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Abstract

Interactive segmentation methods rely on user inputs to it-
eratively update the selection mask. A click specifying the
object of interest is arguably the most simple and intuitive
interaction type, and thereby the most common choice for
interactive segmentation. However, user clicking patterns in
the interactive segmentation context remain unexplored. Ac-
cordingly, interactive segmentation evaluation strategies rely
more on intuition and common sense rather than empirical
studies (e.g., assuming that users tend to click in the center
of the area with the largest error). In this work, we conduct a
real user study to investigate real user clicking patterns. This
study reveals that the intuitive assumption made in the com-
mon evaluation strategy may not hold. As a result, interactive
segmentation models may show high scores in the standard
benchmarks, but it does not imply that they would perform
well in a real world scenario. To assess the applicability of
interactive segmentation methods, we propose a novel evalu-
ation strategy providing a more comprehensive analysis of a
model’s performance. To this end, we propose a methodology
for finding extreme user inputs by a direct optimization in a
white-box adversarial attack on the interactive segmentation
model. Based on the performance with such adversarial user
inputs, we assess the robustness of interactive segmentation
models w.r.t click positions. Besides, we introduce a novel
benchmark for measuring the robustness of interactive seg-
mentation, and report the results of an extensive evaluation of
dozens of models.

Introduction
Interactive segmentation methods are widely exploited for
object removal, object selection, large dataset collection,
medical image annotation and other tasks related to im-
age labeling. Compared to conventional segmentation ap-
proaches, interactive methods provide higher quality masks
that satisfy user requests better. Arguably the most well-
explored, click-based interactive segmentation aims at se-
lecting objects in an image according to multiple user input
clicks (either positive or negative), comprising a click tra-
jectory. However, the real user evaluation of each novel ap-
proach, that implies comparing it with an ever-growing num-
ber of predecessors, is completely unfeasible. Respectively,
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Figure 1: Single clicks made by different real users and
the respective quality achieved. Top left: real users (green
dots) do not click the way it is assumed in the standard
testing procedures (magenta dot). Top right: the quality of
two popular interactive segmentation models, a convolu-
tional RITM (Sofiiuk, Petrov, and Konushin 2022) and a
transformer-based SAM (Kirillov et al. 2023), is widely
spread around the average score (visualized with colored
bars). Bottom: IoU heatmaps show that prediction quality
fluctuates heavily depending on an actual click position.

in the common interactive segmentation benchmarks, clicks
are not put by real users but automatically generated based
on a history of interactions. Most existing methods 1) se-
lect a region with the largest error in the previous interaction
round, and 2) click in the furthest point from the boundaries
of this region. Hereinafter, we refer to this click generation
scheme as the baseline strategy.

However, our study of real user clicks reveals this straight-
forward strategy does not emulate user behavior adequately.
Besides, models tend to overfit to the baseline strategy, so
that the accuracy might be high, but even a slight change
of a click position causes a severe quality drop (Figure 1).
Thus, the real-usage quality of the tested models remains
unknown.

The evaluation protocols that assess quality for a single
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Figure 2: Top row: images with overlapped ground-truth masks (white), real user clicks (green), and clicks generated with the
baseline strategy (magenta). Two bottom rows: IoU scores of RITM and SAM, calculated on a grid for each possible integer
click position; warmer colors correspond to higher scores. Apparently, IoU scores may vary dramatically within small regions
of the same object: this shows that the state-of-the-art approaches are rather sensitive to the click position.

click trajectory cannot guarantee that tested methods are ro-
bust enough to perform well in various possible interaction
scenarios. In this work, we formulate a multi-trajectory eval-
uation strategy. Particularly, we propose to generate click
trajectories through a differentiable adversarial attack on the
interactive segmentation model, and estimate the robustness
based on a quality gap between trajectories.

Overall, our contributions are as follows:

• We conduct a pioneer study of real user clicking patterns
in an interactive segmentation scenario. It reveals that
users do not always click in the center of an area with
the largest error, as assumed in the baseline methodology
used in the most existing methods.

• To the best of our knowledge, we are the first to develop
a procedure for generating user inputs via an adversar-
ial attack for measuring robustness of interactive models.
Relying on a differentiable rendering of user inputs, the
proposed procedure remains fully differentiable and fast-
convergent.

• We present a TETRIS benchmark with 2000 high-
resolution images carefully selected and manually la-
beled with fine segmentation masks. The images depict
common objects: 1000 images contain objects of various
categories, and another 1000 portray people.

• We formulate an interactive segmentation robustness
score, and evaluate the robustness of state-of-the-art
methods, using TETRIS and the standard interactive seg-
mentation benchmarks.

We believe that the methodology presented in this study
will assist creating more robust and high-quality interactive
models for real world applications.

Related Work
Benchmarking Interactive Segmentation. GrabCut
(Rother, Kolmogorov, and Blake 2004) was the first inter-
active segmentation dataset. Then, the Berkeley (Martin
et al. 2001) segmentation dataset was adapted for interactive

segmentation (McGuinness and O’connor 2010). The
associated evaluation protocol implied assessing both object
and boundary segmentation quality with IoU measure
and required manual interaction with a method. (Xu et al.
2016) proposed an automatic procedure of benchmarking
click-based interactive segmentation on PASCAL VOC
2012 (Everingham et al. 2012) and COCO (Lin et al. 2014)
segmentation datasets; in this procedure, clicks were placed
strictly in the center of the largest erroneous region, and
the quality was assessed with IoU. The follow-up work
(Li, Chen, and Koltun 2018) adapted DAVIS (Perazzi et al.
2016a) and SBD (Hariharan et al. 2011) (labeled with
boundaries) datasets for interactive segmentation, using the
same click generation strategy. We conduct our study on
most commonly used datasets as well as TETRIS, which
contains images of a significantly higher resolution.

Segmentation Metrics. The most common metric used
to assess interactive segmentation is the Number of Clicks
(NoC) (Jang and Kim 2019; Sofiiuk et al. 2020), required
to achieve the predefined IoU score. NoC equally penalizes
the cases where the desired score was achieved on the last
interactions, and the cases where the threshold was not ex-
ceeded; we consider this to be a major drawback of this met-
ric. Besides, it was noticed (Sofiiuk, Petrov, and Konushin
2022) that using the baseline strategy encourages the model
to overfit to NoC, while the performance in a real scenario
remains poor.

Accordingly, we do not use NoC, but consider an area un-
der an IoU curve (Jang and Kim 2019) as a major metric.
We consider 10 clicks and normalize the area to be within
[0, 1]. The standard IoU score is edge-insensitive, so bound-
ary metrics were additionally formulated for an ad-hoc as-
sessment. The trimap IoU (Kohli, Ladický, and Torr 2009;
Chen et al. 2018) is calculated within a distance from the
ground truth mask boundary, ignoring distant erroneous pix-
els. The performance issue was addressed with approxima-
tions of F-measure (Csurka, Larlus, and Perronnin 2013;
Perazzi et al. 2016b). McGuinness et al. (McGuinness and
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Figure 3: An IoU spread (a difference between a maximum and minimum IoU of user clicks) between predicted and ground
truth masks in the first real user interaction round. Green points represent user clicks, magenta points depict the clicks generated
with the baseline strategy. Columns are sorted by an average spread.

O’connor 2010) formulated a fuzzy boundary accuracy mea-
sure. (Cheng et al. 2020) proposed a mean Boundary Accu-
racy measure (mBA), further reworked into an MQ (Yang
et al. 2020) score. In an image matting, boundary quality is
evaluated with a trimap-based SAD, MSE (Xu et al. 2017),
and perceptual Gradient and Connectivity errors (Xu et al.
2017). Since pronounced boundaries are especially impor-
tant for high-resolution image processing, we also measure
the boundary quality. To this end, we use a recently intro-
duced Boundary IoU (Cheng et al. 2021a), which is intuitive
and one of the most straightforward.

User Inputs. In this study, we consider only click-based
approaches. However, numerous works were dedicated to
other user input types. Bounding boxes were employed
for selecting large image areas (Xu et al. 2016; Rother,
Kolmogorov, and Blake 2004). In (Gueziri, McGuffin, and
Laporte 2017), object selection was guided with manual
strokes. In (Agustsson, Uijlings, and Ferrari 2019), an initial
selection was made using bounding boxes obtained via ex-
treme clicking (Papadopoulos et al. 2017), and then refined
with strokes. (Cheng et al. 2021b) proposed a randomized
uniform click and stroke generation strategy, where points
were randomly sampled from the ground truth mask. Re-
cently presented Segment Anything, or SAM (Kirillov et al.
2023), formulated a promptable segmentation task, where
each prompt can be a point, a box, a mask, or a text.

Adversarial Attacks. Adversarial attack approaches are
typically classified as either black-box or white-box, depend-
ing on whether the information about an attacked model
is available. Black-box approaches (Wieland Brendel and
Bethge 2018; Bhagoji et al. 2018; Su, Vargas, and Sakurai
2019) may compensate a lack of information with an exten-
sive computation. Since we consider high-resolution images
and numerous clicks, the amount of computations required
in a black-box adversarial attack is unfeasible. Accordingly,
we are restricted with white-box approaches.

The robustness of the conventional segmentation ap-
proaches was already explored (Kamann and Rother 2020);
yet, as user inputs are not involved, the robustness could
only be measured w.r.t image perturbations. A recent series
of works (Guan et al. 2023; Zhang et al. 2023b; Qiao et al.
2023; Wang, Zhao, and Petzold 2023) measuring the robust-
ness of SAM also focused on perturbing images rather than
user prompts. In contrast, we fix input images and investi-

gate the robustness w.r.t user inputs. We propose a fully dif-
ferentiable white-box attack for generating adversarial user
inputs, and formulate robustness metrics accordingly.

TETRIS
In this section, we briefly describe our self-collected dataset
serving as a basis of the robustness benchmark. By creat-
ing TETRIS, we focused on usability, which implies proper
licensing, no privacy violation (all depicted people gave an
articulated consent), and avoiding other issues that may limit
or forbid using a dataset.

Object Classes
Object classes for TETRIS are chosen according to the task-
specific requirements. Specifically, we select object classes
seeming useful for image editing and labeling. Since we are
unaware of any previous research dedicated to image editing
scenarios, we cannot rely on a real-life object class distribu-
tion. So, we include classes present in PASCAL VOC 2012
(Everingham et al. 2012) and some other common classes
from COCO (Lin et al. 2014). Overall, we consider 9 meta-
classes: transport, wild animal, object, domestic animal,
food, architecture, plant, statue are represented in TETRIS-
THINGS, while TETRIS-PEOPLE contains only images of
people.

Image Acquisition and Annotation
For TETRIS-THINGS, we manually selected 1000 images
from Unsplash1. For TETRIS-PEOPLE, we purchased 1000
photos directly from a crowdsourcing vendor. Age, gender,
country, and race according to (Karkkainen and Joo 2021)
were indicated by participants themselves. They also gave a
mandatory consent to using their personal data and images;
each user could donate from 1 to 5 photos. We restricted the
photo resolution with at least of 2MP to ensure good quality
of images.

The acquired images were segmented into polygonal re-
gions using the CVAT (Sekachev et al. 2020) labeling tool,
and each such region was marked either as a foreground,
a background, or an uncertain region. Next, we apply mat-
ting (Park et al. 2022) to uncertain regions, so that they
turned into either foreground or background. For images

1https://unsplash.com/license
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Figure 4: The minimizing, baseline, and maximizing trajectories of IoU for RITM and SAM models. Aggregated values (IoU-
AuC) are given in brackets.

with several objects, we merged the corresponding alpha
maps and thresholded them to obtain a binary segmentation
mask. Finally, all masks were verified by expert annotators.

Exploring Robustness Issues
Below, we present the results of our real user study with two
interaction rounds. Additionally, we analyze how the predic-
tion quality varies in different possible click positions.

Real User Study
We selected five images per category from TETRIS-THINGS
for a real user study. We used a crowdsourcing web annota-
tion platform, and asked hundreds of users to label images
with a simple annotation tool.

First interaction round. Each performer was exposed
with 1) a source image, and 2) the same image, overlapped
with a predicted semi-transparent mask (or a ground-truth
mask in the first interaction round). In the first interaction
round, we asked the annotators to put a single click on the
target object. In the first round, only positive clicks are al-
lowed. The total of 600 users participated, resulting in 15
interactions per each of 40 images.

Second interaction round. After completing the first
round, the acquired user clicks were processed with RITM
HRNet18 (Sofiiuk, Petrov, and Konushin 2022), and false
positive and false negative per-pixel errors were calculated.
For each type, we selected 40 samples with the largest error
values. For clicks with the largest False Positive error, where
the model predicted excessive masks, annotators were asked
to make a negative click to exclude the redundant regions.
Vice versa, for clicks with the largest False Negative error,
users were requested to make the second positive click to
cover missing areas. Other 1200 users were recruited in this
round, providing 15 interactions per image.
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50

100

Fr
eq
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nc
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Second positive (mean: 17.69)
Second negative (mean: 17.85)

Figure 5: Distances between 1800 clicks made by real users
and the ones generated using the baseline strategy.

Exhaustive Search
We also investigate the model quality in a full search over
all integer input positions. Being arguably the simplest and
the most intuitive way to measure the quality change w.r.t
perturbed user inputs, this approach is resource-exhaustive:
the number of forward passes grows linearly with both im-
age height and width, making it impossible to evaluate on a
full dataset in reasonable time.

We perform a brute-force on a pixel-wise grid and visu-
alize the obtained results as heatmaps in Figure 2 (bottom
rows). For each pixel, the color represents the IoU score ob-
tained if clicking on this pixel; warmer hues mark higher
IoU scores. Brute-force for a single 1024×1024 image takes
over 4 hours using a single NVIDIA Tesla V100 to proceed,
which encourages us to seek a faster approach for robustness
evaluation, described below.

Analysis
We observe that the click position obtained with the baseline
clicking strategy is consistent with the real user click only in
case of convex objects of simple shapes (e.g., a pizza). For
more complex geometries, users tend to click in different
areas of density, or salience objects’ parts. Figure 5 shows
distances between each user click and the click generated by
the baseline strategy; all distances are normalized by an in-
stance size (a diagonal length) for fair comparison between
different objects. The error exceeds 15 percent on average,
reaching a half of an instance diagonal size in some cases.

Nevertheless, user inputs are mostly gathered in a vicin-
ity of the object’s “center” (being understood subjectively
based on a common sense rather than formal criteria), which
might not actually coincide with the point being the furthest
from the boundaries. The divergence of real and generated
user clicks is especially tangible in case of long, thin ob-
jects, i.e., a snake. Besides, we notice that the quality of the
tested model may variate within a large range depending on
a click position. As one can see in Figure 3, the click posi-
tion significantly affects the quality in more than on a half
test samples. It also shows that users might easily uninten-
tionally place clicks in such adversarial points, providing an
unexpectedly low segmentation quality.

Proposed Evaluation Protocol
Let us informally define a robustness of an interactive seg-
mentation model as its ability to output the same mask for
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Figure 6: Visualization of IoU bounds of tested models. Columns are sorted by an average IoU-Min. As can be seen, there exists
a dependency between the robustness (IoU-D, a delta between IoU-Max and IoU-Min) and the prediction quality.

any valid user input pointing to the same object. We con-
sider only valid inputs: positive clicks must be placed within
a yet unselected area of an object mask, while negative clicks
should locate in some selected area outside the object mask.

Adversarial Inputs
To reduce the processing time from hours to seconds, com-
pared to brute-force, we need to restrict the search space in
a sensible way. We assume the center of the object to be a
reasonable starting point, and then search for a local extreme
in its vicinity.

We select click positions with a white-box targeted attack.
The overall scheme of our method is shown in Figure 7.
Using differentiable rendering (Ma et al. 2022), we encode
clicks as maps with disks of a fixed radius marking click po-

Input
Image

Previous
Mask

Differentiable
rendering

Rasterized current
user input

Previous user
inputs map

Interactive
Segmentation

Model

Predicted Mask

Calculate
Loss

Ground-Truth

Gradient path for  update

Forward pathLearnable
coordinates 

for current round

Figure 7: Overview of the proposed adversarial inputs gen-
eration. For models with raw (X,Y ) coordinates, such as
(Kirillov et al. 2023), we use a differentiable rendering step
only for interaction location loss term.

sitions (since most models accept user inputs in this form).
The radius is a hyperparameter, depending on the architec-
ture of an attacked model. We calculate loss between the
predicted and ground truth mask and run a gradient update
to optimize click positions according to the chosen strategy.
We use two strategies: one aims to minimize IoU, another
targets at maximizing it. Surprisingly, even finding local ex-
trema using the gradient descent method, a change of a click
position has a great impact on the final quality (Figure 4).

Proposed Metrics
Sequentially optimizing each interaction, we obtain two
click trajectories, referred to as the minimizing trajectory
and maximizing trajectory. Similarly, we address the click
trajectory obtained via the baseline clicking strategy, as the
baseline trajectory. Based on the obtained trajectories, we
propose a robustness metric specifically for the task of in-
teractive segmentation (an intuitive explanation is given in
Figure 8).
IoU/BIoU-Min/Max — the area under the minimizing/-
maximizing trajectory curve, the quality metric on a gen-
erated trajectory of the worst/best adversarial clicks.
IoU/BIoU-D — the difference between the area under

# of clicks
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N
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Figure 8: Left: the standard IoU/BIoU-AuC score. Right:
the proposed IoU/BIoU-D robustness score. We consider 10
clicks and normalize the area to be within [0, 1].
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Method Model Data
GrabCut Berkeley DAVIS COCO-MVal TETRIS (ours)

IoU (AuC@10) IoU (AuC@10) IoU (AuC@10) IoU (AuC@10) IoU (AuC@10)
Min↑ Max↑ D↓ Min↑ Max↑ D↓ Min↑ Max↑ D↓ Min↑ Max↑ D↓ Min↑ Max↑ D↓

MobileSAM ViT-Tiny SA-1B 93.69 95.58 1.89 90.11 92.49 2.38 83.16 87.60 4.44 82.32 87.20 4.88 86.22 91.85 5.64

SAM
ViT-B

SA-1B
93.56 96.28 2.72 91.06 93.77 2.71 82.44 88.44 6.00 85.28 89.73 4.45 86.01 93.56 7.55

ViT-L 94.57 96.13 1.57 92.70 94.12 1.41 83.53 88.90 5.37 86.51 89.57 3.06 88.94 94.28 5.33
ViT-H 94.10 96.07 1.97 91.73 93.84 2.11 83.36 88.57 5.21 84.32 87.88 3.56 88.90 93.93 5.04

SAM-HQ
ViT-B SA-1B

+44K

91.92 96.29 4.37 90.59 94.47 3.88 81.52 89.44 7.92 83.62 89.64 6.02 79.63 94.16 14.53
ViT-L 94.68 96.91 2.23 92.51 94.74 2.24 81.57 89.69 8.12 85.32 90.04 4.72 86.26 94.98 8.72
ViT-H 94.31 96.96 2.65 92.40 94.84 2.45 79.87 89.77 9.90 84.62 90.24 5.62 86.03 94.98 8.96

CDNet RN34 C+L 91.72 96.99 5.27 89.54 94.35 4.81 83.56 88.06 4.50 83.46 90.70 7.24 87.72 93.12 5.39
RN34 SBD 88.60 94.39 5.79 88.04 92.15 4.11 81.39 86.15 4.77 76.14 85.44 9.30 82.73 89.44 6.71

GPCIS RN50 C+L 92.06 96.51 4.45 89.56 94.59 5.03 84.81 89.21 4.41 79.65 91.47 11.83 84.26 92.81 8.56

RITM

HR18s-IT

C+L

91.34 96.42 5.08 91.77 94.21 2.44 76.58 86.63 10.06 87.32 92.69 5.37 88.53 92.60 4.08
HR18 92.84 95.27 2.43 91.47 93.49 2.01 82.48 86.62 4.14 87.18 90.82 3.64 88.17 90.99 2.82

HR18-IT 95.00 96.54 1.54 93.15 94.90 1.75 80.06 87.76 7.69 88.98 93.39 4.40 90.32 93.11 2.79
HR32-IT 94.47 96.85 2.39 92.36 95.01 2.65 78.71 88.52 9.81 87.66 93.41 5.74 89.40 93.40 4.00
HR18-IT SBD 92.62 95.50 2.88 89.17 92.57 3.40 82.20 86.43 4.22 80.62 88.56 7.93 83.91 88.80 4.89

SimpleClick

ViT-B
C+L

95.51 97.63 2.12 94.09 95.61 1.51 86.98 90.34 3.36 90.64 93.80 3.17 91.85 94.97 3.12
ViT-L 96.41 97.80 1.39 93.04 95.85 2.81 88.40 90.79 2.39 91.73 94.37 2.64 92.81 95.42 2.60
ViT-H 95.48 97.87 2.39 93.44 95.66 2.23 86.88 90.50 3.62 91.97 94.53 2.56 92.99 95.38 2.39

ViT-XT

SBD

93.96 95.72 1.76 89.62 92.66 3.05 78.06 85.71 7.65 81.01 88.86 7.85 82.53 89.47 6.94
ViT-B 95.59 97.36 1.77 93.49 94.71 1.22 87.49 89.67 2.19 83.36 89.84 6.48 88.04 91.72 3.68
ViT-L 95.19 97.10 1.91 93.09 94.42 1.33 87.82 89.68 1.86 85.47 91.12 5.65 89.10 92.16 3.06
ViT-H 95.92 97.32 1.39 93.27 94.52 1.25 87.17 89.57 2.40 85.13 91.02 5.89 89.07 92.06 2.99

CFR-ICL ViT-H C+L 95.56 98.04 2.48 93.63 96.11 2.48 87.58 91.45 3.87 90.49 94.19 3.71 92.38 96.09 3.72

Table 1: The quality and robustness scores of different models, measured on the standard datasets and our novel TETRIS
dataset. The best results are bold, the second best are underlined. SimpleClick and CFR-ICL are more robust than other tested
approaches. Still, even state-of-the-art models are extremely sensitive to the positions of user clicks, which may cause an
unstable performance in a real-world scenario.

curves of maximizing and minimizing trajectories. As de-
picted in Figure 4, maximizing, minimizing, and baseline
trajectories converge with an increasing number of clicks,
and the accuracy gap decreases accordingly. Therefore, the
difference between trajectories is the most divisible and
hence informative for a few clicks; accordingly, we consider
only 10 clicks in all our experiments.

Evaluation Setup
We narrow down our evaluation with recent methods hav-
ing an open-source codebase: RITM (Sofiiuk, Petrov, and
Konushin 2022), CDNet (Chen et al. 2021), SimpleClick
(Liu et al. 2022), CFR-ICL (Sun et al. 2023), and GPCIS
(Zhou et al. 2023). Besides, we experiment with prompt-
able interactive segmentation methods from the SAM fam-
ily: the original SAM (Kirillov et al. 2023), SAM-HQ (Ke
et al. 2023), MobileSAM (Zhang et al. 2023a). Overall, we
validate 23 checkpoints on the 5 interactive segmentation
datasets: GrabCut, Berkeley, DAVIS, and COCO-MVal, as
well as on our novel TETRIS dataset. The obtained quality
scores are listed in Table 1 and presented in a visual form
with the baseline strategy in Figure 6.

We run no more than 10 optimization iterations to restrict
the number of calculations. The gradient updates are cal-
culated with an Adam optimizer (Kingma and Ba 2014).
To compare models with different input resolution fairly,
we linearly scale the learning rate by an input size factor:

LR = 5
√
H2+W 2

400
√
2

, where H,W denote image height and
width in pixels, respectively. For minimizing and maximiz-
ing trajectories, the first iteration is selected with the base-
line strategy and the consecutive clicks are placed greedily
one by one.

Without any constraints, the maximization strategy yields
points in between the object parts but outside the object
mask. While providing the best quality, such click positions
are unlikely to be made by a real user. Also, the minimiz-
ing optimization can easily converge outside an object of
interest. Thus, to generate valid clicks in an adversarial op-
timization, we impose an additional constraint. We calculate
a distance transform map for false positive and false nega-
tive areas. For a positive click, we sum up the distances in
the false negative positions covered by a circle representing
this click, for a negative click – in the false positive posi-
tions, respectively. This gives an interaction location loss.
The total loss is a weighted sum of a Dice (Dice 1945) loss
and an interaction location loss, scaled by 1000. During the
optimization, we use the following update scheme:

1. Initialize an optimizable click position according to the
baseline strategy;

2. Start the optimization by minimizing / maximizing a loss
function;

3. Accept the new generated click, if IoU decreases / in-
creases and the interaction location loss does not in-
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Figure 9: Cross-metric Spearman’s rank correlations measured for different datasets.
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Figure 10: Cross-dataset Spearman’s rank correlations of IoU and BIoU scores.

crease by more than 5%: (for objects thinner than the
click radius, the loss inevitably gets worse even with a
precise click, so we allow a small margin);

4. Save the predicted mask and click location from the best
iteration, and use them in the next interaction round.

For models that accept raw click coordinates, we di-
rectly optimize the coordinates and use the differentiable
rendering step only to compute interaction location loss.
We follow the same evaluation procedure as is used in the
original methods, applying ZoomIn (Sofiiuk et al. 2020),
Cascade-Refinement (Sun et al. 2023), test-time augmenta-
tion flips (Sofiiuk, Petrov, and Konushin 2022), selecting a
mask by a predicted score (Kirillov et al. 2023), etc.

Discussion
Based on the results of our user study (Figures 2, and 3)
and robustness evaluation (Table 1; Figures 4, and 6), we
can conclude that state-of-the-art interactive segmenta-
tion models are extremely sensitive to the positions of
user clicks.

An exhaustive search on a pixel grid reveals that click-
ing on some coordinates within an object may unexpectedly
cause a significant accuracy drop. We further show that for
few points obtained through an adversarial attack, the qual-
ity may fluctuate significantly even within a small homo-
geneous area. We attribute such undesired behavior to the
model selecting a part of an object (like a single slice of pep-
peroni) rather than the entire object (like a pepperoni pizza).
Since the formulation of the interactive segmentation task is
naturally fuzzy, such an ambiguity occurring is inevitable to
a certain extent. Besides, the complexity of an object’s shape
affects the model’s performance greatly. However, when de-
veloping an interactive segmentation model, one should aim
to minimize those effects.

The minimizing, maximizing, and baseline trajectories do
converge with an increasing number of clicks. The differ-
ence in quality is the largest during the first few interactions.

This actually means that clicking in any sensible way (i.e.
committing only valid clicks) will provide an acceptable
result – but, possibly, after many interactions.

Furthermore, we explore pairwise correlations between
quality and robustness metrics (Figure 9) and compare
model rankings on different datasets (Figure 10). It can be
seen that:

• IoU/BIoU-Base strongly correlates with IoU/BIoU-Max;
therefore, the baseline evaluation protocol implicitly
ranks models by the best possible quality, but does not
reflect their performance in the worst case (Figure 9);

• IoU/BIoU-D strongly correlates with IoU/BIoU-Min,
while the correlations with IoU/BIoU-Max is weaker
(Figure 9). We attribute this to the fact that most of the
quality spread is associated with a performance drop of
the minimizing trajectory. According to Figures 4, and 6,
optimizing adversarial inputs for the maximizing trajec-
tory is much more difficult than searching for the worst
clicks;

• The model ranking turns out to be dataset-specific. The
ranking on TETRIS differs from the ranking on low-
resolution datasets (Figure 10).

Conclusion
In this study, we showed that the prediction quality of click-
based interactive segmentation models depends heavily on
the click location. To this end, we conducted a real user
study and analyzed 1800 participant responses. Guided by
this empirical evidence, we proposed the adversarial input
generation strategy, and formulated the robustness score,
which is estimated based on multiple generated trajecto-
ries. We evaluated the robustness of dozens of open-sourced
models on the well-known datasets; and also on the pro-
posed TETRIS benchmark with 2000 high-resolution im-
ages manually labeled with fine segmentation masks.
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