuracy. When dynamic label relaxation
and taxonomy driven loss are involved simultaneously, ro-
bust accuracy can be improved with a little loss of clean ac-
curacy (as presented in the second and last row of Table 2).

Effects of Components Cooperation The best perfor-
mance of TDAT is obtained by adopting all of the compo-
nents, achieving an accuracy of 82.25% for clean accuracy
and 56.85% for robust accuracy. Generally, the robust accu-
racy of neural networks is significantly improved with only
a small reduction in clean accuracy when all components

Init† Label‡ Loss⋆ Clean Acc PGD-10
Best/Last Best/Last

✗ ✗ ✗ 64.29/91.33 41.70/14.60
✓ ✗ ✗ 82.50/82.91 53.82/53.70
✓ ✓ ✗ 86.73/89.04 47.66/45.17
✓ ✗ ✓ 83.83/84.10 51.00/50.55
✓ ✓ ✓ 82.25/82.25 56.85/56.85

Table 2: Ablation Study Results. Init†, Label‡ and Loss⋆ rep-
resent batch momentum initialization, dynamic label relax-
ation and taxonomy driven loss function. Bold numbers in
this table indicate the best robust accuracy of single-step AT.

Inner† Outer⋆ Clean Acc PGD-10
Best/Last Best/Last

0.15 0.9 85.49/85.56 40.69/40.64
0.15 0.6 85.76/85.99 44.49/44.19
0.15 0.15 82.25/82.25 56.85/56.85
0.6 0.15 81.92/81.99 54.93/54.61
0.9 0.15 81.22/81.43 54.60/54.24
0.6 0.6 83.41/83.42 54.01/53.49
0.9 0.9 83.88/84.01 52.47/52.19

Table 3: Analyses on Label Relaxation Factor. Bold numbers
in this table indicate the best robust accuracy of single-step
AT. Inner† and Outer⋆ represent relaxation factor of inner
maximization and outer minimization, respectively.

are involved. Note that the stability of the training procedure
in AT is essential and eliminates the requirements for perfor-
mance comparison between each epoch or the early stopping
strategy. The best checkpoint of our method can be obtained
directly from last epoch.

Relaxation Factor Dynamic label relaxation is adopted
on the labels of both inner and outer optimization. The cor-
responding analyses are presented in Table 3 and Fig. 6.
Specifically, when the factor of the inner maximization prob-
lem remains at 0.15, increasing the factor of the outer min-
imization problem can significantly reduce the robust accu-
racy. Meanwhile, when the factor of the outer minimization
problem remains at 0.15, only increasing the factor of the
maximization problem leads to a mild decrease in both clean
and robust accuracy. These findings validate our previous
thought that improving the outer minimization problem is
more crucial than the inner maximization problem. More-
over, we discover that using same factor in both inner and
outer optimization is significant from Table 3. Therefore, as
shown in Fig. 6, we further select 35 relaxation factors rang-
ing from 0.11 to 1 in order to demonstrate the impact of same
factors used in both optimization. As the factor increases, the
robust accuracy gradually decreases and the clean accuracy
gradually increases. More analyses on training epochs are
provided in Supplementary Materials.
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Figure 6: Clean and Robust (PGD-10) Accuracy of our
method on CIFAR-10 with different relaxation factors.
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Conclusion
In this paper, we find that catastrophic overfitting (CO) oc-
curs in single-step adversarial training (AT) which is caused
by a specific kind of adversarial examples (AEs). Specifi-
cally, the aim of generating AEs in single-step AT is dis-
torted, resulting in a sudden decrease in generalization. To
address this issue, we proposed a taxonomy of AEs to inves-
tigate the relationship between kinds of training examples
and CO. On this basis, taxonomy driven fast AT (TDAT)
is proposed, which involves batch momentum initializa-
tion, dynamic label relaxation, and taxonomy driven loss.
Our TDAT is a systematic improvement of the single-step
AT, thereby can be regarded as a new training paradigm.
Comprehensive experimental results demonstrate the pro-
posed method successfully alleviates CO and achieves sig-
nificantly improved robust accuracy compared with other
state-of-the-art single- and even multi-step AT methods.
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