
Semi-Supervised Blind Image Quality Assessment through Knowledge Distillation
and Incremental Learning

Wensheng Pan1 * , Timin Gao1 * , Yan Zhang1 † , Xiawu Zheng1,2, Yunhang Shen3, Ke Li 3,
Runze Hu4, Yutao Liu5, Pingyang Dai1

1Key Laboratory of Multimedia Trusted Perception and Efficient Computing, Ministry of Education of China,
Xiamen University, Xiamen 361005, China

2Peng Cheng Laboratory, Shenzhen 518066, China
3Tencent Youtu Lab, Shanghai 200233, China

4School of Information and Electronics, Beijing Institute of Technology, Beijing 100086, China
5School of Computer Science and Technology, Ocean University of China, Qingdao 266100, China

bzhy986@xmu.edu.cn

Abstract
Blind Image Quality Assessment (BIQA) aims to simulate
human assessment of image quality. It has a great demand
for labeled data, which is often insufficient in practice. Some
researchers employ unsupervised methods to address this is-
sue, which is challenging to emulate the human subjective
system. To this end, we introduce a unified framework that
combines semi-supervised and incremental learning to ad-
dress the mentioned issue. Specifically, when training data
is limited, semi-supervised learning is necessary to infer ex-
tensive unlabeled data. To facilitate semi-supervised learn-
ing, we use knowledge distillation to assign pseudo-labels
to unlabeled data, preserving analytical capability. To grad-
ually improve the quality of pseudo labels, we introduce in-
cremental learning. However, incremental learning can lead
to catastrophic forgetting. We employ Experience Replay by
selecting representative samples during multiple rounds of
semi-supervised learning, to alleviate forgetting and ensure
model stability. Experimental results show that the proposed
approach achieves state-of-the-art performance across vari-
ous benchmark datasets. After being trained on the LIVE
dataset, our method can be directly transferred to the CSIQ
dataset. Compared with other methods, it significantly out-
performs unsupervised methods on the CSIQ dataset with a
marginal performance drop (−0.002) on the LIVE dataset. In
conclusion, our proposed method demonstrates its potential
to tackle the challenges in real-world production processes.

Introduction
Blind Image Quality Assessment (BIQA) aims to mimic hu-
man subjective systems of image quality. It is widely used
as evaluation metrics (Wang et al. 2004) and loss functions
(Huynh-Thu and Ghanbari 2008) for computer vision tasks.
However, there is a great demand for labeled data. Due to
the different subjective evaluation systems among observers
and the different settings of the environment in each exper-
iment. When the insufficient data problem arises, it is hard
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Figure 1: Comparison between the supervised method (Hy-
perIQA) and the proposed method on the labeled data vol-
ume and performance in the LIVE → CSIQ task. “47%
labeling” means that labeled data accounts for 47% of all
training data. HyperIQA pre-trains on DA and then fine-
tunes on DB resulting in a performance drop on DA and
poor performance on DB . Our method involves pre-training
on DA and fine-tuning directly on UNLABELED DB . As a
result, the performance on DA has been nearly maintained
and surpassed HyperIQA’s performance on DB .

to make up for the problem in practice. To solve this prob-
lem, some researchers consider the BIQA task as an unsu-
pervised problem (Mittal, Soundararajan, and Bovik 2012;
Wu, Wang, and Li 2015; Venkatanath et al. 2015; Wu et al.
2020; Yang et al. 2021).

For example, Wu et al. (Wu, Wang, and Li 2015) pro-
posed a novel unsupervised method by selecting statistical
features named Local Pattern Statistics Index extracted from
binary patterns of local image structures to evaluate image
quality. Liu et al. (Liu et al. 2019) quantified the image qual-
ity degradation by measuring the structure, naturalness, and
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perception quality variations of the distorted image from the
pristine natural images. However, the performance of unsu-
pervised methods is far from satisfactory.

With the development of deep learning, many researchers
finetuned the pre-trained models to solve the insufficient
data problem. CNN-based BIQA methods (Kang et al.
2014; Liu et al. 2022) directly used or fine-tuned a pre-
trained CNN classification model as a feature extractor to
further predict image quality scores. Ke et al. (Ke et al.
2021) used Vision Transformer as the backbone for feature
extraction. In addition, Golestaneh et al. (Golestaneh, Dad-
setan, and Kitani 2022) presented a hybrid architecture that
combined CNN with Transformer to achieve better image
representation. However, this pipeline not only has a high re-
quirement for correlation between upstream tasks and BIQA
but also fails to solve the insufficient data problem.

In this paper, we introduce a unified framework that com-
bines semi-supervised and incremental learning to address
the insufficient data problem. Specifically, the unlabeled
data is uniformly partitioned into multiple subsets to sim-
ulate incremental learning. We treat each training phase as
a semi-supervised learning problem, which is solved by
the knowledge distillation algorithm. Meanwhile, we treat
the performance degradation after each training as a catas-
trophic forgetting problem and leverage Experience Replay
to handle it. More specifically, we use two datasets to sim-
ulate the process. Dataset DA contains all the labeled data,
while dataset DB includes all the unlabeled data. Our task
is to transfer the knowledge of dataset DA to dataset DB ,
namely DA → DB . We first train a teacher model on the
dataset DA and then utilize the teacher model to generate
pseudo-labels to dataset DB , which are employed to over-
lay the manifold of dataset DA onto dataset DB to ensure
that the model performs well on both the dataset DA and
DB simultaneously. Meanwhile, the replay-based algorithm
is leveraged during each training phase to prevent catas-
trophic forgetting by revisiting representative samples from
previous phases. Fig.1 is the comparison between the su-
pervised method (HyperIQA (Su et al. 2020)) and the pro-
posed method on the labeled data volume and performance
in the LIVE → CSIQ task, demonstrating that our method
achieves better performance.

Our contributions are the following:

• To solve the insufficient data problem in BIQA, we intro-
duce a unified framework that combines semi-supervised
and incremental learning. In other words, the semi-
supervised learning problem arises for each insufficient
data problem, while the catastrophic forgetting problem
arises after each incremental phase.

• To solve the semi-supervised learning problem, we pro-
pose a novel Kernel Ridge Regression (KRR) based
knowledge distillation algorithm, which is leveraged to
assign pseudo-labels to the unlabeled data. This allows
us to transfer the manifold from dataset DA to dataset
DB to ensure the performance of the proposed model on
dataset DB .

• To solve the catastrophic forgetting problem, we propose
a novel replay-based approach, which is utilized to pre-

vent degradation of the performance. By revisiting the
representative examples of the previous phase, the anal-
ysis ability of the model is maintained.

Related Work

Blind Image Quality Assessment

The conventional BIQA researches can be further divided
into distortion-specific (Wang, Sheikh, and Bovik 2002; Liu,
Tanaka, and Okutomi 2013; Hu et al. 2021), Natural Scene
Statistics based (Moorthy and Bovik 2011; Saad, Bovik,
and Charrier 2012; Zhang, Zhang, and Bovik 2015), and
Human Vision System (HVS) based metrics (Zhai et al.
2011; Gu et al. 2014). However, conventional BIQA meth-
ods restrict their ability to comprehensively represent im-
age quality in complex real-world scenarios, especially for
real-world images with diverse distortions and image con-
tents. Recent years have witnessed the growing popularity
of deep learning-based BIQA methods due to their abil-
ity to capture intricate image perceptual features. These ap-
proaches (Bosse et al. 2017; Liu, van de Weijer, and Bag-
danov 2017; Ma et al. 2017; Zhang et al. 2018; Ying et al.
2020a; Zhu et al. 2020; Pan et al. 2022; Zhou et al. 2023) use
Convolutional Neural Network as feature extractor, trans-
forming the extracted features into quality scores. While
CNN-based IQA models tackle complex distortion condi-
tions and diverse image contents, they have some limita-
tions, and the quality-aware features may remain highly ab-
stract due to the scarcity of annotated BIQA images.

Recently, Vision Transformer (ViT) (Dosovitskiy et al.
2021) has shown impressive performance in various vision-
related applications. ViT-based BIQA models can be cate-
gorized into hybrid Transformer (You and Korhonen 2021;
Golestaneh, Dadsetan, and Kitani 2022) and pure ViT-based
Transformer (Ke et al. 2021). Hybrid architectures combine
CNNs with Transformer, while pure ViT-based methods fo-
cus solely on Transformer.

Semi-Supervised Blind Image Quality Assessment

While semi-supervised learning has been extensively stud-
ied, its application to IQA remains relatively scarce. SSL
Ensemble (Wang, Li, and Ma 2021) utilized an ensemble
learning approach to improve the diversity of model predic-
tions for unlabeled data, thus enhancing the model’s gener-
alization performance. Differently, Prabhakaran et al. (Prab-
hakaran and Swamy 2023) presented a framework utiliz-
ing contrastive learning to develop feature representations,
effectively pretraining an image encoder to cluster images
based on their quality through synthetic distortions. By aug-
menting contrastive learning with downstream supervision,
the study achieved more transferable representations suit-
able for IQA. In contrast to their approach, we employ
knowledge distillation with kernel ridge regression (Welling
2013) to obtain pseudo-labels from the teacher model for
unlabeled data.
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Incremental Learning for Blind Image Quality
Assessment
Incremental or continual learning research in the field of
BIQA is still in its nascent stage. LwF-KG (Liu et al. 2022)
pioneered the concept of continual learning in BIQA and in-
troduced a simple yet effective approach. By building upon a
shared backbone network, they appended a prediction head
for a new dataset and imposed a regularizer, enabling all
prediction heads to evolve with new data while mitigating
catastrophic forgetting of old data. Ultimately, an aggregate
quality score was computed by a weighted summation of
predictions from all heads. R&R-Net (Ma et al. 2021) intro-
duced a dynamic Remember and Reuse (R&R) network for
efficient cross-task blind image quality assessment (BIQA)
using a novel relevance-aware incremental learning strategy.
The R&R network sequentially updates parameters for mul-
tiple evaluation tasks, preserving task-specific preferences
while pruning and reusing parameters dynamically based on
task relevance, achieving improved prediction accuracy. The
distinction lies in the fact that prior work falls under su-
pervised learning, while our approach involves incremental
learning within a semi-supervised setting.

Proposed Method
Overview
In this article, we propose a novel Semi-Supervised BIQA
framework (SS-IQA), based on knowledge distillation and
incremental learning (Fig. 2). Our approach centers on the
transfer of knowledge garnered from labeled data to those
that lack labeling, with the aim of amplifying performance
outcomes in unlabeled data while minimizing the perfor-
mance drop of labeled data as much as possible.

Notations. In this study, we establish a set of notations
to increase clarity and consistency. We denote the labeled
dataset as DA = {(xi, yi)}Mi=1 , and the unlabeled dataset as
DB = {(xj)}Pj=1 . Therefore, we can define our task DA →
DB , which leverages the knowledge from DA to improve
the performance of DB in a semi-supervised manner to en-
sure excellent performance on both DA and DB . We also
introduce EA and EB , which are representative examples de-
rived from DA and DB , respectively.

Our training process. The teacher model is trained on
weakly augmented images, and the student model is trained
on strongly augmented images. Pseudo-labels generated by
the teacher model supervise the student network on unla-
beled datasets. Unlabeled datasets are divided into blocks,
and the student model iteratively updates itself by training
on each block of data in sequence. A sampling module se-
lects representative samples for revising old knowledge to
avoid catastrophic forgetting. This design enhances assess-
ment quality, reduces data annotation costs, and improves
generalization capability for addressing BIQA challenges.

Kernel Ridge Regression (KRR) - Distillation
We propose a distillation module to enable semi-supervised
learning for BIQA and address data annotation challenges.
We start by training a high-performance teacher model on a

labeled dataset and then use it to generate pseudo-labels for
unlabeled data to supervise the student model training. Ini-
tially, the student and teacher models are identical. We pro-
vide weak and strong augmentations to the teacher and stu-
dent inputs, respectively, allowing the student to learn more
effectively. To preserve image quality during augmentation,
we use random cropping for the teacher and random hori-
zontal flipping and cropping for the student. After each in-
cremental phase, we replace the teacher with the student.
This process iterates to improve the student’s performance.

To address potential bias in pseudo-labels, we use Kernel
Ridge Regression (KRR) to improve their reliability. KRR
constructs a high-dimensional feature space and computes
the similarity between data points using a kernel function.
For unlabeled data, pseudo-labels are obtained by weight-
ing labeled data points in the high-dimensional space based
on kernel function values. This reduces bias and improves
pseudo-label quality, leading to better model performance.

Specifically, we extract features from DA′
and DB us-

ing the teacher model to obtain feature matrices FA and
FB . The set DA′

is a subset of DA, obtained through SDK-
Sample. We use FA and ground truths to fit a non-linear
model for DA′

, minimizing the KRR loss as follows:

L =
∑

i∈DA′

yi −
∑

z∈DA′

αzK (fi, fz)

2

+

λ
∑

i,z∈DA′

αiαzK (fi, fz) ,

(1)

where fi and fz denote the feature of the i-th and z-th
sample, αi and αz are kernel ridge regression coefficients,
describing the contribution of each feature point. λ balance
model’s fitting degree and model complexity, K is the Ra-
dial Basis Function (RBF) (Buhmann 2000). The definition
of RBF can be written as:

K (fi, fz) = exp
(
−γ ∥fi − fz∥2

)
, γ > 0, (2)

where γ defines the influence range of a single sample.
This is known as the Gaussian Kernel (Keerthi and Lin
2003). Then, we utilize feature matrix FB as input and ob-
tain pseudo-labels for the unlabeled data DB .

yj =
∑

i∈DA′

αiK (fi, fj) , (3)

where yj is the pseudo label of the j-th sample in DB .

Incremental Learning
Our system consists of N + 1 phases, including one ini-
tial phase and N incremental phases. The unlabeled dataset
DB is uniformly partitioned into N subsets DB

0 , DB
1 , · · · ,

DB
N−1. In the initial phase, we train a teacher network on the

labeled data DA using the smooth L1 loss and save the re-
sulting model Θ0 and representative samples EA to the sys-
tem’s memory. For each incremental phase (i-th phase), we
retrieve Θi−1 and representative exemplars EA and EB

0:i−1
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Figure 2: The overview of SS-IQA. The model comprises two phases. In the first phase, DA is utilized to initiate both student
and teacher. In the second phase, N incremental learning phases are carried out on DB . The KRR-Distill module leverages the
Kernel Ridge Regression to produce pseudo-labels. To prevent catastrophic forgetting during incremental learning, the SDK-
Sample module selects the K most precise exemplars, serving as representative exemplars for replay.

from memory and train the student network Θi on represen-
tative exemplars and the new data DB

i . Finally, we evaluate
the performance of the student model ΘN on the validation
sets of both datasets DA and DB .

SDK - Sample
To prevent catastrophic forgetting and improve generaliza-
tion performance, we propose a replay-based algorithm with
the Smallest Difference topK (SDK)-Sample mechanism
for representative sample selection. In the i-th incremental
phase, we choose representative examples from the previous
i-1 phases. This is achieved by validating the model Θi−1

on datasets DA and DB
0:i−1, selecting the top K nearest ex-

amples to the corresponding ground truth and pseudo label,
respectively, denoted as EA, EB

0:i−1. We then mix these rep-
resentative samples with the incremental data DB

i to train
the model Θi, initialized by Θi−1. This approach ensures
that the model does not excessively lean toward new knowl-
edge and forget the learned knowledge. By avoiding catas-
trophic forgetting and enhancing the model’s robustness and
generalization, our method achieves improved performance
in incremental learning.

Experiments
Datasets and Evaluation Protocols
We evaluate the performance of our proposed model on
eight typical image quality evaluation datasets, including
four synthetic datasets and four authentic datasets. The syn-
thetic datasets we used are LIVE (Sheikh, Sabir, and Bovik

2006), CSIQ (Larson and Chandler 2010), TID2013 (Pono-
marenko et al. 2015), and KADID (Lin, Hosu, and Saupe
2019). The authentic datasets we used are LIVEC (Ghadi-
yaram and Bovik 2015), KonIQ (Hosu et al. 2020), LIVEFB
(Ying et al. 2020b), and SPAQ (Fang et al. 2020).

To evaluate the performance of our model, we use Pear-
son’s Linear Correlation Coefficient (PLCC) and Spear-
man’s Rank order Correlation Coefficient (SRCC) as evalua-
tion metrics. Specifically, PLCC and SRCC are intended for
assessing the accuracy of BIQA model predictions and the
monotonicity of BIQA algorithm predictions, respectively.
Both PLCC and SRCC range from 0 to 1, with higher values
indicating better performance.

Implementation Details
We use the transformer structure as our model. Our trans-
former encoder is based on the ViT-S proposed in DeiT
III (Touvron, Cord, and Jégou 2022) and pre-trained for
400 epochs on ImageNet-1K. Our baseline model does not
employ KRR-based knowledge distillation or incremental
learning. During training, we use the Adam optimizer and
use the smooth L1 loss as the loss function. In the initial
phase, we train for 9 epochs on the dataset DA, with 3
warmup epochs and a learning rate of 2 × 10−4, which de-
creases by 0.1 every 3 epochs. In the incremental phase, we
train for 6 epochs on blocks of the dataset DB , with an ini-
tial learning rate of 2× 10−5, which decreases by 0.1 every
2 epochs. The dataset DB is divided into 3 blocks. For the
datasets DA and DB , we select one representative sample
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Method
Dataset DA LIVE CSIQ TID2013 KADID LIVEC KonIQ LIVEFB SPAQ

PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

ILNIQE 0.906 0.902 0.865 0.822 0.648 0.521 0.558 0.534 0.508 0.508 0.537 0.523 0.332 0.294 0.712 0.713
MEON 0.955 0.951 0.864 0.852 0.824 0.808 0.691 0.604 0.710 0.697 0.628 0.611 0.394 0.365 - -
WaDIQaM 0.955 0.960 0.844 0.852 0.855 0.835 0.752 0.739 0.671 0.682 0.807 0.804 0.467 0.455 - -
DBCNN 0.971 0.968 0.959 0.946 0.865 0.816 0.856 0.851 0.869 0.851 0.884 0.875 0.551 0.545 0.915 0.911
TIQA 0.965 0.949 0.838 0.825 0.858 0.846 0.855 0.850 0.861 0.845 0.903 0.892 0.581 0.541 - -
MetaIQA 0.959 0.960 0.908 0.899 0.868 0.856 0.775 0.762 0.835 0.802 0.887 0.850 0.507 0.540 - -
P2P-BM 0.958 0.959 0.902 0.899 0.856 0.862 0.849 0.840 0.842 0.844 0.885 0.872 0.598 0.526 - -
HyperIQA 0.966 0.962 0.942 0.923 0.858 0.840 0.845 0.852 0.882 0.859 0.917 0.906 0.602 0.544 0.915 0.911
TReS 0.968 0.969 0.942 0.922 0.883 0.863 0.858 0.859 0.877 0.846 0.928 0.915 0.625 0.554 - -
MUSIQ 0.911 0.940 0.893 0.871 0.815 0.773 0.872 0.875 0.746 0.702 0.928 0.916 0.661 0.566 0.921 0.918
DACNN 0.980 0.978 0.957 0.943 0.889 0.871 0.905 0.905 0.884 0.866 0.912 0.901 - - 0.921 0.915

SS-IQA(ours) 0.980 0.978 0.969 0.960 0.910 0.891 0.895 0.896 0.869 0.835 0.932 0.913 0.582 0.542 0.824 0.826

Method
Dataset DB CSIQ* LIVE KADID* TID2013* KonIQ LIVEC SPAQ LIVEFB

PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

LPSI 0.866 0.771 0.828 0.818 0.767 0.527 0.811 0.705 0.206 0.039 0.299 0.083 0.146 0.000 - -
PIQUE 0.862 0.837 0.836 0.840 0.789 0.762 0.841 0.825 0.300 0.145 0.171 0.108 0.249 0.156 - -
NIQE 0.877 0.871 0.906 0.908 0.830 0.832 0.808 0.797 0.398 0.371 0.495 0.450 0.503 0.501 - -
ILNIQE 0.814 0.879 0.902 0.897 0.869 0.855 0.860 0.842 0.563 0.536 0.504 0.439 0.707 0.696 - -
Q-NIQE 0.913 0.905 0.908 0.911 - - 0.858 0.859 - - 0.562 0.520 - - - -
CCF 0.410 0.263 0.442 0.387 0.804 0.285 0.679 0.693 0.552 0.552 0.047 0.110 0.589 0.207 0.629 0.183
UCIQE 0.148 0.275 0.431 0.561 0.447 0.322 0.643 0.654 0.673 0.576 0.200 0.136 0.573 0.192 0.500 0.176
FDUM 0.375 0.220 0.847 0.785 0.579 0.220 0.596 0.518 0.653 0.527 0.531 0.556 0.581 0.496 0.113 0.104

SS-IQA(ours) 0.964 0.949 0.948 0.952 0.892 0.866 0.929 0.940 0.741 0.724 0.806 0.780 0.420 0.426 0.429 0.386

Table 1: Performance comparison is measured by averages of SRCC and PLCC, where bold entries indicate the best results.
*: For the CSIQ, TID2013, and KADID datasets, previous unsupervised methods only used partial data on common distortion
types such as JPEG, JPEG2000, white noise, and Gaussian blur. For a fair comparison, we follow them.

for every 100 samples, respectively.
We conduct our experiments on 8 different settings: LIVE

→ CSIQ, CSIQ → LIVE, TID2013 → KADID, KADID
→ TID2013, LIVEC → KonIQ, KonIQ → LIVEC, SPAQ
→ LIVEFB, and LIVEFB → SPAQ. The batch sizes are set
differently for each dataset. For all datasets, we use PLCC
and SRCC as the evaluation metric. For each dataset, we use
80% of the data for training and 20% for testing. We repeat
each experiment 10 times and calculate the average PLCC
and SRCC to mitigate the performance bias.

Overall Prediction Performance Comparison
We compare our approach to state-of-the-art supervised
methods on dataset DA, including both hand-crafted and
deep-learning-based BIQA methods, as well as current state-
of-the-art unsupervised methods on dataset DB , including
some underwater unsupervised methods, CCF (Wang et al.
2018) and UCIQE (Yang and Sowmya 2015).

As shown in Table 1, our model performs comparably to
state-of-the-art methods on synthetic datasets, outperform-
ing the current SOTA on the CSIQ → LIVE task. It signif-
icantly surpasses the performance of unsupervised state-of-
the-art methods on DB . However, on authentic datasets like
LIVEC → KonIQ and KonIQ → LIVEC, our performance
slightly decreases on DA, but our model still outperforms
unsupervised state-of-the-art methods on DB . Our perfor-
mance is comparatively poor on the LIVEFB → SPAQ and

LIVEC KonIQ
Method PLCC SRCC PLCC SRCC

SSLIQA 0.706 0.695 0.867 0.841
ours 0.776 0.745 0.891 0.881

KonIQ KADID
PLCC SRCC PLCC SRCC

SSL 0.900 0.890 0.910 0.900
ours 0.932 0.913 0.895 0.896

Table 2: Comparison with semi-supervised methods,
SSLIQA and SSL. Due to the significant differences in ex-
perimental setups between SSLIQA and our SS-IQA, we
followed the experimental settings outlined in the original
paper to conduct our experiments.

SPAQ → LIVEFB tasks. This could be due to specific image
characteristics or distortions in these tasks that might have
been less represented or rare in the labeled data, making it
challenging for the model to generalize well in these scenar-
ios. Overall, achieving leading performance across datasets
with diverse image content and distortion types is challeng-
ing. Nevertheless, these observations effectively confirm the
effectiveness and superiority of SS-IQA and demonstrate its
potential to tackle the challenges in real-world production
processes.
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LIVE->CSIQ

LIVE CSIQ
Method PLCC SRCC PLCC SRCC

Baseline 0.980 0.978 0.957 0.940
std ±0.005 ±0.005 ±0.030 ±0.032
+ IL 0.979 0.978 0.963 0.948
std ±0.007 ±0.005 ±0.015 ±0.015
+ KRR 0.979 0.977 0.961 0.947
std ±0.007 ±0.009 ±0.012 ±0.019
SS-IQA(ours) 0.980 0.978 0.964 0.949
std ±0.005 ±0.005 ±0.023 ±0.022

Table 3: Ablation experiments on LIVE and CSIQ datasets.
Bold entries indicate the best performance.

KADID->TID2013

KADID TID2013
Method PLCC SRCC PLCC SRCC

Baseline 0.891 0.894 0.918 0.927
std ±0.026 ±0.022 ±0.048 ±0.047
+ IL 0.895 0.896 0.927 0.938
std ±0.017 ±0.015 ±0.060 ±0.054
+ KRR 0.896 0.896 0.921 0.928
std ±0.018 ±0.020 ±0.037 ±0.042
SS-IQA(ours) 0.895 0.896 0.929 0.940
std ±0.022 ±0.019 ±0.036 ±0.030

Table 4: Ablation experiments on KADID and TID2013
datasets. Bold entries indicate the best performance.

Performance Comparison with Semi-Supervised
BIQA
We compared our method with SSLIQA (Yue et al. 2022)
and SSL (Prabhakaran and Swamy 2023) on three datasets:
LIVEC, KADID, and KonIQ. Due to the significant differ-
ences in experimental setups between SSLIQA and our SS-
IQA, we followed the experimental settings outlined in the
original paper to conduct our experiments. Both SSL and we
have utilized unlabeled datasets, a direct comparison with
them is appropriate. As shown in Table 2, our approach
outperformed SSLIQA and demonstrated strengths distinct
from SSL. Specifically, our method exhibited superior per-
formance across multiple evaluation metrics, showcasing its
efficacy in the context of semi-supervised image quality as-
sessment. It’s plausible that our method employs a more ef-
fective semi-supervised learning strategy and captures more
discriminative features related to image quality.

Ablation Study
The Impact of Each Component. SS-IQA is a novel
model that integrates knowledge distillation and incremental
learning, consisting of two essential components: pseudo-
label generation using Kernel Ridge Regression (KRR)
based knowledge distillation and Incremental Learning with
Experience Replay. Each component plays a crucial role in
accurately characterizing image quality and improving the
overall performance of the model. To better understand the

CSIQ->LIVE KADID->TID2013

CSIQ LIVE KADID TID2013
PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

Q=1 0.968 0.958 0.938 0.946 0.896 0.897 0.925 0.936
Q=2 0.965 0.954 0.943 0.949 0.895 0.896 0.928 0.935
Q=3 0.969 0.960 0.948 0.952 0.895 0.896 0.929 0.940
Q=4 0.965 0.959 0.937 0.946 0.896 0.897 0.929 0.938
Q=6 0.969 0.960 0.952 0.958 0.895 0.896 0.931 0.942

Table 5: Analysis of Block Quantity in Incremental Dataset
DB . Bold entries indicate the best performance.

LIVE->CSIQ LIVE CSIQ

PLCC SRCC PLCC SRCC

K1=20

K2=0 0.978 0.976 0.961 0.945
K2=10 0.979 0.977 0.965 0.954
K2=20 0.979 0.977 0.962 0.949
K2=50 0.977 0.976 0.964 0.950
K2=100 0.978 0.976 0.962 0.947

K2=20

K1=0 0.977 0.975 0.964 0.951
K1=10 0.979 0.977 0.962 0.949
K1=50 0.979 0.977 0.963 0.949
K1=100 0.979 0.977 0.967 0.952

K1=100 K2=100 0.980 0.978 0.964 0.949

Table 6: Analysis of K1 and K2. Bold entries indicate the
best performance.

importance of each component, we conduct ablation experi-
ments on the LIVE → CSIQ and KADID → TID2013. The
results, as shown in Table 3 and 4, indicate that all compo-
nents of our proposed method made significant contributions
to image quality characterization. Our proposed sampling
method provides significant improvements in both accuracy
and stability, especially when KRR is used for teacher distil-
lation. This demonstrates the effectiveness of the distillation
method, which allows our student model to improve its abil-
ity to distinguish quality-related features.

Analysis of Block Quantity in Incremental Dataset DB .
In this analysis, we examine the impact of the number of
unlabeled datasets DB blocks. We conduct experiments on
CSIQ → LIVE and KADID → TID2013, with Q values
of 1, 2, 3, 4, and 6, respectively. Q represents the num-
ber of blocks in the unlabeled dataset. As shown in Table
5, the results show that increasing the value of Q indicates
a slight improvement in the model’s performance on unla-
beled datasets, LIVE and TID2013. Considering accuracy
and training duration, we set Q=3.

Analysis of Representative Sample Size. During each in-
cremental learning phase, we denote the frequency of se-
lecting samples from datasets DA and DB as K1 and K2,
respectively. The number of samples selected from DA and
DB are |DA|

K1
and |DB |

K2
, respectively, where |DA| and |DB |

are the sizes of corresponding datasets, respectively. The re-
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Figure 3: Comparison of activation maps between our baseline model and SS-IQA using Grad-CAM (Selvaraju et al. 2017).
Rows 1-5 show input images, CAMs from the baseline, and CAMs from three training phases of SS-IQA on dataset DB . The
first line of numbers represents the ground truth of the input image. The numbers below each image in lines 2-5 represent the
predicted scores, and the number in parentheses represents the distance between the predicted score and the ground truth.

sults in Table 6 demonstrate that changing the values of K1

and K2 does not significantly impact the performance, with
differences not exceeding 1%. To minimize memory con-
sumption, we set K1 and K2 to 100 in our experiments, and
this setting remains consistent throughout our study.

Visualization of Class Activation Map

We utilize GradCAM (Selvaraju et al. 2017) to visualize the
feature attention maps of the input images in both our base-
line model and SS-IQA, as shown in Fig. 3. The number
below each figure represents the predicted quality score of
the model, while the number in parentheses shows the dis-
tance between the predicted score and the ground truth in
the first row. DB

0 , DB
1 , and DB

2 illustrate the different phases
during training on dataset DB . The left results demonstrate
that in most cases, our incremental learning approach grad-
ually leads to better-predicted results within each iteration,
as compared to the previous phases. Meanwhile, our model
gradually narrows its focus on the salient area during the
iteration process. After the final phase, SS-IQA accurately
and comprehensively focuses on the salient area, while the
baseline model loses its attention. However, our method

does not always evolve toward better performance. When
the unlabeled data is not covered by the original data space,
our model may lose focus and result in poor performance. In
summary, our model transfers knowledge from labeled data
to unlabeled data and effectively prevents catastrophic for-
getting during the incremental learning process.

Conclusion

Blind Image Quality Assessment (BIQA) has a great de-
mand for labeled data, which is often insufficient in practice.
In this paper, we propose a unified framework for BIQA that
combines knowledge distillation and incremental learning to
solve the insufficient data problem. Knowledge distillation
is employed to generate pseudo-labels for unlabeled data,
resulting in expanding datasets and implementing semi-
supervised learning. Experience Replay is applied to pre-
vent catastrophic forgetting during multiple semi-supervised
learning. Experimental results demonstrate the effectiveness
of our proposed approach across multiple IQA datasets. In
conclusion, our proposed method demonstrates its potential
to tackle the challenges in real-world production processes.
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