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Abstract

There has been significant attention devoted to the effective-
ness of various domains, such as semi-supervised learning,
contrastive learning, and meta-learning, in enhancing the per-
formance of methods for noisy label learning (NLL) tasks.
However, most existing methods still depend on prior as-
sumptions regarding clean samples amidst different sources
of noise (e.g., a pre-defined drop rate or a small subset of
clean samples). In this paper, we propose a simple yet power-
ful idea called NPN, which revolutionizes Noisy label learn-
ing by integrating Partial label learning (PLL) and Negative
learning (NL). Toward this goal, we initially decompose the
given label space adaptively into the candidate and comple-
mentary labels, thereby establishing the conditions for PLL
and NL. We propose two adaptive data-driven paradigms
of label disambiguation for PLL: hard disambiguation and
soft disambiguation. Furthermore, we generate reliable com-
plementary labels using all non-candidate labels for NL to
enhance model robustness through indirect supervision. To
maintain label reliability during the later stage of model train-
ing, we introduce a consistency regularization term that en-
courages agreement between the outputs of multiple augmen-
tations. Experiments conducted on both synthetically cor-
rupted and real-world noisy datasets demonstrate the supe-
riority of NPN compared to other state-of-the-art (SOTA)
methods. The source code has been made available at https:
//github.com/NUST-Machine-Intelligence-Laboratory/NPN.

Introduction
Over the past decades, the revolution in supervised learn-
ing has been driven by large-scale, well-annotated datasets
such as ImageNet (Deng et al. 2009). However, collect-
ing these datasets has become a bottleneck due to its ex-
pense and time-consuming nature, hindering the scalability
of models. The acquisition of large-scale datasets furnished
with annotations of high quality for supervised learning al-
gorithms is a formidable challenge. To address this issue,
weakly supervised learning (Yan and Guo 2023; Chen, Yao,
and Tang 2023; Chen et al. 2023b) has gained considerable
attention, which includes, but is not limited to, noisy label
learning (Li, Socher, and Hoi 2020; Han et al. 2018; Sun
et al. 2022b), multi-label learning (Gong, Yuan, and Bao
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Figure 1: (a-c) The difference between Noisy Label Learn-
ing, Partial Label Learning, and Negative Learning. (d) Our
decomposition of the given label space to candidate label
and complementary label to establish the necessary condi-
tions for Partial Label Learning and Negative Learning.

2022; Yan and Guo 2021; Xu, Liu, and Geng 2020), partial
label learning (Wang et al. 2022; Xu et al. 2021), and semi-
supervised learning (Chen et al. 2023a; Wang et al. 2023).
In this paper, our primary focus is on one specific weakly
supervised learning problem known as noisy label learn-
ing. NLL involves handling low-quality samples with noisy
labels (as shown in Fig. 1 (a)), which mainly stem from
crowd-sourcing platforms (Welinder et al. 2010) or web im-
age search engines (Fergus et al. 2010) employed in dataset
construction. The powerful learning capability of deep neu-
ral networks allows them to fit any noisy labels, leading to
inferior performance in image classification tasks. Conse-
quently, developing robust methods to mitigate the impact
of noisy labels assumes paramount importance.

The existing NLL methods primarily focus on com-
bating label noise by incorporating strategies such as
semi-supervised learning, contrastive learning, and meta-
learning (Liu et al. 2022a,b). Semi-supervised learning
(SSL) often constitutes an appropriate choice to leverage
the selected noisy samples through sample selection rather
than abandoning them. For example, DivideMix (Li, Socher,
and Hoi 2020) employs a mixture model to characterize the
per-sample loss distribution, dynamically partitioning the
training data into a labeled subset comprising clean sam-
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ples and an unlabeled subset comprising noisy samples. The
model is subsequently trained on both labeled and unla-
beled data, adopting a semi-supervised approach. UNICON
(Karim et al. 2022) and NCE (Li et al. 2022a) propose re-
fined sample selection strategies while incorporating semi-
supervised learning. However, these methods tend to neglect
the reliability of the pseudo-labels generated by the semi-
supervised approach, which may lead to correction bias.

Another line of NLL methods boosts performance by in-
tegrating contrastive learning. This approach facilitates fea-
ture extraction that remains uninfluenced by label noise,
thereby demonstrating promising results. Jo-SRC (Yao et al.
2021) takes predictions from two distinct views of each
sample to estimate its “likelihood” of being clean or out-
of-distribution in a contrastive learning manner. Sel-CL
(Li et al. 2022b) proposes selective-supervised contrastive
learning combined with a joint loss to enhance model gen-
eralization performance by introducing consistency regular-
ization. Nevertheless, these methods are sensitive to hyper-
parameters. Recently, Meta-learning has also been em-
ployed to mitigate label noise. L2RW (Ren et al. 2018) pro-
poses a meta-learning instance re-weighting approach to as-
sign weights to noisy instances. MLC (Zheng, Awadallah,
and Dumais 2021) proposes to adopt a label correction net-
work as a meta-model to produce corrected labels for noisy
samples. However, these meta-learning methods tend to re-
quire prior knowledge (e.g., a small subset of clean samples).

To tackle the above challenges, we propose an innovative
approach named NPN for noisy label learning. To be spe-
cific, NPN synergistically incorporates two distinct learning
paradigms: partial label learning and negative learning, to
combat label noise effectively. PLL enables each training
example to be labeled with a coarse candidate set, which
is well-suit for real-world data annotation scenarios with la-
bel ambiguity (as shown in Fig. 1 (b)). NL provides indirect
supervision information using a complementary label that
teaches the network “the input image does not belong to this
complementary label” (as shown in Fig. 1 (c)). Thus, as a
preliminary step, we decompose the given label space to the
candidate and complementary labels to establish the condi-
tions for PLL and NL (as shown in Fig. 1 (d)). For PLL, we
propose two paradigms of label disambiguation in an adap-
tive data-driver manner: hard disambiguation and soft dis-
ambiguation. Additionally, we suggest generating reliable
complementary labels using all non-candidate labels for NL
to enhance model robustness through indirect supervision.
Finally, a consistency regularization term is applied to im-
prove both feature extraction and model prediction. We pro-
vide comprehensive experimental results and extensive ab-
lation studies to validate the effectiveness and superiority of
NPN on synthetically corrupted and real-world datasets. Our
contributions can be summarized as follows:

(1) We present a simple yet powerful method, named
NPN, to alleviate negative impacts induced by noisy labels.
NPN introduces a paradigm shift in conventional noisy label
learning by amalgamating partial label learning and negative
learning. This involves partitioning the given label space into
candidate labels for PLL and complementary labels for NL.

(2) We introduce two paradigms of label disambiguation

for PLL: hard disambiguation (NPN-hard) and soft disam-
biguation (NPN-soft). To enhance the effectiveness of NL,
we advocate using all reliable non-candidate labels as the
complementary label, as opposed to randomly selecting a
single unreliable non-given label.

(3) Comprehensive evaluations on one synthetically cor-
rupted and three real-world noisy datasets show that NPN
outperforms SOTA methods in addressing noisy labels. Ex-
tensive ablation studies are conducted to further verify the
effectiveness of the proposed method.

Related Work
Noisy Label Learning. Recently, numerous methods have
been proposed for learning with noisy labels (Yao et al.
2021; Xia et al. 2023; Gong et al. 2023). They focus on com-
bating noisy labels through sample selection, label correc-
tion, or noise regularization. Previous literature about sam-
ple selection attempts to detect noisy labels by exacerbat-
ing the natural resistance of neural networks to noise. BARE
(Patel and Sastry 2023) proposes an adaptive sample selec-
tion strategy that relies only on batch statistics to provide
robustness against label noise. Another line of research fo-
cuses on label correction, which typically attempts to rec-
tify sample labels using the model predictions. Jo-SRC (Yao
et al. 2021) uses the temporally averaged model (i.e., mean-
teacher model) to generate reliable pseudo-label distribu-
tions for training. Besides, PLS (Albert et al. 2023) proposes
considering the confidence of corrected labels. Certain stud-
ies in the literature emphasize focus on noise regularization,
such as mixup (Zhang et al. 2018), a dedicated loss term
(Liu et al. 2020), or contrastive learning. Unsupervised reg-
ularization (Sun et al. 2022a; Li, Xiong, and Hoi 2021) has
also been shown effective in improving the classification ac-
curacy of neural networks trained on noisy datasets.
Partial Label Learning. Partial Label Learning allows each
training example to be annotated with a candidate label set,
in which the ground-truth label is guaranteed to be included.
Two typical strategies have been proposed for label dis-
ambiguation in PLL: the average-based and identification-
based disambiguation strategies. The average-based disam-
biguation strategy treats each candidate label equally dur-
ing model learning (Zhang and Yu 2015). The identification-
based disambiguation strategy considers the ground-truth la-
bel as a latent variable. It identifies the ground-truth label by
deriving confidence scores for all candidate labels (Wang,
Zhang, and Li 2022; Feng and An 2019). These label disam-
biguation strategies can serve as inspiration for noisy label
learning, which can be regarded as a variation of PLL where
candidate labels encompass all categories in the dataset.
Negative Learning. Negative Learning is an indirect learn-
ing method where CNNs are trained by utilizing a comple-
mentary label that indicates “input image does not belong to
this complementary label.” NLNL (Kim et al. 2019) intro-
duces a noise-robust learning approach that utilizes negative
learning to mitigate the risk of learning incorrect informa-
tion. JNPL (Kim et al. 2021) improves (Kim et al. 2019) and
proposes a novel approach combining negative and positive
learning. UPS (Rizve et al. 2021) employs negative learning
on noisy and low-confidence labels to generalize negative
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Figure 2: The overall framework of NPN. We first decompose the given label space into the candidate and complementary
labels based on model predictions. For PLL, we introduce two adaptive, data-driven paradigms of label disambiguation: hard
disambiguation and soft disambiguation. To enable adaptive, data-driven disambiguation, we maintain a candidate label set S
that stores the candidate labels for each sample during the training process. For NL, we incorporate reliable complementary
labels, which encompass all non-candidate labels, to enhance the model’s robustness through indirect supervision. Finally, NPN
introduces a consistency regularization term that promotes prediction agreement between sample augmentations.

pseudo-labels, which can be utilized for improving single-
label classification. In this work, we propose to exploit the
indirect supervision information by negative learning.

Methods
Problem Statement
Throughout this paper, we mainly focus on noisy label learn-
ing for image classification. Considering the problem of a
C-class classification task, we denote the noisy training set
Dtrain = {(xn, yn)|n = 1, ..., N} as the input with N train-
ing samples. xn denotes the n-th image, and yn ∈ {0, 1}C
denotes the corresponding one-hot label of C classes. The
label yn may not be equivalent to the ground-truth label de-
noted by y∗n, which is not observable during training. Sup-
pose a classification neural network F(·, θ) maps the input
space to the C-dimensional score space F : X → RC , where
θ denotes network parameters. We further denote pc(xn, θ)
as the predicted softmax probability of training sample xn

over its c-th class. The goal is to train F(·, θ) on the noisy
training set Dtrain to perform accurate prediction on Dtest,
where Dtest = {(xm, y∗m)|m = 1, ...,M} is the test set
with accurate labels. The loss function in the conventional
training scheme is the cross-entropy loss as follows:

Lce = − 1

N

N∑
n=1

C∑
c=1

ycnlog(p
c(xn, θ)). (1)

Existing literature (Wei et al. 2022; Xia et al. 2022; Yang
et al. 2022) highlights that optimizing networks using the
cross-entropy loss on noisy datasets often results in inferior
performance. In this work, we aim to enhance noisy label
learning by integrating partial label learning and negative
learning. PLL allows each training example xn to be labeled

with a coarse candidate label set Yn. NL is an indirect train-
ing method for CNNs, where the complementary label Ỹn

is employed. It is worth noting that yn is encoded as a sin-
gle label using one-hot encoding, whereas Yn and Ỹn are
encoded using multi-hot encoding in our NPN.

Label Space Decomposition
In the literature of NLL, more efforts have been devoted
to semi-supervised learning, contrastive learning, and meta-
learning. However, semi-supervised learning methods tend
to overlook the reliability of the generated pseudo-labels,
which may lead to correction bias. Methods employing
contrastive learning methods are considerably sensitive to
hyper-parameters. Meta-learning methods struggle in requir-
ing prior knowledge (i.e., a small subset of clean data).

To this end, we propose to revolutionize conventional
noisy label learning by integrating partial label learning and
negative learning. As an initial step, we decompose the given
label space into a combination of the candidate label set in
PLL and the complementary label in NL. This can prevent
the model from overfitting noisy labels through the direct
and indirect supervision information learned from PLL and
NL, respectively. We construct the candidate label set in PLL
by selecting the given label yn and the category with the
highest prediction confidence ŷn ∈ {0, 1}C as follows:

Yn = yn + ŷn, ŷ
k
n = 1k= argmax

c∈{1,..,C}
pc(xn,θ). (2)

1A is an indicator function. We generate complementary la-
bels for NL using the remaining non-candidate labels in the
given label space. Unlike NLNL (Kim et al. 2019) and JNPL
(Kim et al. 2021), which randomly select a single label from
non-given labels as the complementary label, we use all non-
candidate labels as the complementary label set,

Ỹn = ¬Yn = I − Yn, (3)
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where I denotes the entire label space.
Discussion. Notably, the candidate labels within PLL should
encompass the ground-truth label, while the complemen-
tary label within NL is the exact opposite. Consequently,
upholding the reliability of both candidate and supplemen-
tary labels becomes paramount. We compare the probability
of true labels among the top-k predicted categories on CI-
FAR100N, as shown in Fig.3. Fig.3 (a) shows that the true
label frequently falls between the given label and the label
obtained the highest prediction confidence. In this case, our
NPN achieves the highest test accuracy, as shown in Fig.3
(b). The candidate labels with higher confidence further re-
inforce the reliability of complementary labels used for NL,
owing to the relationship Ỹn + Yn = I.

Label Disambiguation in Partial Label Learning
The main challenge of PLL arises from the fact that the
ground-truth label is concealed within the candidate label
set and is not directly accessible to the learning algorithms.
Thus, the primary focus of PLL is to tackle the task of candi-
date label disambiguation. Existing methods predominantly
concentrate on two strategies: average-based disambigua-
tion and identification-based disambiguation. The average-
based disambiguation strategy treats each candidate label
equally during the training phase. It computes the average
of all the modeling outputs associated with each candidate
label during the testing phase (Zhang and Yu 2015). On the
other hand, the identification-based disambiguation strat-
egy treats the ground-truth label as a latent variable (Wang,
Zhang, and Li 2022). It aims to identify the true label by as-
signing different confidence scores to the candidate labels.

We propose two adaptive, data-driven paradigms of la-
bel disambiguation for PLL: hard disambiguation (i.e.,
identification-based disambiguation) and soft disambigua-
tion (i.e., average-based disambiguation). Specifically, we
first design a candidate label set S to store the candidate
labels for each sample during the training process as:

St
n =

{
yn, t = 0
St−1
n + Yt

n, t > 0
. (4)

We denote St
n as the frequency distribution of the candidate

labels of the n-th sample among C classes, which has been
observed in the previous t epochs. Yt

n represents the afore-
mentioned multi-label candidate label of the n-th sample in
the t-th epoch. The sample with the highest frequency of oc-
currence in the candidate label set St

n is more likely to be the
ground-truth, allowing for the disambiguation of candidate
labels. Following hard disambiguation, we construct ỹ as the
disambiguation labels and compute LPLL as follows:

ỹn = argmax
j=1,..,C

St
n, (5)

Lhard
PLL = − 1

N

N∑
n=1

max{St
n}

sum{St
n}

ỹnlog(p(xn, θ)). (6)

We utilize max{St
n}

sum{St
n}

to measure the reliability of the disam-
biguated labels, aiming to mitigate the impact of inevitable
errors from partially disambiguated samples.

Furthermore, we propose a soft disambiguation strategy:

ỹn =
St
n

sum{St
n}

, (7)

Lsoft
PLL = − 1

N

N∑
n=1

C∑
c=1

ỹcnlog(p
c(xn, θ)). (8)

The soft label disambiguation revolves around individually
considering each label within the candidate label set and
constructing soft labels based on their respective frequen-
cies, thereby accomplishing effective label disambiguation.
Discussion. The effectiveness of PLL is directly influenced
by the purity of the labels achieved through disambiguation.
To further validate the impact of our label disambiguation
strategies, we present the precision of label disambiguation
vs. epochs in Fig.3 (c). The results demonstrate that selecting
more labels into candidate labels increases the difficulty of
label disambiguation, resulting in a decline in test accuracy.
This rationale elucidates our decision to choose the given
label and category with the highest prediction confidence as
candidate labels Y during each epoch. Thus, we ensure that
the candidate labels encompass the ground-truth labels to
the fullest extent possible while concurrently alleviating the
complexities associated with label disambiguation.

Indirect Supervision in Negative Learning
Negative learning is generally carried out to assist the
model in acquiring indirect information by randomly se-
lecting a non-given label as the complementary label, as
stated in NLNL and JNPL. Moreover, the complementary
label should differ from the ground-truth label. However,
the ground-truth label is present among the non-given la-
bels when the given label is noisy. They encounter the chal-
lenge of potentially mis-selecting the ground-truth label as
the complementary label. This becomes particularly pro-
nounced in high-noise scenarios.

As mentioned above, the labels more likely to be ground-
truth labels are often assigned to the candidate labels. The
remaining labels, less likely to be the ground-truth labels,
are thus assigned to the complementary labels. In addition,
the complementary labels Ỹ that we propose encompass a
set of labels, as opposed to a randomly selected non-given
label. It offers the model a richer source of supervision in-
formation, concurrently mitigating the impact of occasional
mis-selection of true labels. Finally, we calculate the nega-
tive learning loss using the constructed complementary la-
bels as follows:

LNL = − 1

N

N∑
n=1

C∑
c=1

Ỹc
nlog(1− pc(xn, θ)). (9)

Eq.(9) facilitates the optimization of the probability value
associated with the complementary label to approach zero.
This adjustment leads to an increase in the probability values
of other classes, aligning with the objectives of NL.
Discussion. To address the two drawbacks of NLNL and
JNPL, we primarily focus on two aspects: (1) Our NL frame-
work aims to discover more reliable (i.e., lower prediction
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Algorithm 1: Our proposed NPN algorithm

Input: The training set Dtrain, network θ, warm-up epochs
Ew, total epochs Etotal, batch size bs.

1: for epoch = 1, 2, . . . , Etotal do
2: if epoch ≤ Ew then
3: for iteration = 1, 2, . . . do
4: Fetch B = {(xi, yi)}bs from Dtrain

5: Calculate Lce = −
∑bs

i=1 yi log p(xi, θ)
6: Update θ by optimizing Lce

7: Obtain candidate label Y using Eq. (2)
8: Update candidate label set S using Eq. (4)
9: end for

10: end if
11: if Ew < epoch ≤ Etotal then
12: for iteration = 1, 2, . . . do
13: Obtain candidate label Y using Eq. (2)
14: Obtain complementary label Ỹ using Eq. (3)
15: Update candidate label set S using Eq. (4)
16: Calculate LPLL using Eq. (6) or Eq. (7)
17: Calculate LNL using Eq. (9)
18: Calculate LREG using Eq. (11)
19: Calculate L = LPLL + αLNL + βLREG

20: Update θ by optimizing L
21: end for
22: end if
23: end for
Output: Updated network θ.

probability) complementary labels. (2) By utilizing all non-
candidate labels as the complementary label set rather than a
single one, we can boost the performance of NL. As shown
in Fig.3 (d), NPN attains superior performance when com-
pared to previous approaches (i.e., NLNL and JNPL).

Overall Framework
In summary, we merge partial label learning and negative
learning to cope with noisy samples without demanding any
strong prior assumptions. This approach is implemented in
an adaptive, data-driven manner, capitalizing on both the di-
rect supervision in PLL and the indirect supervision in NL
to fortify the robustness of the model. The overall learning
procedure of our NPN is illustrated in Fig. 2 and Algorithm
1. The objective loss function in our NPN is as follows:

L = LPLL + αLNL + βLREG, (10)

where α and β are weighting factors.
LREG denotes the consistency regularization (CR) loss,

which encourages prediction consistency between weakly-
(Aw) and strongly-augmented (As) views of samples. This
loss term implicitly enhances the robustness of the model by
regularizing it as follows:

LREG = − 1

N

N∑
n=1

ŷnlog(p(As(xn), θ)), (11)

in which ŷn = argmax pj(Aw(xn), θ).

Experiments
In this section, we evaluate our NPN by comparing it with
SOTA methods. We also conduct ablation studies to validate
the effectiveness of each design choice in NPN. The exper-
iments are conducted on a synthetically corrupted dataset,
namely CIFAR100N (Krizhevsky 2009), as well as three
real-world datasets, namely Web-Aircraft, Web-Car, and
Web-Bird (Sun et al. 2021). Experiments follow the setup
employed in (Sun et al. 2022a).

Experiment Setup
Synthetically Corrupted Datasets. We conduct experi-
ments on CIFAR100N, which is derived from CIFAR100.
CIFAR100 contains 100 classes, consisting of 50,000 train-
ing images and 10,000 test images. We follow (Sun et al.
2022a) and employ two approaches to generate noisy labels
with a noise rate n: Symmetric noise and Asymmetric noise.
Real-World Datasets. We also conduct experiments on
real-world datasets (i.e., Web-Aircraft, Web-Car, and Web-
Bird). These datasets consist of training images obtained
through web image search engines, resulting in inevitable
label noise. Compared to the synthetically corrupted dataset,
real-world datasets exhibit a more complex and realistic
challenge in practical scenarios. They contain various types
of label noise (i.e., symmetric noise, asymmetric noise, and
open-set noise).
Experiment Details. Following (Sun et al. 2022a), we use a
seven-layer CNN network as the backbone for CIFAR100N.
The network is trained using an SGD optimizer with a mo-
mentum of 0.9 for 300 epochs. During the first 100 epochs,
a fixed learning rate (i.e., 0.005) is used for warm-up train-
ing, followed by 200 epochs of training using a cosine-
decay learning rate (starting from 0.005) for robust training.
The batch size is 128. For real-world datasets, we leverage
ResNet50 (He et al. 2016) pre-trained on ImageNet as our
backbone. The network is also trained using an SGD opti-
mizer with a momentum of 0.9 for 100 epochs. The batch
size is 32, and the learning rate is 0.001. The learning rate
decays in a cosine annealing manner.
Baselines. We compare NPN with the following SOTA
methods for CIFAR100N: Decoupling (Malach and Shalev-
Shwartz 2017), Co-teaching (Han et al. 2018), Co-teaching+
(Yu et al. 2019), JoCoR, Co-LDL, SPRL (Shi et al. 2023)
and AGCE (Zhou et al. 2023). Besides, we compare NPN
with the following SOTA methods for real-world datasets:
PENCIL (Yi and Wu 2019), DivideMix (Li, Socher, and Hoi
2020) AFM (Peng et al. 2020), and Self-adaptive (Huang,
Zhang, and Zhang 2020)). † means that we re-implement
the method using its open-sourced code and default hyper-
parameters. Additionally, we provide results of using noisy
training directly for training (denoted as Standard).

Evaluation on Synthetically Corrupted Datasets
The performance comparison on CIFAR100N is summa-
rized in Table 1, clearly demonstrating the consistent superi-
ority of both NPN-hard and NPN-soft approaches. Results of
existing methods shown in Table 1 are mainly obtained from
Co-LDL (Sun et al. 2022a). Our proposed NPN-hard outper-
forms all the competing methods across all noise types and

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

4824



Methods Symmetric Asymmetric
10% 20% 40% 80% 10% 20% 40% 50%

Standard 43.27 35.50 21.02 3.84 45.89 40.86 28.43 23.40
Decoupling (Malach et al. 2017) 50.39 43.84 33.08 9.33 51.59 46.36 33.58 27.30

Co-teaching (Han et al. 2018) 57.69 56.21 52.09 22.83 57.31 52.78 37.26 25.99
Co-teaching+ (Yu et al. 2019) 54.99 52.87 45.64 18.55 54.26 51.25 38.78 27.46

JoCoR (Wei et al. 2020) 60.75 58.69 52.16 14.18 59.38 56.10 38.24 22.41
Co-LDL (Sun et al. 2022a) 61.55 59.73 53.56 25.12 61.05 60.40 52.28 30.50

SPRL † (Shi et al. 2023) 56.11 53.64 48.84 22.30 55.74 56.07 49.48 26.61
AGCE † (Zhou et al. 2023) 60.25 59.38 54.47 27.41 60.34 59.07 43.04 24.78

NPN-soft 64.75 62.76 58.80 31.69 64.52 63.55 57.11 33.23
NPN-hard 66.79 65.27 61.35 36.88 67.19 66.36 60.11 33.19

Table 1: Average test accuracy (%) on CIFAR100N over the last ten epochs. Experiments are conducted under various noise
conditions (“Symmetric” and “Asymmetric” denote the symmetric and asymmetric label noise, respectively).

Figure 3: Comparison of label disambiguation using different top-k predicted labels (a-c) and comparison of different negative
learning methods (d). (a) The overall hit rate of ground-truth labels within candidate labels (%) vs. epochs. (b) The test accuracy
(%) vs. epochs. (c) The overall precision of label disambiguation (%) vs. epochs. (d) The test accuracy (%) of using different
negative learning methods (%) vs. epochs.

noise rates. Similarly, NPN-soft also achieves a performance
boost over existing methods, although it yields lower perfor-
mance than NPN-hard in most cases. In the most challenging
scenario (i.e., Symmetric-80%), NPN-hard still outperforms
other methods, achieving an accuracy of 36.88% (an 11.76%
improvement). These experiments on CIFAR100N demon-
strate the robustness of NPN in handling both symmetric and
asymmetric label noise across various noise rates.

Evaluation on Real-World Datasets
In addition to the experimental results on synthetic datasets,
Table 2 compares NPN with SOTA methods on three real-
world datasets. Results of SOTA methods shown in Table 2
are also drawn from Co-LDL (Sun et al. 2022a). As shown
in Table 2, our NPN-hard achieves accuracies of 86.02%,
80.91%, and 88.26% on Web-Aircraft, Web-Bird, and Web-
Car, respectively, surpassing Co-LDL (Sun et al. 2022a) by
4.05%, 0.80%, and 1.31%. The results demonstrate the effi-
cacy of our NPN in more challenging real-world scenarios.
It showcases its adaptive, data-driven nature that operates ef-
fectively without additional prior knowledge, such as a pre-
defined drop rate or threshold.

Ablation Studies
In this subsection, we conduct experiments to investigate the
effectiveness of each component in NPN. Unless otherwise

stated, ablation experiments are performed based on our
NPN-hard on CIFAR100N (Sym-20%). Table 3 and Fig. 4
show the results of the ablation experiments and provide in-
sights into the contribution of each component in NPN.
Effects of Partial Label Learning. As stated above, we fo-
cus on combating label noise by transforming noisy label
learning into partial label learning and negative learning. For
PLL, we design a candidate label set S to store the candidate
labels for each sample during the training process. We evalu-
ate two paradigms of label disambiguation based on the can-
didate label set: hard disambiguation and soft disambigua-
tion. The results in Table 1 demonstrate that, in most cases,
hard disambiguation outperforms soft disambiguation, ex-
cept for a few extreme scenarios (i.e., Asymmetric-50%).
Furthermore, as shown in Table 3, incorporating PLL leads
to a 5.92% performance gain.

To further validate the effect of label disambiguation, we
present the comparison of label disambiguation among the
top-k predicted labels. Fig.3 (c) demonstrates that selecting
more labels into candidate labels increases the difficulty of
label disambiguation. Consequently, it results in a decline
in test accuracy, as shown in Fig.3 (a) and Fig.3 (b). This
rationale elucidates our design to choose the given label and
category with the highest prediction confidence as candidate
labels during each epoch.
Effects of Negative Learning. We generate the complemen-
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Methods Backbone Performances(%)
Web-Aircraft Web-Bird Web-Car Average

Standard ResNet50 60.80 64.40 60.60 61.93
Decoupling (Malach et al. 2017) ResNet50 75.91 71.61 79.41 75.64

Co-teaching (Han et al. 2018) ResNet50 79.54 76.68 84.95 80.39
Co-teaching+ (Yu et al. 2019) ResNet50 74.80 70.12 76.77 73.90
PENCIL (Yi and Wu 2019) ResNet50 78.82 75.09 81.68 78.53

JoCoR (Wei et al. 2020) ResNet50 80.11 79.19 85.10 81.47
DivideMix (Li et al. 2020) ResNet50 82.48 74.40 84.27 80.38

AFM (Peng et al. 2020) ResNet50 81.04 76.35 83.48 80.29
Self-adaptive (Huang et al. 2020) ResNet50 77.92 78.49 78.19 78.20

Co-LDL (Sun et al. 2022a) ResNet50 81.97 80.11 86.95 83.01
SPRL † (Shi et al. 2023) ResNet50 80.77 80.41 86.17 82.45

AGCE † (Zhou et al. 2023) ResNet50 84.22 75.60 85.16 81.66
NPN-soft ResNet50 83.65 79.36 85.46 82.82

NPN-hard ResNet50 86.02 80.91 88.26 85.06

Table 2: Comparison with SOTA approaches in test accuracy (%) on real-world noisy datasets: Web-Aircraft, Web-Bird, Web-
Car. Results of existing methods are mainly drawn from (Sun et al. 2022a).

Standard NL PLL CR Test Accuracy
✓ 35.50
✓ ✓ 54.70
✓ ✓ ✓ 60.62
✓ ✓ ✓ ✓ 65.27

Table 3: Effects of different ingredients in test accuracy (%)
on CIFAR100N (noise type and noise rate are “symmetric”
and 20%, respectively).

tary label for NL and boost the model robustness by the in-
direct supervision of NL. Different from the existing meth-
ods, we focus on mining more reliable complementary la-
bels and utilizing all complementary labels to enhance the
performance of NL. Table 3 illustrates that adopting NL
boosts model performance by 19.2% compared to the base-
line method (i.e., Standard). We also conduct experiments
by replacing our complementary label generation with typi-
cal generation methods that randomly select a non-given la-
bel (i.e., NLNL and JNPL) in Fig.3 (d). It is evident that our
NPN achieves the highest test accuracy.
Effects of Consistency Regularization. During the later
stage of model training, it is inevitable that the model will
overfit some noisy samples, which results in the inability
to select reliable candidate labels and complementary la-
bels. Accordingly, we propose to impose additional consis-
tency regularization to achieve enhancement in both feature
extraction and model prediction. As shown in Table 3, the
results demonstrate that consistency regularization success-
fully boosts the model performance by 4.65%.
Effects of Hyper-parameters. Our NPN combines partial
label learning and negative learning to effectively learn with
noisy labels without strong prior assumptions. In our ap-
proach, we only use hyper-parameters (i.e., α and β) to con-
trol the weights of different loss terms in Eq. (10). Fig. 4

Figure 4: The hyper-parameter sensitivities of α and β.

provides an ablation study on the impact of different α and
β settings. When α is 1.0, and β is 2.0, NPN achieves the
highest performance.

Conclusion

This paper introduced a simple yet effective framework,
termed NPN, designed to learn with noisy labels. It inte-
grated two other distinct learning paradigms, namely partial
label learning and negative learning, to effectively combat
label noise. Different from traditional noisy label learning
methods, NPN was implemented in an adaptive and data-
driven manner. We started by decomposing the given label
space into a combination of candidate labels for PLL and
complementary labels for NL. For PLL, we proposed two
adaptive, data-driver paradigms of label disambiguation:
hard disambiguation and soft disambiguation. Additionally,
we suggested generating reliable complementary labels us-
ing all non-candidate labels for NL to enhance model robust-
ness through indirect supervision. Finally, we introduced a
consistency regularization term that encouraged prediction
agreement between different sample augmentations to im-
prove both feature extraction and model prediction. Exten-
sive experiments and ablation analysis confirmed the effec-
tiveness and superiority of our proposed method.
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