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Abstract

Recent advances in deep learning have greatly improved
the segmentation of mitochondria from Electron Microscopy
(EM) images. However, suffering from variations in mito-
chondrial morphology, imaging conditions, and image noise,
existing methods still exhibit high uncertainty in their pre-
dictions. Moreover, in view of our findings, predictions with
high levels of uncertainty are often accompanied by inaccura-
cies such as ambiguous boundaries and amount of false posi-
tive segments. To deal with the above problems, we propose a
novel approach for mitochondria segmentation in 3D EM im-
ages that leverages evidential uncertainty estimation, which
for the first time integrates evidential uncertainty to enhance
the performance of segmentation. To be more specific, our
proposed method not only provides accurate segmentation re-
sults, but also estimates associated uncertainty. Then, the es-
timated uncertainty is used to help improve the segmentation
performance by an uncertainty rectification module, which
leverages uncertainty maps and multi-scale information to re-
fine the segmentation. Extensive experiments conducted on
four challenging benchmarks demonstrate the superiority of
our proposed method over existing approaches.

Introduction

Positioned at the heart of cellular metabolism, mitochondria
serve a key role in powering life through massive and var-
ied metabolic functions (Annesley and Fisher 2019; Bock
and Tait 2020). Thanks to the Electron microscopy (EM)
technique, high-resolution images of mitochondria and other
cellular structures are now available, making them a valu-
able resource for studying cellular biology and connec-
tomics (Casser et al. 2020; Wei et al. 2020; Lucchi et al.
2011). The utilization of deep learning algorithms in mi-
tochondria segmentation has shown significant progress, as
demonstrated by state-of-the-art (SOTA) methods (Luo et al.
2021; Peng, Yi, and Yuan 2020; Peng and Yuan 2019;
Yuan et al. 2021). Most of these techniques employ the
U-Net (Ronneberger, Fischer, and Brox 2015) architecture
or its variations (Casser et al. 2020; Mekuc et al. 2020)
to address the unique challenges posed by EM image seg-
mentation. Recently, transformer and self-attention (Franco-
Barranco, Muifoz-Barrutia, and Arganda-Carreras 2022)
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Figure 1: Illustration of the effectiveness of using uncer-
tainty information to modify segmentation results.

have also shown advantages in mitochondria image segmen-
tation (Franco-Barranco, Mufioz-Barrutia, and Arganda-
Carreras 2022; Yuan et al. 2020, 2021).

Despite the advancements made by deep learning (DL)
models, they remain plagued by considerable uncertainty
within their predictions. This uncertainty originates from
various sources (Guo et al. 2017), including out-of-domain
inputs, data quality issues, and nuances of the training con-
ditions. Within the EM images, this issue is exacerbated
by the variations in data quality caused by artifacts or de-
formations during the image acquisition process. Conse-
quently, DL models might produce overconfident but erro-
neous predictions. These predictions output by the current
mitochondria segmentation framework impose limitations
on the practical applicability of these models, particularly in
3D cell reconstruction and subsequent functional analysis.
Therefore, it makes uncertainty estimation essential to pre-
vent potentially disastrous decisions based on segmentation
results. This brings three key questions: How to represent
the uncertainty in EM image segmentation? What method-
ologies can be employed to accurately estimate this uncer-
tainty? How can this uncertainty estimation be harnessed to
enhance the segmentation performance?

For the representation of the uncertainty, there are two
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main types of uncertainty in DL method (Kendall and Gal
2017): epistemic (data) uncertainty arising from the inher-
ent randomness or variability in the data itself, and aleatoric
(model) uncertainty arising from the limitations and lack of
knowledge in the model to learn the data. This paper, along
with many previous works, focuses on aleatoric uncertainty.

For the estimation of aleatoric uncertainty, three main-
stream methods are now available: dropout-based (Gal
and Ghahramani 2016; Mobiny et al. 2021), ensemble-
based (Lakshminarayanan, Pritzel, and Blundell 2017), and
evidential-based (Sensoy, Kaplan, and Kandemir 2018)
methods. Among them, evidential-based methods, relying
on the Dempster-Shafer Evidence Theory (Dempster 1968),
have shown more robust results with lower computational
costs (Zou et al. 2022) compared to the other two methods.
Notably, while evidential-based methods have been used in
segmenting natural and medical images, they have not been
explored for EM images. In this paper, we intend to use
evidential-based methods to estimate the aleatoric uncer-
tainty for EM image segmentation.

Then, for the utilization of the estimated uncertainty, pre-
vious studies have explored various approaches, such as gen-
erating pseudo labels for unlabeled data (Peng, Yi, and Yuan
2020) and incorporating uncertainty-based weights to fuse
predictions from diverse sources (Basir and Yuan 2007).
However, in EM segmentation tasks, limited attention has
been given to the potential of directly rectifying errors using
uncertainty information. During our mitochondria segmen-
tation experiments, as an example illustrated in Figure 1, we
observe that the areas of high uncertainty are prone to er-
roneous segmentation predictions. By using the uncertainty
estimation (d) to rectify the original probabilistic prediction
(c), the performance of the rectified prediction (e) demon-
strated a notable enhancement, with a 7.5% improvement in
Dice and a 14.3% enhancement in mAP. Building upon these
observations, we advocate harnessing the estimated uncer-
tainty as a strategy to effectively rectify segmentation errors.

In this study, we introduce a novel segmentation method,
named Evidential Uncertainty-guided Mitochondria Seg-
mentation for 3D EM Images (EUMS-3D), which is illus-
trated in Figure 2. EUMS-3D enables both uncertainty es-
timation and segmentation rectification by taking advantage
of evidential deep learning (Sensoy, Kaplan, and Kandemir
2018). Specifically, EUMS-3D initially predicts the proba-
bilities of semantics (inner part of the objects) and bound-
aries for the mitochondria by the backbone network. Then,
an Evidential Estimation Module (EEM) is incorporated to
model the uncertainty at the voxel level for all probabil-
ity predictions. Subsequently, these predictions are rectified
through the attention mechanism-based Uncertainty Rectifi-
cation Module (URM), which integrates the uncertainty in-
formation from EEM and the multi-scale information from
the designed Feature Aggregation Module (FAM). Our ex-
perimental results demonstrate the effectiveness of incorpo-
rating evidential uncertainty estimation to enhance 3D mito-
chondria segmentation, as EUMS-3D outperforms existing
methods on four benchmark datasets: MitoEM-R (Wei et al.
2020), MitoEM-H (Wei et al. 2020), Kasthuri++(Casser
et al. 2020), and Lucchi++(Casser et al. 2020). Ablation
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studies further confirm the contributions of each designed
module in improving segmentation performance.
In summary, the contributions of this paper are as follows.

* To our best knowledge, this is the first evidential
uncertainty-guided 3D mitochondria segmentation net-
work for EM images.

* The uncertainty rectification module is proposed to en-
hance the segmentation performance by leveraging es-
timations of associated uncertainty and incorporating
multi-scale features using the attention mechanism.

* Effectiveness of our method is verified by extensive ex-
periments on four challenging benchmarks and on differ-
ent backbone models.

Related Works

Mitochondria Segmentation. Recently, the field of 3D mi-
tochondria segmentation has witnessed significant advance-
ments. Numerous approaches have been proposed to tackle
this challenging task. Traditional methods (Jorstad and Fua
2015; Lucchi, Li, and Fua 2013; Vazquez-Reina et al. 2011;
Lucchi et al. 2012) often rely on manual or semi-automatic
techniques, struggling with the complexity and variability of
mitochondria structures in large-scale datasets. In response
to these limitations, DL approaches have gained substantial
attention. Convolutional neural networks and their variants
have shown remarkable success in various image segmen-
tation tasks. Recent studies have explored the adaptation
and development of deep learning architectures for 3D mi-
tochondria segmentation, including the use of U-Net (Ron-
neberger, Fischer, and Brox 2015), Mask R-CNN (Liu et al.
2018), and their 3D extensions. Additionally, advanced
techniques such as attention mechanisms (Franco-Barranco,
Muiioz-Barrutia, and Arganda-Carreras 2022), and genera-
tive adversarial networks (GANs) (Zhang et al. 2022) have
also been investigated to enhance the accuracy and robust-
ness of mitochondria segmentation.

Uncertainty estimation methods. Researchers have in-
troduced a spectrum of uncertainty estimation techniques.
These include Bayesian neural network (BNN) (Hinton and
Van Camp 1993; MacKay 1992), ensemble-based (Lak-
shminarayanan, Pritzel, and Blundell 2017), dropout-
based (Gal and Ghahramani 2016; Lakshminarayanan,
Pritzel, and Blundell 2017; Kendall, Badrinarayanan, and
Cipolla 2015), and evidential-based methods (Sensoy, Ka-
plan, and Kandemir 2018; Tsiligkaridis 2021; Tong, Xu, and
Denoeux 2021). Classical BNNs model uncertainty by as-
similating the weight distribution of the network, and ap-
proximate the integral of parameters using variational infer-
ence or Laplace approximation to gauge the posterior pre-
diction distribution (Tsiligkaridis 2021). However, it is com-
plex to train BNN due to the explicit representation of model
parameters, which limits their scalability in terms of archi-
tecture and data size (Gawlikowski et al. 2021). In contrast,
learning an ensemble of deterministic networks (Lakshmi-
narayanan, Pritzel, and Blundell 2017; Mehrtash et al. 2020)
and introducing Monte Carlo dropout (Gal and Ghahra-
mani 2016) are more intuitive and simple, referred to as
ensemble-based and dropout-based methods, respectively.
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Figure 2: Overview of the proposed method. Initially, taking 3D EM image patches as input, an encoder-decoder network
produces both a semantic mask and an instance boundary in parallel. Then, a feature aggregator fuse multi-layer features
from the decoder. Subsequently, the evidential estimation module is employed to determine the uncertainty of each voxel for
two inputs: semantic prediction, boundary prediction. Following this, the uncertainty rectification module integrates the two
uncertainty maps and the aggregated multi-layer features to refine segmentations and obtain the final mitochondria instances.

Although been widely used, the ensemble-based methods
require training multiple models, leading to high computa-
tional costs, and dropout-based methods may produce incon-
sistent outputs (Mobiny et al. 2021). Instead, the evidential-
based method has shown more reliable performance in un-
certainty estimation. Moreover, they demonstrate more ro-
bust results with lower computational costs compared to
ensemble-based and dropout-based methods (Yager and Liu
2008). Although they have been utilized in natural and med-
ical image segmentation tasks, their application in EM im-
age segmentation, particularly for mitochondria segmenta-
tion, requires further investigation.

Method
Preliminary of Evidential Uncertainty Estimation

The evidential uncertainty estimation method (EDL) is a
generalization of Bayesian theory to subjective probability.
As Figure 2 illustrates, it assigns belief masses to each pos-
sible class label, and then the belief distribution of DST in
the framework can be formalized as a Dirichlet distribution
by Subjective Logic (SL) (Dempster 1968; Jgsang 2016).
Specifically, if we treat the segmentation as a voxel-wise
K-class classification problem, for a voxel 7, the EDL re-
gards the classification task as giving a multinomial subjec-
tive opinion in a K —dimensional domain{1,..., K}. The
subjective opinion is expressed as a triplet w = (b, u,a),
where b = {by,...,bx } is the belief mass, u represents the
uncertainty, and a = {a1,...,ax} is the base rate distri-
bution. For any &k € [1,2,..., K], the probability mass of a
multinomial opinion is defined as py, = by, + axu. To enable
the probability meaning of pg, i.e., > x Pk = 1, the base rate
ay, is typically set to 1/K and the subjective opinion is con-
strained by u + ZkK:l b = 1. For a K-class setting, the

probability mass p = [p1, p2, . .., Pk] is assumed to follow
a Dirichlet distribution parameterised by a K -dimensional
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Dirichlet strength vector a« = {ai,...,ax}. The total

strength of the Dirichlet is defined as S = Zszl Q.

According to the evidence theory, the term evidence is in-
troduced to describe the amount of supporting observations
for classifying the voxel i into a class. Lete = {ey,...,ex }
be the evidence for K classes, e, = o — 1. In this way, the
Dirichlet evidence can be mapped to the subjective opinion
by setting the following: b, = %, and u = %

Therefore, we can see that if the evidence ¢;, for the k-th
class is predicted, the corresponding expected class proba-
bility can be rewritten as pr = « /.S, and the predictive
uncertainty u can be determined after o is obtained.

Overview of the Architecture

Here we introduce the evidential uncertainty-based mi-
tochondria segmentation in 3D EM Images (EUMS-3D)
method. As illustrated in Figure 2, EUMS-3D consists of
four modules: the Backbone Network for feature learning,
the Feature Aggregation Module (FAM) for multi-layer fea-
ture combining, the Evidential Estimation Module (EEM)
for the uncertainty estimation, and the Uncertainty Rectifi-
cation Module (URM) for rectifying predictions. In the fol-
lowing sections, we describe the four modules, respectively.

Backbone Network

Recently, U-Net and its variants (Siddique et al. 2021) have
shown remarkable performance in segmenting biomedical
images. Building on this success, transformer-based archi-
tectures, originally popularized in natural language process-
ing (NLP) tasks, have emerged as promising alternatives.
In our work, we have modified the skip-connected encoder-
decoder architecture known as 3D UX-Net (Lee et al. 2023)
as our backbone network to predict the probability of seman-
tic and boundary for each input 3D patch simultaneously.
As a result, the output of the backbone is the concatena-
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tion of the two probabilistic predictions, denoted as P €
REXHXWXD “and p,. is the k-th class prediction for voxel
i. In this framework, £ € {1,..., K}, K = 2. Compared
to other SOTA models, 3D UX-Net, with lightweight vol-
umetric ConvNet using hierarchical Transformers, demon-
strates stable voxel segmentation performance across vari-
ous challenging public datasets. It has proven its effective-
ness in handling complex image segmentation tasks. It is es-
sential to highlight that our framework is highly flexible, en-
abling designers to freely choose different backbones, such
as Res-Unet3D (Li et al. 2022) and TransBTS (Lin et al.
2022), among others. This adaptability further enhances the
versatility and applicability of our approach.

Feature Aggregation Module

Mitochondria in EM images are often with small size and
ambiguous boundaries, necessitating details with higher res-
olution for enhanced differentiation. To effectively handle
small objects while preserving the lightweight attribute of
the system, we introduce the Feature Aggregation Module
(FAM). FAM incorporates a multi-layer aggregation mech-
anism (Zheng et al. 2021), where the intermediate output of
the decoder is concatenated together to produce a mask fea-
ture map foq4(2)- To better leverage the information from the
original resolution, after upsampling the mask feature map
to the original resolution, we concatenate it with the original
image and use another 3D convolution to fuse the informa-
tion and generate the final mask.

Evidential Estimation Module

Based on the evidential uncertainty modeling method il-
lustrated in Section 3.1, we facilitate the quantification of
classification uncertainty by jointly modeling the probability
maps P output by the backbone model. Figure 2 illustrates
the process, where the output of the backbone network f(x)
undergoes an activation function layer (softplus) to ensure
non-negative values and gain the evidence. Subsequently,
the subjective logic offers a belief mass function, enabling
the model to calculate the segmentation result uncertainties
for different classes, resulting in the uncertainty estimation
U € RHXWXD a5 the output.

Uncertainty Rectification Module

To refine the predictions P, the Uncertainty Rectification
Module (URM) leverages both the uncertainty estimation
U and the aggregated multi-layer features f,q4(z) as de-
picted in Figure 3. Since predictions with high uncertainty
are prone to erroneous results, URM first divides the uncer-
tainty maps U and probabilistic prediction P into certain
and uncertain by a threshold 7. Then, for the voxel ¢, two
strategies are applied for the k-th class prediction p;; to get
the rectified prediction p;° by using the u; € U, which is
the uncertainty estimation of the voxel 4.

a) Certain case (u;<7): the uncertainty u, is regarded
simply as a weight: plc® = p; - (1 — u;).

b) Uncertain case (u;>7): when the prediction of the
model is uncertain, mere reliance on the model’s self-

contained prediction may not suffice for effective rectifi-
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Figure 3: Illustration of the uncertainty rectification module.

cation. To address this challenge, an approach involves in-
corporating contextual information from the surrounding
voxels to aid in decision-making, thereby preventing over-
correction. To achieve this, the segmentation prediction is
subjected to a convolutional operation with a kernel size of
7 X 7 x 7, resulting in P°°"?, pf™" is the probability that
the i-th voxel is classified into the k-th class output, which
is then modulated by u; as a weighting factor, leading to the
refined prediction denoted as p[f® = pip™ - (1 — u;).
Furthermore, to mitigate potential overly arbitrary mod-
ifications caused by uncertainty estimates, we introduce
a mask decoder that incorporates multi-scale information,
adapted from (Cheng et al. 2022). As illustrated in Fig-
ure 3, the attention mechanism is applied to leverage the
aggregated multi-layer features obtained from FAM. This
process leads to the prediction of new uncertainty-aware
masks, denoted as Pf7%!_ Subsequently, we utilize the wa-
tershed (Shafarenko, Petrou, and Kittler 1997) algorithm to
generate instance results from the uncertainty-aware masks.

Loss Functions

Three loss functions are utilized in voxel-wise manner. First,
we use the EDL loss function modified from cross-entropy
loss proposed in (Sensoy, Kaplan, and Kandemir 2018; Zou
et al. 2022) for the outputs of EEM. For voxel i, y;; and
pir are the label and predicted probability for class k. 1 (-)
denotes the digamma function. S; is the total strength of a
Dirichlet distribution parameterized by «.

K
Lippr = Y yn(¥(S) — (air)). (1
k=1
Second, the KL divergence loss function is introduced,
where T'(+) is the gamma function. & = yix + (1 — yir) ©
a1 denotes the adjusted parameters of the Dirichlet distribu-
tion, which aims to ensure that ground truth class evidence
is not mistaken for 0.
i INODTAIPR-119)
ke = log(re e TE)
K /= ~ K~
+ 2 ke (@i — DY) — (3 =y Oéuc)]-(z)
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. MitoEM-H MitoEM-R Kasthuri++ Lucchi++
Methods Dataset / Metric Dice mAP Dice mAP Dice mAP Dice mAP
Xiao (Xiao et al. 2018) 0.798 | 0.812 | 0.830 | 0.903 | 0.947 | 0.900 | 0.882 | 0.910
Peng and Yuan (Peng and Yuan 2019) 0.757 | 0.793 | 0.802 | 0.848 | 0.909 | 0.833 | 0.893 | 0.806
ConvNets U3D-BC (Wei et al. 2020) 0.746 | 0.773 | 0.775 | 0.844 | 0.889 | 0.831 | 0.880 | 0.753
-based Zhili (Li et al. 2021) 0.765 | 0.787 | 0.794 | 0.870 | 0.935 | 0.909 | 0.865 | 0.811
HIVE-Net (Yuan et al. 2021) 0.825 | 0.856 | 0.851 | 0.901 | 0.862 | 0.904 | 0.893 | 0.841
nnU-Net (Isensee et al. 2021) 0.807 | 0.830 | 0.825 | 0.864 | 0.859 | 0.872 | 0.856 | 0.829
Res-Unet3D (Li et al. 2022) 0.783 | 0.828 | 0.815 | 0917 | 0.943 | 0.892 | 0.889 | 0.769
nnFormer (Zhou et al. 2021) 0.787 | 0.830 | 0.824 | 0.813 | 0.919 | 0.874 | 0.889 | 0.825
SwinUNETR (Hatamizadeh et al. 2022a) | 0.779 | 0.822 | 0.803 | 0.867 | 0.904 | 0.861 | 0.869 | 0.874
Transformer | DSTUnet (Lin et al. 2022) 0.762 | 0.799 | 0.836 | 0.824 | 0.916 | 0.867 | 0.896 | 0.802
-based TransBTS (Wang et al. 2021) 0.801 | 0.827 | 0.866 | 0.909 | 0.931 | 0.899 | 0.902 | 0.896
UNETR (Hatamizadeh et al. 2022b) 0.775 | 0.809 | 0.813 | 0.836 | 0.855 | 0.858 | 0.872 | 0.801
3D UX-Net (Lee et al. 2023) 0.816 | 0.845 | 0.859 | 0.901 | 0.950 | 0.917 | 0.902 | 0.910
EUMS-3D (HIVE-Net) 0.837 | 0.871 | 0.865 | 0.911 | 0.895 | 0.909 | 0.907 | 0.869
EUMS-3D (Res-Unet3D) 0.818 | 0.848 | 0.839 | 0.923 | 0.951 | 0.915 | 0.900 | 0.806
EUMS-based | EUMS-3D (SwinUNETR) 0.803 | 0.841 | 0.824 | 0.882 | 0.930 | 0.879 | 0.918 | 0.924
EUMS-3D (TransBTS) 0.823 | 0.870 | 0.878 | 0.917 | 0.945 | 0.914 | 0.919 | 0913
EUMS-3D (3D UX-Net) 0.845 | 0.901 | 0.890 | 0.928 | 0.972 | 0.931 | 0.937 | 0.953

Table 1: Quantitative results of methods on MitoEM-H, MitoEM-R, Kasthuri++ and Lucchi++ datasets. The methods are
grouped into three types: ConvNets, Transformer, and EUMS based. For EUMS-based methods, the bracket shows the backbone
model. The bold values indicate the best performance and the underlined values indicate the second best.

Third, we use a soft Dice loss (Milletari, Navab, and Ah-
final

madi 2016) Lpjc. to optimize the network, where p;, """ €
P/inal is the uncertainty-aware prediction in URM.
K final
; 2Yikp;
7 ik
Do = S0(1 — YLy 3)
" kzzl yik + Dl

The overall loss function can be defined as follows: L0 =
Lpice + M Lepr + Ao Lkr. A1 and A\ are balance factors.

Experiments
Experimental Settings

We compare our proposed method with several SOTA seg-
mentation methods. These include the current ConvNets-
based and Transformer-based methods on image segmen-
tation in volumetric settings. For ConvNets-based methods,
we choose Res-Unet3D (Li et al. 2022), HIVE-Net (Yuan
et al. 2021), Zhili (Li et al. 2021), Peng and Yuan (Peng and
Yuan 2019), Xiao (Xiao et al. 2018), Res-Unet3D (Li et al.
2022), HIVE-Net (Yuan et al. 2021), and nnU-Net (Isensee
et al. 2021). For Transformer-based methods, we choose
DSTUnet (Lin et al. 2022), TransBTS (Wang et al. 2021),
UNETR (Hatamizadeh et al. 2022b), nnFormer (Zhou et al.
2021), SwinUNETR (Hatamizadeh et al. 2022a), and 3D
UX-Net (Lee et al. 2023). The A1 and )\ in the loss function
are set to be 1 and 0.5 following (Zou et al. 2022).

Datasets. We evaluate our method on four datasets:
MitoEM-R (Wei et al. 2020), MitoEM-H (Wei et al.
2020), Kasthuri++ dataset (Casser et al. 2020) and Luc-
chi++ (Casser et al. 2020). MitoEM is a dense mitochondria
instance segmentation dataset from ISBI 2021 challenge, in-
cluding two subsets collected from an adult human and an
adult rat with volumes (30 um?) of resolution of 8x8x30
nm. Each volume has 500 annotated grayscale images of
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resolution (4096 x4096), out of which 400 for training and
100 for testing. Kasthuri++ has 85 image slices of size
1643 x 1613 for training and 75 slices of size 13341553
images for testing. Lucchi++ is a sparse mitochondria se-
mantic segmentation dataset with the training and testing
volume size of 165 x 1024 x 768.

Experimental Results

We evaluate the methods following the ISBI 2021 chal-
lenge (Wei et al. 2020), including mean 3D Average Preci-
sion (mAP) and Dice scores at the instance level. Based on
the quantitative results in Table 1 and the visualization re-
sults shown in Figure 4, our proposed EUMS-3D algorithm,
utilizing 3D UX-Net as the backbone, demonstrates supe-
rior performance in all segmentation tasks and maintains a
moderate parameter count compared to other models.
Evaluation on MitoEM. The quantitative results highlight
EUMS-3D(3D UX-Net) superior performance in precise
mitochondria segmentation. Across both datasets, it shows
the highest scores for both Dice and mAP, showcasing its
excellent performance in accurately segmenting mitochon-
dria. Specifically, it achieved approximately 84.5%/90.1%
(Dice/mAP) on the human dataset and 89.0%/92.8% on
the rat dataset, respectively. Notably, the comparison be-
tween Transformer-based and ConvNets-based methods in-
dicates no significant difference in effect, while our EUMS-
3D achieves SOTA performance. Several segmentation ex-
amples are presented in Figure 4, highlighting our method’s
proficiency in capturing the morphology of mitochondria.
Evaluation on Kasthuri++ and Lucchi++. Considering the
relatively smaller size of the two datasets, the segmenta-
tion boundary plays a critical role in influencing the scores.
Remarkably, our method EUMS-3D (3D UX-Net) achieves
a performance of 97.2% in Dice coefficient and 93.1% in
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Kasthuri++ MitoEM-R MitoEM-H

Lucchi++

(a) EM Image

(b) Ground Truth (c¢) Res-Unet 3D

(d) HIVE-Net

(e) 3D UXNet (f) Ours

Figure 4: The visualization of segmentation results on MitoEM-H, MitoEM-R, Kasthuri++, and Lucchi++ datasets. (a,b) The
EM image with the ground truth. (c-e) The predictions of the three compared methods. (f) The prediction of our EUMS-3D (3D
UXNet). (g) The prediction of the ablation for EUMS-3D (3D UXNet) by removing URM module. (h) The uncertainty map
within EUMS-3D (3D UXNet). For all the segmentation figures, true positive samples are highlighted in green, false positive

in red, and false negative in blue.

mAP on the Kasthuri++ dataset. Similarly, on the Lucchi++
dataset, the method achieves a Dice score of 93.7% and an
mAP score of 95.3%, effectively closing the gap toward
human-level benchmarks. The visual illustrations of seg-
mentation instances, elucidated in Figure 4, reinforce and
substantiate the prowess of our approach, adeptly and accu-
rately refining the mitochondrial boundaries.

Exploring Uncertainty Estimation Methods

To further investigate the effectiveness of different uncer-
tainty estimation methods, we compare the evidential-based
method with two other methods, namely dropout (Mukhoti
et al. 2021) and ensemble (Lakshminarayanan, Pritzel, and
Blundell 2017) by replacing the uncertainty estimation mod-
ule. All reported results are based on the 3D UXNet back-
bone model, and we use the two MitoEM datasets for eval-
uation. The Dice and mAP scores of the three methods are
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. MitoEM-H MitoEM-R
Dataset / Metric Dice mAP Dice  mAP
dropout 0.835 0.873 | 0.867 0.895
ensemble 0.839 0.880 | 0.868 0.902
evidential 0.845 0901 | 0.890 0.928

Table 2: Performance of different uncertainty estimation
modules on MitoEM-R and MitoEM-H datasets.

shown in Table 2. It indicates that the evidential uncertainty
estimation method outperforms the other methods with at
least 8% improvement in mAP for the two MitoEM datasets.

Besides, we compare the calibration performance across
the three methods. As the estimation of uncertainty plays
a key role in refining segmentations, it becomes imperative
to possess a well-calibrated model. Such a model should
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Figure 5: The calibration scores of different uncertainty esti-
mation methods. Red/blue/green: ensemble/dropout/eviden-

tial. Solid line/color region: mean/std.
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Figure 6: Ablation study for various backbone networks.
The scores show the improvements achieved by our ap-
proach when applied to different backbones across two Mi-
toEM datasets.

be confident in its predictions when being accurate, and be
uncertain about inaccurate ones (Houlsby et al. 2011). The
evaluation metrics are proposed in (Mobiny et al. 2021), in-
cluding negative predictive value (NPV), true positive rate
(TPR), and uncertainty accuracy (UA). Higher values in-
dicate better calibration of the model, which was depen-
dent on the uncertainty threshold. As shown in Figure 5, the
evidential-based method has the highest scores across three
metrics. This validates that the evidential-based method
could be more effective to rectify the erroneous predictions.

Ablation Study

Backbone Models. We compare various backbone networks
to investigate their influence on the efficacy of our method-
ology. The results demonstrate the improvements achieved
by our approach across two MitoEM datasets when applied
to different backbones, including two ConvNets-based (Res-
Unet3D, HIVE-Net) and three Transformer-based (Trans-
BTS, SwinUNETR, 3D UXNet). The results in Table 1 and
Figure 6 indicate the performance augmentation exhibited
by all five original backbone models. Notably, the perfor-
mance of SWinUNETR attained a commendable 5.6% in-
crease in Dice score on the Lucchi++ dataset. Additionally,
the 3D UX-Net exhibited a noteworthy 6.6% improvement
in Dice score on the MitoEM-H dataset. It should be high-
lighted that our proposed module is lightweight to gain per-
formance enhancement by adding only 2.2M parameters.

URM and FAM. To investigate the effectiveness of the two
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. MitoEM-H MitoEM-R
Dataset & Metric Dice mAP Dice  mAP
w/o URM 0.827 0.869 | 0.871 0.906
w/o FAM 0.840 0.884 | 0.883 0914
w Dilated Conv 0.843 0900 | 0.884 0.925
EUMS-3D 0.845 0.901 | 0.890 0.928

Table 3: Ablation study of the modules of URM and FAM
on MitoEM-R and MitoEM-H dataset.

Thresholdr | 0 0.3 0.5 0.7 1
Dice 0.880 0.884 0.890 0.887 0.887
mAP 0918 0.923 0.928 0924 0.923

Table 4: Ablation study for different threshold in URM on
MitoEM-R dataset.

modules, we conducted an ablation study by training the
network without the two modules, denoted as w/o URM
and w/o FAM. The quantitative results presented in Table 3
demonstrate that leveraging the URM with FAM can im-
prove performance by effectively utilizing multi-scale infor-
mation and uncertainty estimation to correct segmentation
errors. Specifically, it shows an increment of 2.2% in mAP
score across both datasets with the URM, and 1.4% in mAP
with FAM. Several visualization results are shown in Fig-
ure 4, the uncertainty map has high sensitivity in contour
areas. Particularly for regions with morphological similari-
ties to mitochondrial structures that are not annotated in the
ground truth, the model may make mistakes in these zones
without URM. By using URM, the mistakes are effectively
rectified. We also use dilated convolutions (dilation rate of
2) to replace 3D convolutions. It shows a slight decrease
by using Dilated Conv compared to original 3D Conv. This
marginal decrease may suggest that the broader receptive
field potentially introduces additional noise.

Parameter in URM. In URM, we use a threshold 7 to di-
vide the uncertainty estimation and followed by the cer-
tain and uncertain strategies. To explore the influence of
7, we train the model using various threshold values T
0,0.25,0.5,0.75,1 on MitoEM-R dataset, respectively. No-
tably, when 7 = 0, URM treats all predictions as uncertain
case, whereas 7 = 1 corresponds to certain case. The results
in Table 4 demonstrate that the best performance is achieved
when 7 is set to 0.5, indicating that dividing the predictions
by uncertainty can help improve segmentation performance.

Conclusion

This research, for the first time, presents a novel 3D instance
segmentation method for trustworthy segmentation of mito-
chondrion on EM images. To our best knowledge, for the
first time, we employ evidential-based uncertainty estima-
tion and neighborhood information to modify segmentation
outcomes and generate reliable fusion. We conduct compre-
hensive experiments on three benchmark datasets to validate
the efficacy of our approach in improving segmentation re-
sults and uncertainty estimation.
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