
SlowTrack: Increasing the Latency of Camera-Based Perception in Autonomous
Driving Using Adversarial Examples

Chen Ma1*, Ningfei Wang2*, Qi Alfred Chen2, Chao Shen1

1Xi’an Jiaotong University
2University of California, Irvine

ershang@stu.xjtu.edu.cn, ningfei.wang@uci.edu, alfchen@uci.edu, chaoshen@xjtu.edu.cn

Abstract

In Autonomous Driving (AD), real-time perception is a criti-
cal component responsible for detecting surrounding objects
to ensure safe driving. While researchers have extensively ex-
plored the integrity of AD perception due to its safety and se-
curity implications, the aspect of availability (real-time per-
formance) or latency has received limited attention. Exist-
ing works on latency-based attack have focused mainly on
object detection, i.e., a component in camera-based AD per-
ception, overlooking the entire camera-based AD perception,
which hinders them to achieve effective system-level effects,
such as vehicle crashes. In this paper, we propose SlowTrack,
a novel framework for generating adversarial attacks to in-
crease the execution time of camera-based AD perception.
We propose a novel two-stage attack strategy along with the
three new loss function designs. Our evaluation is conducted
on four popular camera-based AD perception pipelines, and
the results demonstrate that SlowTrack significantly outper-
forms existing latency-based attacks while maintaining com-
parable imperceptibility levels. Furthermore, we perform the
evaluation on Baidu Apollo, an industry-grade full-stack AD
system, and LGSVL, a production-grade AD simulator, with
two scenarios to compare the system-level effects of Slow-
Track and existing attacks. Our evaluation results show that
the system-level effects can be significantly improved, i.e.,
the vehicle crash rate of SlowTrack is around 95% on aver-
age while existing works only have around 30%.

Introduction
Autonomous Driving (AD) vehicles, manufactured by vari-
ous companies, have become ubiquitous in our daily lives.
For instance, numerous Tesla vehicles are equipped with the
Autopilot feature (Kane 2021; Tesla 2022) running in the
real world. For these vehicles, camera-based perception is
pivotal, enabling them to detect real-time environmental ob-
jects such as pedestrians to ensure safety. Given its signifi-
cance for safety and security, various prior works (Cao et al.
2021; Shen et al. 2022; Sato et al. 2021a; Wang et al. 2023)
have studied its security, especially on integrity such as mak-
ing the object vanished or changing the label of the objects
to cause traffic rule violations or safety hazards. We refer to
these as system-level effects throughout this paper.

*These authors contributed equally.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Nevertheless, the availability aspect (real-time perfor-
mance) of the system, which is crucial for safety (e.g., caus-
ing vehicle collision (Wan et al. 2022)) has been relatively
underexplored, especially for the complete camera-based
AD perception pipeline. While some existing AD security
analysis has studied availability in object detection (Shapira
et al. 2023; Chen et al. 2023), they do not encompass the en-
tire AD perception since usually, object detection is a part of
the AD perception (Jia et al. 2020). In addition, in the Cyber-
Physical System area, it is widely recognized that small
component level errors do not necessarily lead to system-
level effects (Shen et al. 2022; Wang et al. 2023). Thus, these
studies leave a critical research gap: their proposed attack
strategies may not be effective enough to conduct system-
level effects in end-to-end AD systems. As we demonstrate
later, existing attacks targeting only object detection do not
consistently produce highly potent system-level effects due
to lack of entire AD perception consideration.

To fill in this critical research gap, in this paper, we are the
first to study availability-based adversarial attacks across the
entire camera-based AD perception including both object
detection and tracking. Our proposed novel attack frame-
work, SlowTrack, is designed to increase the latency of
camera-based AD perception. Instead of solely targeting ob-
ject detection, which might not yield potent system-level
effects due to the limited increase of the latency, we real-
ize the untapped potential of object tracking response time
to generate a much more effective latency attack. To illus-
trate, an attacker focusing only on object detection might
attempt to dramatically increase the number of proposed
bounding boxes (Chen et al. 2023). Object tracking might
filter out a majority of these boxes and in common object
detection post-processing (Jocher 2020; Zhang et al. 2021),
the maximum number of detection is provided to ensure per-
formance. Thus, the effectiveness of these attack is limited.
Due to the importance of object tracking, we first perform
availability attack surface analysis by theoretically analyz-
ing the time complexity of the state-of-the-art representative
tracking algorithms. Then, we propose a two-stage attack
strategy and formulate the attack as an optimization prob-
lem, shown in Fig. 1. Additionally, our novel loss function
designs, encompassing score loss, bounding box area loss,
and feature match loss, fully leverage the entire tracking-by-
detection pipeline to generate effective latency-based attack.
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Our experimental evaluation of SlowTrack targets four
state-of-the-art camera-based AD perception pipelines. We
find that SlowTrack, when compared with existing object
detection latency attacks, provides significant improvements
in latency under comparable perturbation levels. For in-
stance, SlowTrack on average induces latency 2.9 times
more than that for existing approaches (Chen et al. 2023;
Shapira et al. 2023). We also demonstrate the system-level
effects of our SlowTrack using Baidu Apollo (Apollo 2023)
LGSVL (Rong et al. 2020) AD simulator. The results show
that SlowTrack induces a 70% vehicle crash rate in two rep-
resentative AD scenarios while existing methods achieve
only a 30% rate. Demo videos are at the project website:
https://sites.google.com/view/cav-sec/slowtrack

To sum up, our contributions are as follows:
• We are the first to study availability-based adversarial at-

tacks considering the entire AD perception pipeline and
find that previous object detection-based latency attack
strategies may not induce potent system-level effects.

• We propose a novel attack framework SlowTrack to sys-
tematically generate the latency adversarial attacks on
camera-based AD perception by designing a two-stage
attack strategy and proposing three novel loss functions.

• SlowTrack is tested on four popular camera-based AD
perception pipelines across different hardware, showing
increase in latency and boost in system-level effects.

Background and Related Work
Camera-based AD perception. In the AD system, camera-
based perception is primarily constituted by object detec-
tion and multi-object tracking (MOT) (Apollo 2023; Kato
et al. 2018). This process aims to identify objects in each
image frame and track their movement over time (Jia
et al. 2020). Tracking-by-detection has become the dom-
inant MOT paradigm (Zhang et al. 2022) and is widely
used in industry-grade full-stack AD systems such as Baidu
Apollo (Apollo 2023) and Autoware.AI (Kato et al. 2018). It
incorporates a detection module, a data association module,
and a tracker management module. The detection module
identifies objects in an image, noting their location, confi-
dence, class scores, as well as other features for later data
association. Data association then compares these detection
with existing trackers based on features such as location and
appearance, matching them based on similarity.

Tracking-by-detection, despite varying in matching
strategies, shares a similar tracking management (Jia et al.
2020) to build and delete the moving trajectories, called
trackers, and mark trackers and detection boxes as different
states. Specifically, unmatched detection boxes are marked
as unconfirmed and will be deleted unless they are continu-
ously detected for H frames. Matched trackers are marked as
re-find or remain activated depending on the trackers’ previ-
ous states, while unmatched trackers are marked as lost, and
will be deleted if no objects are associated with them for R
frames. All of these trackers involved in matching constitute
tracker pool and trackers with activated states are outputs.

Prior works (Jia et al. 2020; Ma et al. 2023b; Shen et al.
2022) show that MOT poses a general challenge to cause AD

system-level attack impact for existing attacks that target ob-
ject detection since MOT is designed to be robust against er-
rors in object detection. Given this challenge, our work intro-
duces an innovative latency attack against the most represen-
tative and popular MOT (tracking-by-detection) and demon-
strates the heightened system-level attack effects in AD.

Adversarial attack in AD. DNNs are vulnerable to ad-
versarial attacks (Carlini and Wagner 2017; Sato et al. 2023;
Luo et al. 2022), which are maliciously crafted samples to
force DNNs to misbehave. Various prior works have ex-
plored the adversarial attacks in AD (Cao et al. 2020; Sato
et al. 2020a, 2021b, 2020b; Muller et al. 2022; DiPalma et al.
2021). While a majority of these attacks target integrity, our
research concentrates on availability, which is another criti-
cal problem in AD (Wan et al. 2022). Although some attack
works study availability (Liu et al. 2023; Chen et al. 2023;
Shapira et al. 2023; Wang et al. 2021), none of them consider
the whole AD perception pipelines, which leads to subopti-
mal system-level effects in AD (Jia et al. 2020).

Availability-based latency attack. Availability-based la-
tency attack can induce delays in the outputting function.
Such adversarial methods, when applied to DNN, have been
investigated recently (Shapira et al. 2023; Chen et al. 2023;
Liu et al. 2023). However, their oversight of MOT within
AD perception restricts their potential to achieve potent
system-level effects. Thus, in this work, we perform the first
availability-based latency attack on the whole AD percep-
tion to significantly boost system-level effects.

Methodology
Availability Attack Surface Analysis
To understand the vulnerability of the tracking-by-detection
paradigm to latency attacks, we analyze the time complexity
of the main three key steps (detection, data association, and
tracker management) presented in Algorithm 1. The time
consumption of the image preprocessing and backbone net-
work of the detector hinges upon the computational dimen-
sion (Shumailov et al. 2021) and the number of computa-
tions (Hong et al. 2020; Haque et al. 2020). Given that the
dimensions of the input images are unchanged and the ma-
jority of the detection model activation values are inherently
non-zero for the most of images (Shapira et al. 2023), we do
not prioritize the time complexity of this segment.

The boxes obtained by the detection module usually need
to be filtered before being passed to subsequent modules.
Prevailing filtration techniques encompass non-maximum
suppression (NMS) and score filtering with time complexity
of O(n2) and O(n) respectively, where n denotes the num-
ber of outputs from the detection network. However, since
most tracking algorithms (Zhang et al. 2021) confine the
maximum number of detection to |D|max , the maximum
time complexities of these are O(|D|2max) and O(|D|max).
Then, data association matches the reserved detection boxes
and tracker pool with features, and the time complexity of
this process is O(mn′), where m represents the number of
trackers in tracker pool and n′ represents the number of re-
served detection boxes. In the tracker management module,
trackers are created and deleted according to the matching
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Algorithm 1: Tracking-by-detection
Input: Video sequence V; detector Det; detection filter F
Output: Activated trackers T of the video

1 Initialization: T ← ∅
2 for frame fk in V do

/* detection module */
3 Dk ← Det(fk)
4 ↓ O(n2) + O(n)
5 Dreserved ← F (Dk)

6 ↓ O(m)
/* predict locations of trackers */

7 for t in T do
8 t← KalmanFilter(t)
9 end

10 ↓ O(mn′)
/* trackers management */

11 Details in (Ma et al. 2023a)
12 end
13 Return: T

results and are marked with different states with a time com-
plexity of O(m). Meanwhile, the velocity and location of the
trackers are also updated with a time complexity of O(m).

Threat Model, Formulation, and Attack Overview
Threat model. Our attack method assumes white-box set-
tings for the detection model, wherein both its architecture
and parameters are known. For the tracking, we do not force
the attackers to know the specific parameters and implemen-
tation details, which is a similar threat model as prior latency
attack works (Shapira et al. 2023; Chen et al. 2023).

Formulation. Detectors often restrict the maximum num-
ber of detection boxes. This constraint results in a worst-case
time complexity for the detection module of O(|D|2max) ,
effectively reducing the impact of previous latency attacks
on object tracking (Chen et al. 2023; Shapira et al. 2023).
Thus, we propose an attack methodology that focuses on in-
creasing the latency of the subsequent tracking stage under
the constraint of limiting the maximum number of detection
boxes. For a camera-based perception pipeline P , given the
original image x, the attack goal is to craft an adversarial
example x∗ to maximize the tracking pipeline latency, while
keeping the added adversarial perturbations imperceptible.
We formulate it as the following optimization problem:

argmax
x∗

T (P (x∗)) s.t.

{
|D|max = N
∆(x∗, x) ≤ ϵ

(1)

, where T indicates the time function. Our attack strategy
is designed to create detection boxes that exploit vulnera-
bilities in the tracker management module of AD. Specifi-
cally, for avoiding the temporary loss of objects in consec-
utive video frames due to occlusion, etc., the lost tracker
will not be deleted immediately until the object is lost for
R consecutive frames. Leveraging this mechanism, we are
able to inject more and more trackers into the tracking mod-
ule by strategically creating detection boxes through care-
fully designed perturbations. The detection boxes that ap-
pear in each frame are not associated with existing trackers

Adversarial 
perturbation

Frame 0 Frame H

Adversarial 
perturbation

Adversarial 
perturbation

Frame R - 1

Detection module

Init new trackers
Multiple Object Tracking

Data association Tracker management

Trackers will be kept
Match successfully with the corresponding 
trackers: remain in tracker_pool

Indicates frames in 
between

Frame R + H - 1

Figure 1: Overview of our SlowTrack attack.

and cause new tracking boxes to be created. As a result, the
worst-case time complexity of the tracking module under
our attack method is O(R|D|2max), where m = R|D|max
and n′ = |D|max. Thus, it can lead to more computation
cost than detection attacks in prior works.

Overview. In this paper, we propose SlowTrack, the first
adversarial attack maximizing the latency of the whole
camera-based perception pipeline, leveraging object track-
ing, which can significantly increase the latency of AD per-
ception under the constraint shown in Eq (1). The two attack
stages of SlowTrack are: 1) in the attack initialization stage,
make detection boxes created as many new trackers as possi-
ble, which requires detection boxes not to be associated with
existing trackers, 2) make the lost trackers re-found before
they are deleted, and kept in track pool, which requires de-
tection boxes to be associated with corresponding trackers.
Thus, we need to construct sets of detection boxes with the
same matching features and make these sets of boxes appear
or disappear in the corresponding video frames using adver-
sarial attacks. To our best knowledge, representative track-
ing algorithms always use motion-based features for associ-
ation. Thus, we divide the images into different regions and
use the candidates in these regions as sets, which facilitates
the inter-association of detection boxes within sets and the
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disassociation of detection boxes between sets.
The overview of SlowTrack is in Fig. 1. Assuming that we

divide the image into 3 regions, in frame 0, we select the top
region and make the detection boxes appear in it, which are
initialized as new track boxes. Similarly, in frame H = 1 we
make the fake detection boxes appear in the middle region,
not associated with the existing track boxes, and make the
tracker management module create new track boxes, while
the track boxes in frame 0 do not disappear. These frames are
not associated with existing frames, making the tracker man-
agement module create new trackers, and the trackers ini-
tialized in frame 0 are not deleted, allowing to inject |D|max
trackers into the track pool. Meanwhile, we make the detec-
tion boxes of the corresponding region reappear before the
R frames to keep the trackers. Since the tracker management
module only initializes the detection boxes that detected H
frames consecutively, our attack strategy can be formulated:
divide the image into K regions, each of which needs to
be selected for H frames consecutively in the initialization
stage, and then be selected once more before R frames. We
use the greedy algorithm with the maximum value of K:
R−H+1 (when R−K = H−1, no region can be added).

Attack Strategy Generating. Algorithm 1 outlines the
full process of Tracking-by-detection. We analyze the repre-
sentative tracker management module, which is also used in
some joint-tracking algorithms and propose the attack strat-
egy generation algorithm shown in Algorithm 2. Specifi-
cally, we use a greedy algorithm to generate attack strategy
to continuously inject different regions of detection boxes
into the tracker management module. Such an attack strategy
can also be generalized to different joint-tracking algorithm.

Loss Function Design
Score loss. To boost the number of selected boxes, it is nec-
essary to raise the number of prediction candidates that by-
pass the detection filter, which selects candidates based on
their confidence scores. Thus, to increase confidence score
of selected candidates Csel, we propose a novel score loss:

Lscore =
1

|Csel|
∑

c∈Csel

max((Tconf − cconf ), λ)

where Tconf represents the filtering confidence threshold
set by the detection model, cconf represents the confidence
scores of the object detector, and λ is a hyper-parameter.

Bounding box area loss. To make more candidates to be
reserved in the NMS employed by some detection filters, we
need to compress the dimensions of the boxes to reduce the
IOU between the candidates. This is expressed as:

Larea = 1
|Csel|

∑
c∈Csel

(
bwc ·bhc

SW×SH
)2

where the bounding box is b, with bw and bh being its width
and height. SW and SH are the width and height of the input
image. This loss is added only when the filter contains NMS.

Feature matching loss. To successfully match the se-
lected detection box with corresponding lost tracker so that
the lost tracker is re-found before being deleted, the feature
distance for the data association module needs minimizing.

Lmatch = Ψ(Ti, F ′(Csel))

Algorithm 2: Generate Attack Strategy
Input: A video sequence V = [v0, v1, ..., vK−1]; reserved

age R; hit count H
Output: attack strategy S
/* region idx is selected image region */

1 Initialization: S ← ∅; region idx = 0; n = 0
2 while n < K do

/* Re is the next time each region
needs to be reactivated */

3 if n == 0 then
4 S ← S ∪ {region idx}
5 Reregion idx = n+R+ 1
6 region idx = region idx+ 1
7 end
8 else
9 Remin, idx← minimum value and index in Re

10 if Remin − n<H then
11 S ← S ∪ {idx}
12 Reidx = n+R+ 1
13 end
14 else
15 for i = 1 to H do
16 S ← S ∪ {region idx}
17 end
18 Reregion idx = n+R+ 1
19 region idx = region idx+ 1
20 n = n+H − 1
21 end
22 end
23 n = n+ 1
24 end
25 Return: S

where Ψ is the feature distance function in data association,
Ti represents i-th set of trackers, and F ′ represents detection
filters without score threshold filtering.

Pairwise computation for obtaining feature distances
could be expensive if feature extraction is complex or if the
number of detection boxes is too large. Therefore, we pro-
pose a less computationally intensive method to make the
corresponding trackers and detection frames match success-
fully. The images that need to appear with the same batch
of detection boxes use the same perturbation. However, this
makes the perturbation accumulation more obvious and the
result of the attack decreases. Therefore, for balance, we use
the universal perturbation method in the attack initialization
stage and feature matching loss after that. Finally, the adver-
sarial loss is represented by:

Ladv = λ1Lscore + λ2Larea + λ3Lmatch (2)

Similar to existing works (Carlini and Wagner 2017), to
make the perturbation invisible, we constrain the L2 norm:

min
x∗

Ladv + µ∥x∗ − x∥2
where µ is the hyper-parameter and x is the original image.

Experiments
Experimental Setup
Datasets and models. We use the MOT17DET
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PS (Shapira et al. 2023) Overload (Chen et al. 2023) SlowTrack
Model Dataset Hardware R-Track R-Lat #Track L2 R-Track R-Lat #Track L2 R-Track R-Lat #Track L2

Titan V 73.1 6.2 156.1 12.1 247.0 17.5
2080 Ti 64.9 11.7 205.1 34.7 310.3 49.4BDD

3090 76.4 6.2
69.1 0.042

186.3 13.8
94.6 0.011

338.3 23.0
141.8 0.010

Titan V 37.5 3.8 93.0 8.7 208.4 18.5
2080 Ti 33.2 8.6 82.6 19.3 225.5 50.9

SORT (Y5)

MOT17
3090 39.8 3.7

32.4 0.041
111.1 9.8

47.0 0.013
283.9 25.7

73.5 0.013

Titan V 517.7 10.4 1505.9 29.1 2647.6 51.3
2080 Ti 390.1 8.7 1258.7 26.7 2260.7 48.1BDD

3090 236.0 3.8
401.1 0.036

836.4 13.3
939.9 0.029

1572.9 25.2
1334.9 0.028

Titan V 67.4 8.6 181.7 21.5 341.0 41.5
2080 Ti 49.3 7.1 149.0 19.9 279.5 38.4

FairMOT

MOT17
3090 32.4 3.2

48.7 0.036
108.5 10.1

106.2 0.026
220.7 21.3

159.0 0.026

Titan V 40.2 2.5 173.0 9.2 290.0 14.7
2080 Ti 39.5 2.3 184.0 9.0 266.4 12.5BDD

3090 57.8 3.0
79.2 0.032

217.7 10.1
224.7 0.027

341.4 15.1
307.0 0.022

Titan V 29.0 1.9 95.0 5.4 173.0 9.8
2080 Ti 26.9 1.8 97.7 5.4 168.7 9.5

ByteTrack

MOT17
3090 45.2 2.4

38.0 0.030
115.2 5.9

78.3 0.025
204.0 10.5

130.1 0.022

Titan V 53.2 19.4 79.0 28.9 92.1 33.6
2080 Ti 57.6 19.6 89.1 30.6 103.6 35.5BDD

3090 61.0 22.1
70.0 0.033

93.9 34.1
221.9 0.029

135.3 49.7
280.8 0.025

Titan V 31.7 14.0 42.1 18.5 52.2 23.0
2080 Ti 34.2 14.6 45.6 19.5 59.1 25.3

BoT-SORT

MOT17
3090 44.0 19.9

40.7 0.034
47.2 21.1

83.9 0.025
69.4 30.8

127.6 0.025

Table 1: Effectiveness results of tracking-stage and whole perception latency with number of trackers and average L2 norm in
different models and hardware. Bold denotes the best results (i.e., highest R-Track, R-Lat, #Track, and lowest L2) in each row.

(b) S2(a) S1

AD vehicle Other vehicle Vehicle trajectory

Figure 2: Two scenarios (S1 and S2) for our simulation eval-
uation setup on the system-level effects.

(MOT17) (Milan et al. 2016) and BDD (Seita 2018)
datasets to evaluate our attack SlowTrack performance.
MOT17 includes 14 videos with more than 10K images and
BDD contains 100K images with various attributes such
as weather, scene, and time of day, resulting in a diverse
dataset. For MOT17, we use all the data while for BDD, we

Model Attack Titan V 2080 Ti 3090

PS 211 199 160
Overload 406 411 337SORT (Y5)
SlowTrack 847 1082 1018

PS 417 359 259
Overload 970 914 685FairMOT
SlowTrack 1848 1731 1726

PS 174 188 166
Overload 379 427 330ByteTrack
SlowTrack 584 621 555

PS 2395 2460 2372
Overload 3093 3195 2485BoT-SORT
SlowTrack 3768 4101 3245

Table 2: Latency Time (ms) on MOT 17 dataset.

randomly select 10 videos. As for the models, we select the
most representative perception models: SORT (Y5) (Bew-
ley et al. 2016) (a Kalman filtering-based MOT generally
used in AD (Apollo 2023; Shen et al. 2022), with YOLO
v5 (Jocher 2020) as detector), FairMOT (Zhang et al. 2021),
ByteTrack (Zhang et al. 2022), and BoT-SORT (Aharon,
Orfaig, and Bobrovsky 2022). We use the default parameters
and settings for each model in the evaluation.
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w/o Lscore w/o Larea w/o Lmatch SlowTrack

R-Track 0.0 153.2 171.4 225.5
R-Lat 0.0 34.0 38.3 50.9
#Track 0.1 63.9 66.9 73.5

Table 3: Ablation study for loss designs (Lscore, Larea, and
Lmatch in Eq. (2)) on R-Track, R-Lat, and #Track with
SORT (Y5) and MOT17 using 2080 Ti. w/o: without

S1 S2
Model PS Overload SlowTrack PS Overload SlowTrack

SORT(Y5) 10% 30% 100% 20% 40% 90%
FairMOT 20% 40% 100% 20% 40% 100%
ByteTrack 0% 40% 80% 0% 40% 90%
BoT-SORT 40% 50% 100% 50% 50% 100%

Table 4: System-level evaluation (vehicle crash rate) with
Baidu Apollo and LGSVL simulator. 10 runs for each cell.

Evaluation metrics. We design the metrics as follows:

R-Track =
Track-Lat(x∗)− Track-Lat(x)

Track-Lat(x)

R-Lat =
Total-Lat(x∗)− Total-Lat(x)

Total-Lat(x)

#Track =
Tracker#(x∗)− Tracker#(x)

Tracker#(x)

where R-Track and R-Lat represent the rate of increase
for the tracking latency and whole perception latency and
#Track represents the rate of increase for the number of
tracker. To measure the imperceptibility, we use average L2

norm (Carlini and Wagner 2017; Zhang et al. 2020). We de-

fine system-level effects metric as vehicle crash rate:
Ncrash

Ntotal
,

where Ncrash denotes the number of runs causing vehicle
crashes and Ntotal is the number of total runs.

Testing hardware. Given that latency is intrinsically tied
to the hardware device, we test SlowTrack on multiple hard-
ware: TiTAN V, GeForce RTX 2080 Ti (shown to be used in
real AD (Shen et al. 2022)), and GeForce RTX 3090.

Baselines comparison. To our best knowledge, we are
the first to propose a latency attack against whole camera-
based AD perception pipeline, while the existing attacks fo-
cus on object detection alone. Thus, we select two represen-
tative latency attacks on object detection as our baselines:
PS (Shapira et al. 2023) and Overload (Chen et al. 2023).

Simulation evaluation. To study the system-level ef-
fects, we perform an end-to-end attack evaluation on Baidu
Apollo (Apollo 2023), an industry-grade full-stack AD
system, with LGSVL simulator (Rong et al. 2020), a
production-grade AD simulator. Our experiments are con-
ducted on the Borregas Ave map and the Lincoln2017MKZ
AD vehicle with default configuration. To simulate our at-
tack impact, we model the latency of the camera-based AD
perception and inject it into the AD system. Due to the rep-
resentativeness of SORT (Y5), we use its latency results
tested on 2080 Ti GPU (used in real AD vehicles (Shen

et al. 2022)), as our latency modeling results. Our evalu-
ation focuses on two representative scenarios as shown in
Fig. 2, where the blue vehicle is the victim AD vehicle and
the blue and red lines are the trajectories of the two vehicles.
S1 (Fig. 2 (a)) is a common driving scenario for other ve-
hicles to change the lane line and S2 (Fig. 2 (b)) is another
common driving scenario for the STOP sign-controlled in-
tersection. We perform 10 runs on each scenario and com-
pare SlowTrack with the two baselines.

Experimental Results
Effectiveness. As shown in Table 1, we compare our Slow-
Track with the baselines. SlowTrack can increase the num-
ber of tracker up to 1334.9 on FairMOT, which is much
better than existing works: at most 939.9 on FairMOT. Es-
pecially, for the tracking stage, SlowTrack provides 453.8
times slowing on average compared to the existing works
which only have 256.4 times for Overload and 89.1 times
for PS. As for the latency of the whole camera-based AD
perception, we find that SlowTrack can provide 28.4 times
slowing down on average, which is 2.9 times more than the
two existing works. Especially, for the practical SORT (Y5)
on 2080 Ti, we observe 50.9 times slowing down, while ex-
isting works can only have 19.3 times at most. For the imper-
ceptibility, our average L2 norm (around 0.021 on average)
is very small compared to the baselines and existing adver-
sarial attacks on integrity (Zhang et al. 2020).

We measure the latency time in Table 2. For instance,
while existing representative attack Overload (Chen et al.
2023) can trigger 411 ms latency on SORT (Y5) and MOT17
dataset with 2080 Ti, SlowTrack can provide 1,082 ms,
which is 1.6 times more than Overload. Thus, SlowTrack can
significantly outperform the existing baselines on camera-
based AD perception, with similar levels of imperceptibility.

Ablation study. The ablation study evaluating the designs
of Eq. (2) is presented in Table 3. In this study, each loss
component is sequentially removed, and the attack is tested
on the most practical SORT (Y5) tracking method and the
MOT17 dataset, utilizing a 2080 Ti. The findings in Ta-
ble 3 highlight the indispensability of all three loss designs
in achieving high attack effectiveness. Notably, the Lscore

performs as the most pivotal element in enhancing attack ef-
fects. In the absence of Larea and Lmatch, the R-Lat expe-
riences reductions of approximately 33% and 25%, respec-
tively. Thereby, these results indicate the importance of in-
tegrating all three loss designs together.

Generality to different thresholds. The effectiveness of
SlowTrack is most impacted by different thresholds: confi-
dence score threshold in object detection, maximum number
of detection boxes, IOU threshold for NMS, and IOU thresh-
old for data association. To evaluate their impact, we vary
the thresholds with different values and measure the #Track
on the MOT17 dataset with 2080 Ti. The results are shown
in Fig. 3. SlowTrack can generally generate stable results
across different threshold parameters, which indicates that
setting better thresholds cannot fully defend against Slow-
Track. For instance, setting the confidence score threshold to
0.2, the #Track of SORT (Y5) is around 92.1 while setting
the confidence score threshold to 0.4, the #Track is around
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Titan V 2080 Ti 3090
Model R-Track R-Lat R-Track R-Lat R-Track R-Lat

SORT(Y5) 0.032 0.001 0.106 0.007 0.459 0.007
FairMOT 0.402 0.004 0.963 0.010 0.835 0.005
ByteTrack 0.156 0.002 0.075 0.003 0.050 0.001
BoT-SORT 0.006 0.001 0.158 0.032 0.192 0.054

Table 5: Variances of R-Track and R-Lat in repeated experi-
ments (5 times) with different hardware on MOT17 dataset.

(a) Confidence Threshold (b) Max. Number of Detections

(c) IOU Threshold for NMS (d) IOU Threshold for Match

Figure 3: Attack effectiveness under different thresholds.

67.8. Additionally, finetuning the thresholds usually will sig-
nificantly reduce the benign performance. Thus, the results
show the generality of SlowTrack to different thresholds.

End-to-end simulation evaluation results. As shown in
Table 4, SlowTrack can achieve 95% vehicle crash rate on
average while for other attacks, they can only have around
30%. Note that the vehicle crash rate in benign cases is al-
ways 0%. The results demonstrate that the existing latency
attacks on object detection alone cannot trigger sufficient
latency to highly effectively cause vehicle crashes, which
motivates our new attack design on entire perception. Slow-
Track significantly improves the system-level effects.

Running time variance. Recognizing the potential vari-
ability of system latency due to many factors, we repeat our
experiments 5 times (Rybel 2017) and measure the variance
of R-Track and R-Lat. As shown in Table 5, the variance is
negligible compared to the original values (Liu et al. 2023).

Discussion
Physical-World Attack Realizability
Our study investigates the runtime robustness of camera-
based AD perception by adversarial attacks. Such attack
is physically realizable as demonstrated in AttrackZone at-

tack (Muller et al. 2022), which leverages the projector to
project the noise-level adversarial attack in physical world
at night. To improve our attack realizability, we take a small
step forward to generate a patch-based adversarial attack
which is generally demonstrated as a physical-world real-
izable attack (Wang et al. 2023, 2022).

Adversarial patch generation. To formulate the patch
into a patch δ, we design the following method:

min
δ

Ex∼XLadv(x+ δ)

where the Ladv is introduced in Eq. (2), X denotes
EoT (Athalye et al. 2018) distribution for robustness such
as different pre-processing method.

Evaluation setup and preliminary results. We use a
similar setup in the experiment section, where we select the
most practical model: SORT (Y5) and MOT17 dataset with
2080 Ti. The results values for R-Lat, R-Track, and #Track
are 82.3, 336.1, and 80.9, respectively, aligning closely with
the findings in Table 1. These results suggest that the patch
attack can potentially induce substantial system-level effects
with practicality. Note that the patch results are slightly bet-
ter than the noise attack. Since the perturbation strength of
the patch is much larger, it enables the attacker to gener-
ate bounding boxes with high confidence and to precisely
dictate their locations. Thus, the tracking can be easily con-
trolled by the attacker and the attack effects can be im-
proved. However, the patch attack requires more complex
designs such as patch size and patch location, which are cor-
related with the practicality and effectiveness. In this paper,
we only provide a preliminary evaluation demonstrating the
potential to transfer the noise attack to the patch attack. We
leave the study on patch-based attack as our future work.

Limitations and Future Work
First, although we have some physical-world realizability
improvements and some existing works demonstrate that
such attack is realizable, it is still unclear whether Slow-
Track can indeed work well in physical world, which can
be a potential future direction to explore. Second, exploring
SlowTrack under a black-box threat model, a more practical
one, is another potential future work. Third, while several
availability-based latency attacks in AD have been identi-
fied, the exploration of defense directions in this context re-
mains limited. Consequently, we consider the investigation
of defenses as a part of our future work.

Conclusion
This paper presents a first study on availability-based latency
adversarial attacks considering the entire camera-based AD
perception pipeline, i.e., both object detection and object
tracking. We design a novel attack framework, SlowTrack,
with a two-stage attack strategy and three novel loss func-
tions. Our results show that SlowTrack can outperform all
the existing latency attacks on camera-based object detec-
tion and significantly improve system-level effects, i.e., 95%
vehicle crash rate. Due to the critical role of perception, we
hope that our findings and insights can inspire more future
research into this largely overlooked research perspective.
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