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Abstract

Inferring the 3D structure of a non-rigid dynamic scene from
a single moving camera is an under-constrained problem. In-
spired by the remarkable progress of neural radiance fields
(NeRFs) in photo-realistic novel view synthesis of static
scenes, it has also been extended to dynamic settings. Such
methods heavily rely on implicit neural priors to regularize
the problem. In this work, we take a step back and investigate
how current implementations may entail deleterious effects
including limited expressiveness, entanglement of light and
density fields, and sub-optimal motion localization. Further,
we devise a factorisation-based framework that represents the
scene as a composition of bandlimited, high-dimensional sig-
nals. We demonstrate compelling results across complex dy-
namic scenes that involve changes in lighting, texture and
long-range dynamics.

Introduction

The problem of scene modeling (Kolmogorov and Zabih
2002; Dyer 2001) is one of the fundamental challenges in
computer vision, and underpins many of the field’s most
prominent applications including novel view synthesis (Avi-
dan and Shashua 1997; Daribo and Pesquet-Popescu 2010),
augmented and virtual reality (Azuma 1997; Burdea and
Coiffet 2003), and SLAM (Grisetti et al. 2010; Mur-Artal,
Montiel, and Tardos 2015). In this vein, Neural Rendering
Fields (NeRFs) (Mildenhall et al. 2021) have recently ex-
hibited remarkable progress in synthesizing photorealistic
novel views from sparse 2D images.

One of the factors underpinning the success of NeRFs is
the architectural bias of neural networks. The (Lipschitz)
smoothness of neural networks acts as an implicit neural
prior for self-regularizing the optimization process, which
is otherwise ill posed (Zhang et al. 2020). Recently, multiple
works have extended NeRFs to dynamic settings, leveraging
the same neural smoothness prior that made NeRFs success-
ful. For modeling the evolution of scene geometry over time,
these works have primarily resorted to using ray deformation
paradigms, which parameterize rays cast from the camera as
functions of time (Pumarola et al. 2021; Tretschk et al. 2021;
Park et al. 2021a; Li et al. 2021; Gao et al. 2021; Xian et al.
2021; Park et al. 2021b). Although these approaches have
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yielded impressive results, we show that their over-reliance
on implicit neural priors gives rise to fundamental problems;
a) Dependency on a canonical frame which harms modeling
long range motion, b) Entanglement of the light and density
fields ¢) Limited expressiveness due to network bottlenecks,
and d) substandard localization of motion due to the differ-
ence in the spectral properties of space and time, i.e., space
typically consists of sharp/high-frequency details, whereas
temporal dynamics are generally smooth and continuous.

To overcome the above drawbacks, we propose a theoret-
ical framework that enables efficient integration of implicit
neural priors and well-defined explicit priors. On this basis
we also propose a set of explicit priors, partially inspired
by non-rigid-structure-from-motion (NRSfM). In particular,
we model the light and density fields of a 3D scene as ban-
dlimited, high-dimensional signals. This standpoint enables
complete factorization of spatio-temporal dynamics, allow-
ing us to inject explicit priors on the time and space dy-
namics independently. To demonstrate the practical utility
of our framework, we offer an example implementation that
enforces 1) a low-rank constraint on the shape space, along
with 2) a neural prior over the frequency domain and 3) a
union-of-subspaces prior on the deformation of a shape over
time. We show that the strong regularization effects of these
priors enable our model to reconstruct long-range dynamics
and localize motion accurately. Further, our model does not
rely on complex optimization procedures (Pumarola et al.
2021; Li et al. 2021; Park et al. 2021a; Yoon et al. 2020;
Park et al. 2021b) or multiple explicit loss regularizations
(Tretschk et al. 2021; Gao et al. 2021; Park et al. 2021a; Li
et al. 2021; Wang et al. 2021) that are common in existing
dynamic NeRF works, indicating the stability of our formu-
lation. Finally, our implementation efficiently disentangles
light and density fields, allowing the model to capture chal-
lenging scenes with dynamic lighting and textures. Our con-
tributions are summarized as follows.

* We show that existing extensions of NeRF to dynamic
scenes suffer from critical drawbacks, primarily due to
their over-reliance on implicit neural priors.

* We propose a novel framework for modeling dynamic 3D
scenes that overcomes the above drawbacks by formulat-
ing radiance fields as bandlimited signals.

* We empirically validate the efficacy of our framework by
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Figure 1: We recover the 3D structure of a dynamic scene given sparse RGB views from a monocular, moving camera. The
figure shows a comparison between novel views of a challenging scene with long-range dynamics. As illustrated, our model is
able to capture fine details better and accurately localize the motion compared to NR-NeRF (Tretschk et al. 2021). We attribute
the superior performance of our model to efficient factorization of time and space dynamics that enable incorporating well-

defined spatio-temporal priors.

demonstrating better modeling of long-range dynamics,
motion localization, and light/texture changes, achiev-
ing state-of-the-art results over competitive datasets. Our
model only takes around 3 hours per scene to train (more
than 10 times faster than NR-NeRF, D-NeRF, and Hyper-
NeRF), and does not require complex loss regularizers or
optimization procedures.

Related Work

Recovering the 3D structure of a scene using a monocu-
lar camera is a challenging task that has been approached
from various angles (Davison et al. 2007; Newcombe et al.
2011; Yoon et al. 2020; Dou et al. 2016; Avidan and Shashua
2000; Wexler and Shashua 2000; Niemeyer et al. 2019; Li
et al. 2021). Dynamic scenes add complexity to the 3D
modelling process due to the extra mode of variation that
must be accommodated, and many methods require either
multiple cameras(Zhang, Curless, and Seitz 2003; Tung,
Nobuhara, and Matsuyama 2009; Zhang et al. 2004; Dou,
Fuchs, and Frahm 2013; Dou et al. 2016) or active depth
sensors(Newcombe et al. 2011; Newcombe, Fox, and Seitz
2015; Slavcheva et al. 2017; Yu et al. 2017) to resolve the
ambiguity. Following NeRF, many dynamic neural radiance
field models have been developed, primarily using the con-
cept of ray deformation (Pumarola et al. 2021; Tretschk
et al. 2021; Park et al. 2021a; Li et al. 2021; Gao et al.
2021; Park et al. 2021b). D-NeRF(Pumarola et al. 2021)
first proposed a general framework which learns a per-point
displacement against a canonical location to model ray de-
formation. Both(Tretschk et al. 2021; Gao et al. 2021) fur-
ther introduced a constraint to model the foreground and
background separately. (Gao et al. 2021) disambiguated self-
occlusions that hinders the performance of these approaches.
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Nerfies (Park et al. 2021a) achieves remarkable results by
incorporating elastic regularization, but only targets self-
portraits. Several other NeRF extensions have also been pro-
posed that require depth estimates (Xian et al. 2021), optical
flow (Wang et al. 2021), foreground masks (Johnson et al.
2022; Gao et al. 2021), meshes (Xu and Harada 2022), or
assume that dynamic objects are distractors to be removed
(Martin-Brualla et al. 2021).

Revisiting Ray Deformation Networks

Extending NeRF to dynamic scenes requires represent-
ing the scene as a continuous function with 6D inputs
(z,9,2,0,0,t), where ¢ is the time and (6,¢) is the
viewing direction. However, it has been shown empiri-
cally (Pumarola et al. 2021) that employing a single MLP to
learn a mapping from 6D inputs to density and color fields
yields sub-optimal results. Hence, existing works decom-
pose the aforementioned task into two modules (Pumarola
et al. 2021; Tretschk et al. 2021; Park et al. 2021a; Li
et al. 2021; Gao et al. 2021; Park et al. 2021b; Fang et al.
2022): 1) the first MLP learns a warping field of 3D points
(Az, Ay, Az) sampled along the rays with respect to a
canonical setting; 2) the second module then acts similarly
to the original NeRF formulation, regressing the density
and light fields given the warped samples along the rays
(x + Az,y + Ay, z + Az). Since the warping is applied
to points sampled along the ray, this formulation is inter-
preted as deforming the rays as a function of time. Further,
note that this assumes that objects do not enter or leave the
scene, and that lighting/texture is consistent. However, we
notice that existing implementations of this framework do
not adhere to these constraints (see supplementary). Specif-
ically, we show that such networks can indeed model light
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and density changes separately (to an extent), which is in-
feasible with a model that only learns ray deformations (see
Fig. 3 and supplementary). However, to avoid confusion, we
will keep referring to this class of models as ray deforma-
tion networks. Next, we discuss several critical limitations
thereof.

Limitations of Ray Deformation Networks

In this section, we present a brief exposition of the limita-
tions entailed in the ray deformation approach. For an ex-
tended analysis, refer to supplementary.

Dependency on a canonical frame: Ray deformation net-
works require choosing a canonical frame, and most models
choose the frame at ¢ = 0 to this end. The particular choice
of frame can significantly harm model performance in cases
where 1) objects or the camera exhibit long-range transla-
tions, and 2) new objects appear in subsequent frames of the
video. The canonical frame thus needs to provide a form of
average scene representation where all future information is
present. This becomes increasingly infeasible as the scene
becomes more complex. On the other hand, the ray defor-
mation model also needs to preserve continuity; the model
output at (¢ = 4t) needs to embody a smooth transition
of the canonical scene at ¢ = 0, which can be impracti-
cal if the scene comprises abundant future information. In
contrast, our framework does not use ray deformation and
thus does not depend on a canonical scene. Entanglement
of light and density fields: Although ray deformation net-
works are able to deform the light and density fields, they are
still highly entangled. More precisely, it can be shown that
in order to achieve complete disentanglement of the light
and density fields, the network needs to preserve a specific
block-diagonal Jacobian structure in one of the hidden lay-
ers, which is an extremely restrictive requirement (see sup-
plementary). In comparison, our framework achieves com-
plete disentanglement by design, modeling the light and
density fields independently. Limited expressiveness: Ray
deformation networks comprise a bottleneck of dimension
three. Therefore, each of the density and light fields mod-
eled by this network becomes a three dimensional manifold.
They cannot thus encode complex dynamics that need to be
parameterized by four variables (z, y, 2, t) (see Supplemen-
tary). Substandard separation of background and mo-
tion: Ray deformation networks model the warp field using
a single MLP. However, this is a substandard design choice
since the space and time variations have different spectral
properties. Natural scenes often exhibit high-frequency spa-
tial characteristics such as fine-grained surface details for ex-
ample, but temporal changes are generally smoother. There-
fore, using an MLP with a particular bandwidth for learning
both spatial and time variations together leads to sub-optimal
reconstructions. One way to overcome this problem is to use
separate MLPs for time and space dynamics, and control
their bandwidth via positional encodings. This strategy re-
quires involved optimization procedures that demand care-
ful coarse-to-fine hyperparameter annealing that depends on
the dataset, and incur longer training times (64 hours on 4
TPU v4s vs ours (3 hours on a single V100)) (Park et al.
2021b). In contrast, our framework enables much more ele-

4643

gant factorization of space and time dynamics by modeling
the scene as bandlimited signals, allowing better separation
of static and dynamic regions.

Our Framework

Consider a set of 2D projections {I(t,)}_, of a 3D scene
captured from a moving camera. For brevity, we drop the
dependency on the camera poses from the notation. Without
the loss of generality, we assume that the scene is bounded
within a cube with side length D. We begin by observing that
there exists a latent density and color field corresponding to
each I(t,) that can be discretized into a cubic grid of D3
nodes. Then, rewriting the latent states of either field in the
matrix form, gives

s(tl,xl) S(tl,XQ) S(tl,XDs)

S:

s(tn,x1)  s(tn,X2) s(tn,xp2) | o ps
ey
where x; € R? and s(t,,,x;) can be either the density or
the color values emitted from x; at time ¢,,. Note that s(-, -)
can be either a scalar valued function for density and a vec-
tor valued function for color. To avoid cluttered notation, we
consider the scalar valued case for the following derivations.
However, our analysis holds true for the vector valued case
as well; Let rank(S) = K. Then, there exist K basis vec-
tors, each with dimension D3, that can perfectly reconstruct
(memorize) S. More precisely, in this case, each row of S
can be reconstructed as

K
S(tn,") = Y ajn &;, )
j=1

where S(ty, ) is the n'" row of S, {é;}1<, are basis vec-
tors of dimension D3, and {a; ,,} are scalar coefficients. In-
tuitively, each row of S corresponds to a snapshot of the
field (in space) at a particular time instant. On the contrary,
each column of S is a representation evolution of a particular
point x over time. We note an interesting duality here; since
the dimension of the row space and the column space of S
are equal, it should be possible to reconstruct the evolution
of the density/color value of each position x over time using
K basis vectors. Thus, we model the time evolution of each
point as

K
S(xi,) = > _bji Bj, 3)
j=1

where S(x;,-) is the i** column of S, {B; fil € RY are
basis vectors, and {b,;} are scalars. This change of per-
ception is crucial for generalizing to unseen time instances
and obtaining a space-time factorization, as we shall discuss
next. Using Eq. 3, the value of color/density of a point x at
a particular continuous time instance ¢ can be obtained as

K
S(x,t) = Zz}j (x) ¥, (1), 4)



The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

PN
/ i '51(t1)x + + ‘
— Bi(t)
vioMIY vieMy”* vieoMp”®
tl .. — [a(t) [32('1‘/1)><[ iy+ yz-I- y .z] ,< ) > S<t1)
. vi@M3Y vieo My vy @ My’
— Bi(b) V kﬁk(tl)X[ :i + i +k ] ‘

z X,y X Y.z
vi @ MY vig @ My,

y .z
Vi ® My

Figure 2: The proposed implementation of our framework. We treat the light and density fields as bandlimited, high-dimensional
signals (only a single field is shown in the figure). The time evolution of each 3D point (x,y, z) of the field is modeled as a
finite linear combination of time-basis functions {/3;(¢)}. The coefficients of the {/3;(¢)} are decomposed into outer products
between learnable matrices (IM) and vectors (v). Our formulation allows efficient factorization of time and space dynamics,
leading to high-quality reconstructions of complex dynamics, with faster convergence.

where ¥, (t) = Zf:/:l Bnd(t—ty), d(-) is the Dirac delta
function, and 3; ,, is the n'”* element of 3;. b, (x) is a scalar
valued function. A key problem associated with Eq. 4 is that
1 (t) is an infinite bandwidth function because 0 is of infinite
bandwidth. As a consequence, S(x,t) also becomes an in-
finite bandwidth function. Equivalently, an infinite number
of time-sample points are required to reconstruct the con-
tinuous signal S(x,t)!. Recall, however, that, in practice,
only a sparse, finite set of 2D observations {I(t,,)})_; are
at our disposal. Therefore, the infinite bandwidth represen-
tation of Eq 4 is not ideal for obtaining a S(x, ) that can be
queried at arbitrary continuous time instances. Therefore, we
replace {¢;} with a set of bandlimited scalar-valued func-

tons {5 ().
K ~
S(x.t) = > by(30) B4 (0).

Jj=1

&)

From a signal processing perspective, this can also be
considered as reconstructing a signal from discrete samples
using a linear combination of bandlimited basis functions.
Observe that from this perspective, the 1;(¢)’s can be con-
sidered discrete samples of the continuous functions 5, (¢).
Consequently, S(x, t) also becomes a bandlimited function
(a linear combination of bandlimited functions is bandlim-
ited). Note that now we have also obtained a factorization
of time and spatial dynamics that will allow us to impose
priors on time and space independently. In the next sec-
tion, we present an implementation of the proposed frame-
work. In this implementation, we inject a low-rank prior on
space, along with smoothness and compact manifold priors
on time. It is worth to note that our framework is generic
enough to support alternative implementations and more
complex priors, which we leave to future explorations.

'Recall that in order to reconstruct a continuous signal as a lin-
ear combination of shifted Dirac delta functions, an infinite number
of sampling points are needed.
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Implementation

Leveraging the factorization we achieved in Eq. 5, we can
formulate the entire 3D field volume as a time-dependent
higher dimensional signal, that can be decomposed into a
linear combination of 3D tensors A7Y* € RP*PxD:

K
S(t)=>_ Bi(t) A, 6)
j=1

where S(t) € RPXPXD g the state of the field at time ¢.
Note that we adopt the tensor notation here where the su-
perscripts denote the dimensions, ie., x = 1,...D,y =
1,...,D,and z = 1,..., D. To regularize the spatial varia-
tions, we employ a low-rank constraint on A; as,

K
S(t) = Bi(t)(viaM+vieMY* +v!eMy*), (7)
=1

where v; € RP and M; € RP”*P are one- and two-
dimensional tensors, respectively, and & is the outer prod-
uct. The above choice of factorization is inspired by the
VM-decomposition proposed in (Chen et al. 2022). This fac-
torization accomplishes two goals: 1) enforcing a low rank
constraint on the spatial variations of the field, and 2) sig-
nificantly reducing the size of the model and the number of
trainable parameters. We note that such low-rank priors have
been widely employed in the NRSfM literature for the same
purpose (Torresani et al. 2001; Torresani, Hertzmann, and
Bregler 2003; Rabaud and Belongie 2008).

Neural Trajectory Basis

In theory, it is possible to use any class of bandlimited func-
tions that form a complete basis in L*(R, dt) as {53;(t)}.
Popular choices include the DCT, Fourier, and Bernstein
basis functions, among many others. Nonetheless, we use
neural networks to parameterize our basis functions, lever-
aging the implicit architectural smoothness constraint built
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into them. We label these basis functions as the neural tra-
Jjectory basis. The neural trajectory basis presents an impor-
tant implicit prior to our model, that the field values should
evolve smoothly. We also empirically note that neural ba-
sis functions are naturally more expressive and adaptive as
they are learned end-to-end, as opposed to other choices
(see Table 3). Expressiveness is crucial, as it is desirable to
model the dynamics of each point with a minimal number
of basis functions. Thus, we compute {/5;(¢)} via an MLP
F(t): R — RE as

We also show that the smoothness prior embedded into
the neural trajectory basis closely aligns with (Valmadre and
Lucey 2012), where they showed that, in NRSfM, a trajec-
tory’s response to high-pass filters should be minimal. We
validate that neural trajectory basis exhibits this property in
supplementary. Overall architecture is depicted in Fig. 2.

Manifold Regularization

Multiple works in NRSfM have explored restricting the sub-
space of dynamics in order to obtain better reconstructions.
The high-level objective is to temporally cluster the motion
in order to restrict similar dynamics to a low-dimensional
subspace (Kumar, Dai, and Li 2017; Agudo and Moreno-
Noguer 2017; Zhu et al. 2014; Zappella et al. 2013). We
observed that such a constraint can improve our reconstruc-
tions also. More formally, we empirically asserted that bet-
ter results are obtained by locally restricting the dimension
of the submanifold that S(¢) is immersed in. Instead of clus-
tering the motion across the entire sequence, we assume that
dynamics are locally compact: movements that occur over a
small time period can be described using a smaller subspace.
To enforce this constraint, we adopt the following procedure.

Observe that S(¢) is a 1-dimensional manifold embedded
in a D3-dimensional space (its local coordinate chart is a
compact subspace in R). Further, at any given time ¢, S(¢)
is a linear combination of K points {v; ® M}" + v} ®
MY + v @ MJF L, € RPXPxD, Therefore S(t)isa

submamfold of RK

Now, let P7¥* = (v @ M7¥ + v @ M¥” + v @ M7?).
Suppose the dimension of the local submanifold we need is
W, such that K = dW for some integer d. Then, we define
the 4D tensor Q77 € RP*P*PXW such that wazu

JIAW
{Pf/z}f;gv. Next, we obtain

Q(t) = )

®

Z sz;ﬁl) Wnt1) © sine((d — 1)(t — @5

where © represents element-wise multiplication, and

1
SiIlC(T‘) - {s;n(r)

r )

ifr=20
otherwise

The choice of the sinc(-) function here is not arbitrary, and
is crucial for the smooth transition between submanifolds
as the time progresses. More precisely, the sinc interpola-
tion ensures that no frequencies higher than (d — 1)/2 can

4645

be presented in mez“(t) along the temporal dimension. Fi-
nally, we can obtain the regularized field as

Zﬂ

From a strict theoretlcal perspective, one can argue that
Eq. 10 violates the time and space factorization we obtained
in Eq. 7. However, in practice, the sinc interpolation en-
sures that Q*¥#%(t) is locally almost constant as long as we
choose d to be suitably small, as Q*¥*%(¢) cannot then have
higher frequencies than (d — 1)/2. Further, Eq. 10 ensures
that S(¢) can only locally traverse within an R" subspace
where W < K, which is a more regularized setting than
Eq. 7, where S(t) is allowed to traverse within an R¥ sub-
space.

Training

Let o(x,1), c(x, t) be density and light values, queried at po-
sition x at time ¢ (obtained via Eq.10). To compute the above
values at an arbitrary continuous position x, we tri-linearly
interpolate the grids. We perform volumetric rendering as in
(Mildenhall et al. 2021) to predict pixel colors p for each
training image (see Supplementary for more details). Then,
the following loss is minimized for training:

= ]+ MTV(Z() + ATV (C(t)),

1 N
£=x 2 It
- (11)

where p is the ground truth pixel color, and TV (Z(t))
and TV (C(t)) are the total variation losses on the density
and light fields. A1, Ao are hyperparameters.

Two important remarks are in order: a) our model only re-
quires the TV loss as a loss regularizer, as opposed to multi-
ple explicit regularizations that are used in many existing
dynamic NeRF architectures such as explicit foreground-
background modeling(Tretschk et al. 2021; Gao et al. 2021),
energy-preservation (Park et al. 2021a), or temporal consis-
tency losses (Li et al. 2021; Wang et al. 2021). b) To ad-
dress the insufficiency of neural priors in regularizing the
architecture, many dynamic NeRF methods tend to adopt
cumbersome training procedures to converge to a good min-
imum, e.g., sequential training of temporally-ordered frames
(Pumarola et al. 2021; Li et al. 2021), coarse-to-fine anneal-
ing of hyperparameters (Park et al. 2021a,b), or morphology
processing (Yoon et al. 2020). In contrast, we simply ran-
domly sample points in time and space and feed them to the
model for training. We argue that this is a strong indicator
of the well-built inductive bias/implicit regularization of our
architecture and the stability of our formulation.

Experiments

Datasets: We collect four synthetic scenes and four real-
world scenes as our dataset. The synthetic scenes include
texture changes, lighting changes, scale changes, and long-
range movements. The real-world scenes include lighting
changes, long-range movements, and spatially concentrated



The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Cat Climbing Flashlight Flower
Method PSNR1T SSIMt LPIPS, PSNR{T SSIMt LPIPS| PSNR{T SSIMt LPIPS| PSNR{ SSIMt LPIPS]
TensoRF 24.05 0.81 0.35 2253 0776 034 2670 090 0.36 2636 086 0.29
T-TensoRF 2945 088 0.24 27.08 0.81 0.30 2893 091 031 27.10 0.85 033
D-NeRF 2749 086  0.30 2890 085 0.27 31.79 095 0.23 28.56 090 0.25
NR-NeRF 26.63 082 035 25,59 079 035 3059 093  0.29 25,57 084 037
HyperNeRF 1713 064 052 17.66  0.71  0.41 23,51 089 041 22.74 083 0.36
TiNeuVox 2241 081 036 2499 081 035 31.13 091 0.27 28.11 088  0.27
BLiRF (ours) 29.69 0.89 0.21 29.14 086 0.25 31.80 095 0.19 2998 090 0.22
Color Change Falling and Scale Light Move Ball Move
Method PSNR1 SSIMt LPIPS] PSNRfT SSIMtT LPIPS] PSNR{ SSIMtT LPIPS| PSNR{ SSIMT LPIPS])
TensoRF 19.08 0.89 0.22 1730 0.86 0.35 19.61 0.79 047 2431 094 0.28
T-TensoRF 35.16 097 0.09 2430 090 032 3649 097  0.10 28.27 096  0.33
D-NeRF 1742 089 0.28 24,60 092 0.23 19.15 091 0.25 2258 095 0.20
NR-NeRF 16.37 0.89  0.27 1597 086 0.26 18.55 091 0.26 2321 095 0.21
HyperNeRF 16.19 0.84 035 1446 083 034 16.10 0.83  0.40 20.27 093  0.27
TiNeuVox 17.01 084 0.3l1 16.19 0.86 0.22 15.01 0.81 0.38 2241 095 0.23
BLIiRF (ours) 36.68 0.97  0.08 3574 097 0.11 38.04 098 0.10 39.32 099  0.09
Table 1: Quantitative comparison of novel view synthesis on our real and synthetic datasets.
Expressions Teapot Chicken Fist Banana Lemon
PSNRT LPIPS| PSNRf LPIPS, PSNR{ LPIPS, PSNR{ LPIPS, PSNR{ LPIPS| PSNR?{ LPIPS]

NV 267 0.215 262 0216 226 0243 293 0213 248 0209 28.8  0.190
NSFF 266 0.283 258 0.210 277 0.173 249 0329 26.1  0.243 28.0 0.283
Nerfies 275  0.224 257  0.225 28.7  0.141 299 0171 279  0.209 30.8  0.223
HyperNeRF 279  0.218 264 0212 28.7  0.156 30.7  0.150 284 0.191 31.8  0.210
BLiRF (ours)  28.2  0.213 26.1 0215 298  0.141 284  0.161 282 0.191 321 0223

Table 2: Comparison on the HyperNeRF dataset. Numbers for the competing methods are extracted from Park et al. (2021b).

Color Change Falling and Scale Light Move Ball Move
Basis PSNR{ SSIM?T LPIPS| PSNRfT SSIMfT LPIPS| PSNR?T SSIM{ LPIPS| PSNR{T SSIMt LPIPS)
DCT 3399 093 0.14 3261 089  0.19 3377 092  0.16 3359 093 0.16
Fourier 3133 089  0.19 29.74  0.89 021 3199 091 0.23 3345 094  0.19
Bernstein  27.81 0.86  0.21 2890 0.87 025 31.57 091 0.25 3353 094  0.18
Neural 36.68 097  0.08 3574 097 0.11 38.04 098  0.10 39.32 099  0.09

Table 3: Ablation of different time-basis functions.

dynamic objects (see supplementary). To demonstrate the
ability of our method to capture topologically varying de-
formations, we also evaluate against the HyperNeRF dataset
(Park et al. 2021b). We also achieve state of the art results
on the NVIDIA dynamic scene dataset and Dycheck dataset,
showcasing our model’s ability to model deeper real world
scenes (see supplementary).

Baselines: We choose D-NeRF (Pumarola et al. 2021), NR-
NeRF (Tretschk et al. 2021), TiNeuVox (Fang et al. 2022)
and HyperNeRF (Park et al. 2021b) as our main baselines.
All are recently proposed Dynamic-NeRF models that adopt
the ray deformation paradigm. NR-NeRF comprises an ex-
plicit neural network for isolating the motion of a scene, and
HyperNeRF consists of separate MLPs for modeling time
and space deformations, providing ideal baselines for eval-
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Learned neural basis functions perform best.

uating the efficacy of our space-time priors. For baselines,
we performed a grid search for the optimal hyperparameters
for each scene. In contrast, our model uses a single hyper-
parameter setting across all the scenes, demonstrating its
robustness (see supplementary for hyperparameter and train-
ing details). Further, it is essential to validate whether the su-
perior performance of our model stems from the light/den-
sity disentanglement or the space-time factorization. Thus,
we design another baseline T-TensoRF, which disentangles
the light and density fields, but do not factorize time and
space dynamics (see supplementary).

Synthetic Scenes

The synthetic scenes consist of four scenes: texture change,
falling and scale, light move, and ball move. See supplemen-
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Figure 3: Qualitative comparison on the real-world dataset (zoom-in for a better view). The shown examples represent novel
views. Note that in the flashlight scene (second row), D-NeRF, NR-NeRF and T-NeRF fail to capture high-fidelity details in the
background. In the cat-walking scene (top row) where the object moves across a considerable range in space, all the baselines
fail to recover the moving object accurately. In the flower scene (third row), where the motion is constrained within a small
region, the baselines perform fairly well. Our method exhibits superior performance in all the cases.

tary for a qualitative comparison. As shown, D-NeRF, NR-
NeRF, and HyperNeRF fail to accurately model the color
and light changes. This validates our claim that for full dis-
entanglement of light and density fields, the above methods
require a block diagonal Jacobian structure, which is an ex-
tremely restrictive condition. Similarly, they tend to deform
the objects when scale changes and long-range movements
are present. T-TensoRF, due its ability to disentangle light
and density fields, adequately recovers light/texture changes.
However, all the baselines fail to accurately learn the 3D po-
sitions of the objects showcasing their inability to precisely
disentangle camera and scene dynamics. In comparison, our
method achieves significantly superior results in all above
aspects. See Table 1 for quantitative results.

Real-World Scenes

The real-world scenes contain four scenes; cat walking,
flashlight, flower, and climbing. Cat walking and climbing
scenes contain long-range movements. See Fig. 3 and Fig. 1
for qualitative comparisons on these scenes. When long-
range movements are present, the baselines fail to recover
the high-fidelity details of the moving objects. In the flash-
light scene, baselines fail to accurately capture granular de-
tails in the background or light change. In the flower scene,
where the dynamics are concentrated spatially, the baselines
perform well. Our method generates better results in all of
the aforementioned aspects. Note that D-NeRF, NR-NeRF
can model lighting changes as shown in the flashlight scene
(see also supplementary), validating our insight that ray de-
formation models indeed encode density and light field dy-
namics. Table 1 depicts quantitative results. (See supplemen-
tary for comparisons over NVIDIA dynamic scene dataset
and Dycheck dataset).

Topologically Varying Scenes

Park et al. (2021b) showed that most existing dynamic NeRF
methods cannot model topologically varying scenes effec-
tively. To remedy this, they proposed a method that models
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discontinuities of the evolving field as continuous deforma-
tions, using a collection of MLPs. In contrast, our method
can implicitly model such scenes since we model the evolu-
tion of each 3D point in the fields as bandlimited signals. To
showcase this, we conduct experiments on the topologically
varying interpolation dataset provided by (Park et al. 2021b).
In contrast to our dataset, these scenes exhibit a camera re-
volving around quasi-repeated actions which adhere to the
camera motion and object centric biases baked into ray-
deformation methods, and do not include long-range mo-
tions or light/texture changes. The results are depicted in
Table 2. As is shown, we achieve near-identical® or better
results compared to baselines.

Ablation Study

We compare other possible time-basis functions that are
complete in L?(RR,dt) against the neural trajectory basis.
Table 3 presents a quantitative comparison with the DCT,
Fourier, and Bernstein bases. Although these basis func-
tions are also capable of providing acceptable results, neural
basis performs best. We provide ablations for other design
choices as well; manifold regularization, # basis functions,
neural prior, and low rank factorization in Supplementary.
T-TensoRF demonstrates the effect of factorization of space-
time dynamics.

Conclusion

We offer a novel framework for modeling dynamic 3D
scenes allowing factorization of the space and time dynam-
ics. This presents a platform to impose well-designed space-
time priors on NeRF, enabling high-fidelity novel view syn-
thesis of dynamics scenes. Finally, we present an implemen-
tation that demonstrates compelling results across complex
dynamics scenes containing long-range movements, scale
changes, and light/texture changes.

*HyperNeRF(Park et al. 2021b) uses distortion coefficients to
correct the rays, we omit this detail from our implementation to
maintain a fair comparison with the other baselines.
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