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Abstract

It is well-known that image quality assessment usually meets
with the problem of perception-distortion (p-d) tradeoff. The
existing deep image super-resolution (SR) methods either fo-
cus on high fidelity with pixel-level objectives or high per-
ception with generative models. The emergence of diffusion
model paves a fresh way for image restoration, which has the
potential to offer a brand-new solution for p-d trade-off. We
experimentally observed that the perceptual quality and dis-
tortion change in an opposite direction with the increase of
sampling steps. In light of this property, we propose an adap-
tive skip diffusion model (SkipDiff), which aims to achieve
high-fidelity perceptual image SR with fewer sampling steps.
Specifically, it decouples the sampling procedure into coarse
skip approximation and fine skip refinement stages. A coarse-
grained skip diffusion is first performed as a high-fidelity
prior to obtaining a latent approximation of the full diffu-
sion. Then, a fine-grained skip diffusion is followed to fur-
ther refine the latent sample for promoting perception, where
the fine time steps are adaptively learned by deep reinforce-
ment learning. Meanwhile, this approach also enables faster
sampling of diffusion model through skipping the interme-
diate denoising process to shorten the effective steps of the
computation. Extensive experimental results show that our
SkipDiff achieves superior perceptual quality with plausible
reconstruction accuracy and a faster sampling speed.

Introduction
Single image super-resolution (SISR) aims to reconstruct
a high-resolution (HR) image from its degraded low-
resolution (LR) version. Image quality is typically eval-
uated by several fidelity/distortion measures (e.g., PSNR,
SSIM) or subjective metrics that quantify perceptual qual-
ity (e.g., NIQE, LPIPS), which are at odds with each other
and lead to the problem of perception-distortion (p-d) trade-
off (Blau and Michaeli 2018). The existing deep SR methods
include PSNR-oriented (Chen et al. 2023; Wang et al. 2023)
and perception-oriented models (Zhang et al. 2022a; Park,
Moon, and Cho 2023). The former aims to minimize pixel-
level distortion (e.g., l1 or l2), which usually leads to over-
smooth results and looks not realistic. The latter pursues to
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Figure 1: The observation that different sampling steps in-
duce an approximate monotonic tendency to the image qual-
ity. Top: The visual examples of different sampling steps S
(full steps T = 100) on CelebA-HQ for 8× face SR. The SR
result tends to transition from smooth to realistic with the
increase of sampling steps. Bottom: The perception and dis-
tortion performance comparison of different sampling steps.

produce authentic texture details by modeling the target dis-
tribution with generative models, e.g., generative adversarial
network (GAN) (Zhang et al. 2022a) and normalizing flow
(Lugmayr et al. 2020). These SR methods focus on either
high fidelity or high perception, but few discuss how to make
a flexible solution for the p-d tradeoff.

Recent advances (Nichol and Dhariwal 2021) in diffu-
sion models (DDPM) shed light on a new pathway for im-
age restoration (Wang, Yu, and Zhang 2023). They gener-
ate high-quality SR images by progressive sampling from
a latent distribution (Ho, Jain, and Abbeel 2020). It is ob-
served that different sampling steps induce an approximate
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monotonic tendency to the image quality. Meanwhile, the
SR result tends to transition from smooth to realistic with
the sampling steps increased in Fig. 1. The observation in-
dicates that diffusion models have the potential to balance
perception and distortion. However, it is unexplored how to
use DDPM to present a solution for the p-d tradeoff.

In this paper, we aim to explore a new way of using
DDPM for the p-d tradeoff. Considering that different sam-
pling steps essentially activate different denoising granular-
ities, coarse time steps lead to blurry samples with low dis-
tortion, whereas fine time steps lead to crisp samples with
high perceptual quality. It inspires us to combine different
noise levels with adaptive skipping operations along the full
diffusion to obtain a more accurate and realistic SR image.

Therefore, we propose an adaptive skip diffusion model
(SkipDiff) for high-fidelity perceptual image SR. Specifi-
cally, our SkipDiff consists of coarse skip approximation
(CSA) and fine skip refinement (FSR) stages, where CSA
is performed first to provide initialization for FSR. Based
on the characteristic of typical diffusion models shown in
Fig. 1, we design CSA as a fidelity-driven process, which
conducts a coarse-grained diffusion with predefined steps
to approximate the full diffusion for obtaining blurry sam-
ples with low distortion. Conversely, FSR is a perception-
driven process, which performs a fine-grained diffusion with
learned time steps to refine the output of CSA for generating
sharp images with high perceptual quality. To determine the
precise fine time steps adaptively, a lightweight policy net-
work is introduced to maximize the reward function mea-
sured by perceptual metric. Note that we hold the training
process of DDPM unchanged and only modify the inference
process so as to sample from a conditional distribution for
obtaining multiple outputs. This scheme essentially provides
a new solution to p-d tradeoff through a prior-guided (Fig. 1)
adaptive rearrangement on the noise level to be removed at
each step of the full diffusion model.

The main contributions of this work are three-fold:

• We propose an adaptive skip diffusion model (SkipDiff)
for image SR, which can lead to a perceptually better and
more accurate prediction of the HR image.

• We perform the sampling with a coarse-grained skip dif-
fusion and a fine-grained skip diffusion as a way to tra-
verse through the p-d plane, where the fine time steps are
adaptively learned by deep reinforcement learning.

• Extensive experiments show that our SkipDiff achieves
the best perceptual metrics with higher reconstruction ac-
curacy on the face and natural image SR.

Related Work
Deep SR Model
PSNR-oriented models. This kind of method mainly uses
pixel-level loss as the optimization objective. As a prelimi-
nary, SRCNN (Dong et al. 2016) utilizes a three-layer con-
volutional neural network for SISR. Then, numerous excel-
lent deep SR models have sprung up, where residual connec-
tions and recursive learning are widely adopted (Zhang et al.
2018; Xin et al. 2022). Besides, attention mechanism (Zhang

et al. 2022b; Li et al. 2023; Gao et al. 2023a) has been ex-
plored for mining the underlying non-local self-similarity
for image SR. Although these methods have achieved sig-
nificant performance on reconstruction accuracy, they often
result in over-smooth results and lack realism.
Perception-oriented models. This kind of method aims to
generate realistic SR results by fitting the distribution of tar-
get data, where most works are based on generative adver-
sarial network (GAN) (Zhang et al. 2022a). RankSRGAN
(Zhang et al. 2022a) introduces Ranker to optimize the gen-
erator in the direction of perceptual metrics. FSRNet (Chen
et al. 2018) utilizes the facial geometry prior and the adver-
sarial training to reconstruct realistic faces. PULSE (Menon
et al. 2020) adopts an alternative formulation with a down-
scaling loss to generate realistic faces in an entirely self-
supervised fashion. DGP (Pan et al. 2022) exploits the im-
age prior captured by GAN on large-scale datasets for image
restoration. GCFSR (He et al. 2022) proposes a controllable
SR framework to reconstruct faithful face identity informa-
tion while not adding extra priors. Flow-based methods (Li
et al. 2021; Yuan et al. 2023) aim to map the target data
to a latent space, where the distribution is factorized by a
sequence of learnable invertible functions. The perception-
oriented methods can obtain satisfying visual results but sac-
rifice the reconstruction fidelity.

Denosing Diffusion Probability Model
Nowadays, DDPM has exposed great potential in image gen-
eration (Bansal et al. 2023b; Zhou et al. 2023). ILVR (Choi
et al. 2021) induces the denoising process in DDPM to pro-
duce high-quality results according to a given reference im-
age. SR3 (Saharia et al. 2022) and SRDiff (Li et al. 2022)
apply DDPM into image SR while exhibiting strong perfor-
mance. Whang et al. (Whang et al. 2022) proposes a condi-
tional DDPM for perceptual blind image deblurring, achiev-
ing significantly improved perceptual quality and competi-
tive distortion metrics. Cold diffusion (Bansal et al. 2023a)
generalizes diffusion models with arbitrary image transfor-
mations rather than built on Gaussian noise. DDRM (Kawar
et al. 2022) proposes a general linear inverse problem solver
based on unconditional or class-conditional DDPM. DADA
(Metzger, Daudt, and Schindler 2023) unites a convolutional
network and guided anisotropic diffusion, which achieves
superior performance for guided depth SR.

Typically, DDPM requires numerous diffusion steps to
generate a high-quality sample, which leads to very slow
inference. To address this, the existing works mainly focus
on constructing deterministic sampling path (Song, Meng,
and Ermon 2021; Nichol and Dhariwal 2021), estimating the
noise level to adjust the noise schedule (San-Roman, Nach-
mani, and Wolf 2021), searching for the optimal discrete
time schedules (Watson et al. 2021) or truncating the reverse
diffusion early by relying on a pre-trained model to obtain
an initialization (Chung, Sim, and Ye 2022; Lyu et al. 2022).
All these methods rely on a critical decoupling property of
DDPMs, i.e., the training schedule can differ from the in-
ference schedule. Our work mainly explores a new way for
the p-d tradeoff in image SR based on DDPM, which can
improve SR performance while reducing diffusion steps.
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Figure 2: The overall framework of SkipDiff. Original DDPM generates SR images by sequential reverse diffusion. Instead,
SkipDiff first performs coarse-grained skip diffusion to obtain a rough approximation of the full diffusion for low distortion,
and then conducts fine-grained skip diffusion guided by deep reinforcement learning for promoting perception.

Deep Reinforcement Learning
Deep reinforcement learning (DRL) (Yu et al. 2018a) has
been widely applied in robotic control (Rana et al. 2023),
game player (Stephens and Exton 2022) and computer vi-
sion (Le et al. 2022). It is used to solve the problems of de-
cision optimization. The basic idea of DRL is that agents
constantly adjust the strategies based on the rewards re-
ceived from the interaction with the environment to achieve
the optimal decision. EAST (Huang, Lucey, and Ramanan
2017) learns an agent to make a decision for adaptive object
tracking. Attention-FH (Cao et al. 2017) utilizes RL to ex-
plore the rich correlation cues among different facial parts
for face hallucination. RL-Restore (Yu et al. 2018b) investi-
gates restoration tool selection in an RL framework for com-
plex degradation. GFNet (Wang et al. 2020) proposes a dy-
namic decision framework for efficient image classification.
In this paper, we use DRL to adaptively learn the precise fine
timesteps to obtain better perceptual quality.

Proposed Method
Overview

As illustrated in Fig. 2, original DDPM generates high-
quality samples by starting from a pure Gaussian noise con-
ditioned on the bicubic interpolated LR image to perform
a series of reverse diffusion. It is a standard Markov chain,
i.e., the distribution of the current state only depends on the
previous state, which is time-consuming. Based on the ob-
servation that coarse time steps lead to blurry samples with
low distortion while fine time steps lead to sharp images with
high perceptual quality, we propose an adaptive skip diffu-
sion method (SkipDiff) to achieve high-fidelity perceptual
image SR, which can be viewed as a Markov jump process.
SkipDiff consists of coarse skip approximation (CSA) and
fine skip refinement (FSR) stages. To reduce distortion, CSA
performs a coarse-grained diffusion to approximate the la-
tent sample of full diffusion. To promote perception, the out-
put of CSA is input to FSR for fine-grained diffusion. Due to
the unmatched noise level between the latent sample of CSA

(xS1 ) and the approximated one of full diffusion (xN ), the
actual refined steps for FSR are hard to predict and not the
more the better. Therefore, we introduce deep reinforcement
learning to learn the specific fine time steps by maximizing
the reward function measured by perceptual metrics.

Notation and Formulation
We first provide a basic formulation review of DDPM (Ho,
Jain, and Abbeel 2020). It defines two Markov chains: a
parameter-free forward diffusion process q and a learned re-
verse denoising process p. The former perturbs the target
data distribution x0 to the latent variable xT by gradually
adding Gaussian noise, which can be formulated as:

q (x1, · · · , xT | x0) =
∏T

t=1q (xt | xt−1) , (1)

q (xt | xt−1) = N
(
xt|

√
1− βtxt−1, βtI

)
, (2)

where I is an identity matrix. T is the total number of diffu-
sion steps. x1, · · · , xT are the latent samples with the same
dimensionality as x0. β1, · · · , βT ∈ (0, 1) are the mono-
tonically increasing noise variance schedule. N (xt|µ, σ) de-
notes the Gaussian distribution with mean µ and variance σ
for the variable xt. Note that the forward diffusion can also
be conducted through a single-step diffusion, i.e.,

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, (3)

where ϵ ∼ N (0, I) and 0 is an all-zero matrix. Besides,
ᾱt =

∏t
i=1αi for αt = 1− βt.

The reverse denoising diffusion process recovers q(x0) by
gradually predicting the added noise at each step from a pure
Gaussian noise xT , which can be represented as:

p(xT ) = N (xT |0, I), (4)

pθ(x0, · · · , xT ) = p(xT )
∏T

t=1pθ(xt−1|xt), (5)
pθ(xt−1|xt) = N (xt−1|µθ(xt, t), δ

2
t I), (6)

where µθ(xt, t) is parameterized by a neural network. δt is
a timestep dependent constant. We set δ2t = 1−āt−1

1−āt
βt as

defined in (Ho, Jain, and Abbeel 2020). This reverse pro-
cess generates high-quality samples iteratively with the neu-
ral network repeated for T times.
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Specifically, the objective function minimizes the variant
of the variational lower bound with x0 and t as inputs:

min
θ

Lt−1(θ) = Ex0,ϵ,t

[∥∥ϵ− ϵθ
(√

ᾱtx0 +
√
1− ᾱtϵ, t

)∥∥2
]
,

(7)
where ϵθ is a noise predictor. More details about DDPM can
refer to (Ho, Jain, and Abbeel 2020).

Coarse Skip Approximation
CSA performs uniform skip operations on the full diffusion
model to keep high fidelity. It is a Markov jump process used
as a rough approximation for the full Markov chain (Opper
and Sanguinetti 2007). Next, we present the diffusion pro-
cess and the diffusion steps of CSA.
Coarse diffusion. Inspired by (Nichol and Dhariwal 2021;
Song, Meng, and Ermon 2021), the noise variances δ2St

of
coarse timesteps (S) is formulated as:

δ2St
=

1− āSt−1

1− āSt

βSt , (8)

where βSt = 1 − āSt

āSt−1
and St ∈ {1, 2, · · · , S}. We adopt

the cosine noise variance schedule, since it can be automati-
cally rescaled for the coarse diffusion. It is defined as:

āt =
f(t)

f(0)
, f(t) = cos

(
t/T + s

1 + s
· π
2

)2

, (9)

where T is the diffusion steps, s is a hyper-parameter and is
usually set to 0.008. Therefore, the reverse diffusion process
of the coarse timesteps can be formulated as:

pθ(xSt−1
|xSt

) = N (xSt−1
|µθ(xSt

, St), δ
2
St
I). (10)

Coarse steps. As shown in Fig. 2, CSA first performs S− 1
diffusion steps at a uniform skip interval of N to obtain the
xS1

, which aims to approximate the corresponding xN of
the full diffusion. Then, the last step of CSA is replaced with
fine-grained diffusion of FSR for further refinement.

In fact, the latent diffusion results depend on the parame-
terized µθ and the untrained δt in Eq. (6). We make the skip
interval N divisible by T , which can satisfy:

St/S = tN/T, (11)
where tN is the timestep with an interval of N . Furthermore,
we can get ᾱSt = ᾱtN and βSt = βtN by Eq. (9). Then,
the noise variance δ2 between the coarse diffusion and the
corresponding full diffusion can be matched, i.e.,

δ2St
= δ2tN . (12)

Therefore, the coarse steps are divisible by full steps to
obtain a coarse approximation. Note that we simply provide
one way to achieve coarse-grained sampling, and other sam-
pling ways are also encouraged.

Fine Skip Refinement
As mentioned above, the last latent sample from CSA is in-
put to FSR to promote perception by fine-grained diffusion.
While the perceptual quality is monotonically reduced with
the increasing sampling steps in Fig. 1, using more sampling
steps for refinement may not achieve optimality. The reasons
lie in the unmatched noise level between xN and xS1

, since
we only match the noise variance in Eq. (12). Therefore, it is

necessary to adaptively learn the fine time steps rather than
artificially setting a simple condition judgment.

Considering that FSR is a perception-driven process, it
aims to obtain SR output with high perceptual quality. How-
ever, it is not easy to map the timesteps to perceptual metrics
(e.g., NIQE, LPIPS). There is no way to implement the back-
propagation to learn the timesteps by directly optimizing
NIQE with gumbel softmax or straight through estimator.
Therefore, we introduce deep reinforcement learning (DRL)
to adaptively determine a proper timestep based on differ-
ent latent observations to start fine-grained reverse diffusion.
Specifically, we treat the problem of fine time steps determi-
nation as a decision-making procedure, where the agent can
adaptively choose whether to skip the current diffusion step
as so to obtain the optimal perceptual quality. In the follow-
ing part, we will give the definition of action, state, reward,
and the network structure of the agent.
Action. The action space A represents all possible actions
for the agent to take. To determine whether to skip the cur-
rent diffusion step, A is defined as a binary set like:

A = {0, 1} , (13)
where 0 is to perform the reverse diffusion process (D) with
the current state, while 1 is to skip the diffusion process.
State. The state refers to the current observation informa-
tion, which is input to the agent for making the next deci-
sion. Here, we define the state set U = {uN , · · · , u1} with

ut =

{
xS1

, t = N
D(ut+1), if at = 0

xS1
, if at = 1

(14)

where at is the action taken at timestep t. The coarse ap-
proximation xS1

is used as the initial state. Note that the
decision process is performed for N − 1 times, and the state
u1 is input to ϵθ for generating the final SR result.
Reward. The reward is crucial in DRL, which acts as the
objective function to guide the training of the policy net-
work. The agent learns to make different decision trajecto-
ries for maximizing the accumulated reward. Here, the agent
is expected to learn an optimal policy for generating samples
with high perceptual quality. Thus, the reward function R is
well-designed as:

R =

{
0, t = 1, · · · , N

1/M, t = 0
(15)

where M denotes the perceptual metric like NIQE or LPIPS,
which is usually the lower the better. Besides, it is an alterna-
tive to utilize other perceptual measurements as the reward,
e.g., perceptual loss. Since we only concern about the effect
of each decision on the perceptual quality of the final output,
the reward of the intermediate process is all set to 0.
Skip proposal network (SPN). The agent is modeled as
a policy network π to output the discrete action proposal
about whether to skip the current diffusion step. As shown in
Fig. 2, SPN is a lightweight network with almost negligible
computation burden, which is composed of several convo-
lutional layers and each layer follows a batch normalization
and ReLU function, and a gate recurrent unit (GRU) with
flattened vectors as input for storing the historical hidden
state information. Then, we can get the probability distribu-
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Method Bicubic FSRNet PULSE GCFSR SR3 IDM SkipDiff (ours)
PSNR 23.49 24.73 21.37 25.06 24.79 24.08 25.60
SSIM 0.6003 0.7086 0.4839 0.6774 0.6766 0.6798 0.6838
NIQE 13.45 9.55 8.57 6.73 7.30 7.13 6.47
LPIPS 0.5374 0.2179 0.2026 0.1725 0.0992 0.1359 0.0967

Table 1: Quantitative results on CelebA-HQ for 8× face SR. The best and second best are highlighted in bold and underline.

Method Bicubic DGP (1000) DDRM (20) SR3 (100) SkipDiff (20) (ours)
PSNR 25.60 23.01 26.68 26.38 26.65
SSIM 0.6594 0.5223 0.7089 0.6871 0.6884
NIQE 8.68 5.31 9.48 5.00 4.95
LPIPS 0.4716 0.2531 0.3499 0.1909 0.1886

Table 2: Quantitative results on ImageNet for 4× natural SR. The best and second best are highlighted in bold and underline.

tion pt of the output action vector by:
pt = π(ut, θs), (16)

where θs denotes the network parameters of SPN. At test
time, the action at with the maximum probability value, i.e.,
at = argmax(pt), is used for the current decision.

Training Strategy and Complexity Analysis
Training. We adopt a two-step strategy to train SkipDiff.
In Step 1, we train the DDPM conditioned with bicubic in-
terpolated LR images with Eq. (7). In Step 2, we perform
the coarse inverse diffusion with predefined steps based on
the pre-trained DDPM, and then train SPN with the classi-
cal proximal policy optimization (PPO) algorithm (Schul-
man et al. 2017), which has been proven to be effective and
easy to converge. Note that we train and test SPN only on the
final N diffusion steps for FSR. The whole optimization is
easy to implement, since we only change the sampling way
and introduce a lightweight policy network to indicate which
skips should be skipped to maximize the perceptual reward
with the high-fidelity prior of CSA. The detailed procedure
is provided in supplementary materials.
Computational complexity. Here, we mainly analyze the
computational complexity of our SkipDiff. The different
p-d tradeoff results can be obtained by setting different
(CSA steps, FSR steps) pairs, i.e., (S − 1, T/S). Actually,
much of the sampling efficiency comes from CSA, which
takes S − 1 steps, while FSR takes at most T/S or N steps.
Therefore, the diffusion steps can be reduced from T to at
most (S − 1 + T/S) theoretically.

Experiments
Experimental Settings
Datasets. Following (Kawar et al. 2022; Pan et al. 2022;
Saharia et al. 2022), we train and evaluate our SkipDiff on
faces (8×) and natural images (4×). For face SR, we train
the models at 16 × 16 → 128 × 128 on Flickr-Faces-HQ
(FFHQ) dataset, which includes 70k images in total, and
we sample 1k images from CelebA-HQ dataset for evalu-
ation. For natural SR, we train at 64 × 64 → 256 × 256 on
the high-diversity ImageNet 1K (Russakovsky et al. 2015)
dataset and evaluate on 1k images from its dev split.

Bicubic FSRNet PULSE SR3 SkipDiff HR

Figure 3: Visual comparisons on CelebA-HQ dataset for 8×
face SR. Zoom in for a better view.

Implementation details. Following (Li et al. 2022), we set
the total diffusion steps T as 100 and adopt a cosine noise
schedule (Nichol and Dhariwal 2021) for βt, which has been
proven beneficial for training. Actually, βt is tailored to be
smaller than 0.999 for preventing singularities at the end of
the diffusion, i.e, near t = T . Other experimental configu-
rations are the same with (Saharia et al. 2022) to train the
DDPM. Besides, the amount of convolutional layers in SPN
is set to 4 and 5 for FFHQ and ImageNet datasets for the
different image resolutions. We train SPN for 50k iterations
with a learning rate of 3e−4. The hyperparameters for opti-
mizing SPN are set like (Schulman et al. 2017; Wang et al.
2020): the clipping parameter ϵ = 0.2, γ = 0.7, c1 = 0.5,
c2 = 0.01 and λ = 1. All these hyperparameters are fixed
across different datasets. The entire SkipDiff is trained and
evaluated on 1 NVIDIA Tesla V100 cards.
Evaluation criterion. We evaluate the distortion measure-
ment with PSNR and SSIM, which are computed on the Y
channel (the luminance channel) of the YCbCr space. In ad-
dition, we evaluate the perceptual quality with NIQE (a non-
reference metric) and LPIPS (a reference-based metric that
calculates the perceptual similarity between the HR and the
SR images).
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Bicubic DGP DDRM SR3 SkipDiff HR

Figure 4: Visual comparisons on ImageNet validation
dataset for 4× image SR. Zoom in for a better view.

Method DGP DDRM SR3 SkipDiff
Time (s) 170.04 2.23 4.17 0.69
FLOP (G) 72,197 22,275 17,799 2,848

Table 3: Runtime and FLOPs comparisons on ImageNet.

Comparison with State-of-the-arts
Face SR. We first evaluate the effectiveness of SkipDiff
on face images and compare it with several face SR meth-
ods: Bicubic, FSRNet (Chen et al. 2018), PULSE (Menon
et al. 2020), GCFSR (He et al. 2022), SR3 (Saharia et al.
2022) and IDM (Gao et al. 2023b) in Table 1. It shows
that SkipDiff achieves superior results in a comprehensive
performance under the coarse-to-fine step pair of (10,10).
Therefore, our proposal achieves high-fidelity perceptual re-
sults on face SR. Besides, we present the visual comparisons
in Fig. 3, which shows that SkipDiff recovers more realistic
and high-fidelity face details than other methods.
Natural SR. We also evaluate our SkipDiff on natural im-
ages and compare it with Bicubic, DGP (Pan et al. 2022),
DDRM (Kawar et al. 2022), and SR3 (Saharia et al. 2022)
in Table 2. Note that the number in the bracket is the av-
erage model iteration steps. SkipDiff (20) obtains the best
NIQE and LPIPS with comparable PSNR and SSIM against
DDRM under the step pair of (5,20). Similarly, our method
achieves excellent results on the p-d tradeoff for the natural
image. We also give several visual comparisons in Fig. 4. It
shows that DGP generates oversharp results with more arti-
facts, and DDRM produces smooth results. SR3 gets realis-
tic details and texture, while SkipDiff obtains more satisfy-
ing results with less distortion. Furthermore, we provide the
runtime and computation cost (FLOPs, Floating Point of Op-
erations) comparison in Table 3, which shows that SkipDiff
runs quite faster than other methods.
Perception-distortion plane. To illustrate various p-d re-
sults obtained by SkipDiff, we depict the p-d plane on
CelebA-HQ and ImageNet in Fig. 5, which are obtained by
setting different (CSA steps, FSR steps) pairs. We also add
the results of other competitive methods given in Table 1
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Figure 5: The perception-distortion plane on CelebA-HQ
(left) and ImageNet (right). Zoom in for better view.

Case index 1 2 3 4 5
CSA × ✓ × ✓ ✓
FSR × × ✓ (100) ✓ (100) ✓ (10)
PSNR 24.79 25.80 24.81 25.59 25.60
SSIM 0.6766 0.7204 0.6761 0.6835 0.6838
NIQE 7.30 9.09 7.31 6.45 6.47
LPIPS 0.0992 0.1160 0.0987 0.0968 0.0967
Steps 100 10 100 16 (9+7) 16 (9+7)

Table 4: Ablation studies about SkipDiff: coarse skip ap-
proximation (CSA) and fine skip refinement (FSR) on
CelebA-HQ dataset for 8× SR.

and Table 2, as well as the coarse diffusion with different
sampling steps (2, 4, 5, 10, 20, 25, 50). It shows that our
SkipDiff has an obvious advantage in comprehensive per-
formance, which achieves a better perceptual quality with
high fidelity than other methods.

Ablation Study
To demonstrate the effectiveness of SkipDiff, we conduct an
ablation study on CelebA-HQ for 8× face SR to analyze dif-
ferent elements, including CSA, FSR, and reward function.
Our baseline is the DDPM with T = 100 and adopts the
same UNet with (Saharia et al. 2022) as the backbone. For
the convenience of analysis, we mainly take the coarse-to-
fine step pair (10, 10) as an example.
Effect of coarse skip approximation (CSA). To evaluate
the effect of CSA, we perform the coarse diffusion with the
sampling steps S = 10. As Case 2 shows in Table 4, it ob-
tains better PSNR and SSIM but poor NIQE and LPIPS than
the baseline (Case 1). Besides, we give the visual compar-
ison of the latent samples for the coarse diffusion and the
corresponding full diffusion in Fig. 6. It shows that the la-
tent results of S = 10 look similar to the ones of T = 100.
Therefore, CSA helps to obtain SR results with low distor-
tion as a rough approximation of the full diffusion.
Effect of fine skip refinement (FSR). To evaluate the effect
of FSR, we conduct the following experiments:

1) We remove CSA and only perform FSR, i.e., learn to
optimize which steps to denoise over the full diffusion pro-
cess. As Case 3 shows in Table 4, it obtains a similar result
as the baseline (Case 1), and no diffusion steps are skipped.
Due to the lack of fidelity prior of CSA, the large decision
space on the whole process (2T−1) makes it hard to find the
optimal solution. Our SkipDiff runs CSA first for high fi-
delity, and then runs FSR for promoting perception, which
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Figure 6: The visual comparisons for the latent reverse diffusion results of the coarse diffusion (top) and full diffusion (bottom).

Fine timestep 9 8 7 6 5 4 3 2 1 SkipDiff (16)
PSNR 25.65 25.61 25.56 25.50 25.31 25.03 24.64 24.15 23.60 25.60
SSIM 0.7066 0.7005 0.6836 0.6480 0.5925 0.5270 0.4615 0.4017 0.3512 0.6838
NIQE 7.13 6.53 6.47 7.22 8.26 9.27 10.34 11.39 12.63 6.47
LPIPS 0.0984 0.0965 0.0964 0.1022 0.1200 0.1526 0.1974 0.2518 0.3104 0.0967

Table 5: The quantitative results of manual fine refinement on CelebA-HQ dataset.

M PSNR SSIM NIQE LPIPS
NIQE 25.60 0.6838 6.47 0.0967
LPIPS 25.60 0.6839 6.47 0.0961

Table 6: The comparisons of different perceptual metrics M
as the reward function on CelebA-HQ dataset.

provides an effective constraint to shrink the solution space.
In our method, the decision space is reduced to 2N−1, where
29 ≪ 299. Therefore, CSA and FSR are integral to achiev-
ing the high-fidelity perceptual image SR. Note that it is not
reasonable to exchange the coarse and fine skip operations,
since the last few diffusion steps contribute a lot to percep-
tual quality, which should be executed later.

2) We combine CSA with FSR with the coarse-to-fine
step pair of (10, 100), i.e., xS1

is used as the initial state
at the timestep t = 100 and then perform fine-grained diffu-
sion guided by DRL. It (Case 4) still obtains a similar per-
formance as the step pair (10, 10) (Case 5) benefiting from
the high fidelity prior of coarse diffusion. However, it took
nearly five times as long to train due to the largely increased
search space. Thus, the setting of initial steps for FSR is also
important to reduce training expenses.

3) We combine CSA with FSR (SkipDiff), i.e., perform
the fine-grained diffusion guided by DRL to refine the final
latent diffusion results (xS1

) of CSA. As Case 5 shows in Ta-
ble 4, the coarse-to-fine process achieves the best NIQE and
LPIPS with an acceptable degradation on PSNR and SSIM.

4) To verify the decision behaviors of the agent, we re-
move DRL and artificially set the fine-grained diffusion
steps, i.e., refine xS1 with manual-defined timesteps within
the last N steps of full diffusion. Table 5 shows that the re-
sults at timestep t = 9, 8, 7 exceed the results of the baseline
model (Case 1 in Table 4) on all metrics. Our SkipDiff (Case
5) obtains similar SR performance with the optimal man-
ual timestep setting (7), which is in accord with the steps

learned by the agent. Besides, it reflects that the monotonic-
ity in Fig. 1 holds only for conventional DDPM, but not for
our fine-grained diffusion, since the max timestep (9) fails
to obtain the best perceptual metrics. Due to the unmatched
noise level between the coarse diffusion and the full diffu-
sion, more fine time steps may not be optimal for generating
high-quality samples. Especially, when the initial fine time
steps for FSR (N ) are getting larger, it is pretty necessary to
introduce DRL for adaptively determining the fine-grained
diffusion steps instead of artificial trials.
Reward function. An appropriate reward function can help
to guide the model to obtain optimal performance. To eval-
uate the effect of perceptual metric M as reward measure-
ment, we adopt NIQE and LPIPS as M for comparison in
Table 6. It shows that the two metrics obtain similar results.
Since they both contribute to learning the optimal timesteps
(7) as shown in Table 5 for fine refinement, the differences
are insignificant. Note that we adopt the non-reference NIQE
as the measurement in our methods. Nevertheless, we do not
declare that NIQE is the best choice for the reward measure-
ment, and other metrics are also encouraged.

Conclusion
In this paper, we propose SkipDiff, a novel adaptive skip
diffusion scheme for high-fidelity perceptual image SR. The
proposed technique is on account of the observation that
coarse time steps lead to blurry samples with low distortion,
whereas fine time steps lead to crisp samples with high per-
ceptual quality. The whole framework decouples the sam-
pling procedure into two stages: coarse-grained diffusion
and fine-grained diffusion. Coarse diffusion is performed to
provide a high-fidelity latent initialization for fine diffusion.
Then, a lightweight policy network is trained via PPO to de-
termine the precise diffusion steps for enhancing perception
in the fine stage. Experiments demonstrate that our SkipDiff
achieves superior results against other mainstream methods
on the face and natural image SR tasks.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

4023



Acknowledgments
The authors Xiaotong Luo, Yuan Xie, Yanyun Qu
were supported by National Natural Science Founda-
tion of China under Grant No.62176224, No.62222602,
No.62176092; Natural Science Foundation of Chongqing
under No.CSTB2023NSCOJOX0007, CCF-Lenovo Blue
Ocean Research Fund.

References
Bansal, A.; Borgnia, E.; Chu, H.; Li, J. S.; Kazemi, H.;
Huang, F.; Goldblum, M.; Geiping, J.; and Goldstein, T.
2023a. Cold Diffusion: Inverting Arbitrary Image Trans-
forms Without Noise. In ICLR.
Bansal, A.; Chu, H.-M.; Schwarzschild, A.; Sengupta, S.;
Goldblum, M.; Geiping, J.; and Goldstein, T. 2023b. Uni-
versal guidance for diffusion models. In CVPR.
Blau, Y.; and Michaeli, T. 2018. The Perception-Distortion
Tradeoff. In CVPR.
Cao, Q.; Lin, L.; Shi, Y.; Liang, X.; and Li, G. 2017.
Attention-Aware Face Hallucination via Deep Reinforce-
ment Learning. In CVPR.
Chen, X.; Wang, X.; Zhou, J.; Qiao, Y.; and Dong, C. 2023.
Activating More Pixels in Image Super-Resolution Trans-
former. In CVPR.
Chen, Y.; Tai, Y.; Liu, X.; Shen, C.; and Yang, J. 2018. FSR-
Net: End-to-End Learning Face Super-Resolution With Fa-
cial Priors. In CVPR.
Choi, J.; Kim, S.; Jeong, Y.; Gwon, Y.; and Yoon, S. 2021.
ILVR: Conditioning Method for Denoising Diffusion Prob-
abilistic Models. In ICCV.
Chung, H.; Sim, B.; and Ye, J. C. 2022. Come-Closer-
Diffuse-Faster: Accelerating Conditional Diffusion Models
for Inverse Problems through Stochastic Contraction. In
CVPR.
Dong, C.; Loy, C. C.; He, K.; and Tang, X. 2016. Im-
age Super-Resolution Using Deep Convolutional Networks.
TPAMI.
Gao, G.; Xu, Z.; Li, J.; Yang, J.; Zeng, T.; and Qi, G.
2023a. CTCNet: A CNN-Transformer Cooperation Network
for Face Image Super-Resolution. TIP.
Gao, S.; Liu, X.; Zeng, B.; Xu, S.; Li, Y.; Luo, X.; Liu, J.;
Zhen, X.; and Zhang, B. 2023b. Implicit Diffusion Models
for Continuous Super-Resolution. In CVPR.
He, J.; Shi, W.; Chen, K.; Fu, L.; and Dong, C. 2022.
GCFSR: a Generative and Controllable Face Super Reso-
lution Method Without Facial and GAN Priors. In CVPR.
Ho, J.; Jain, A.; and Abbeel, P. 2020. Denoising Diffusion
Probabilistic Models. In NeurIPS.
Huang, C.; Lucey, S.; and Ramanan, D. 2017. Learning Poli-
cies for Adaptive Tracking with Deep Feature Cascades. In
ICCV.
Kawar, B.; Elad, M.; Ermon, S.; and Song, J. 2022. Denois-
ing Diffusion Restoration Models. In NeurIPS.
Le, N.; Rathour, V. S.; Yamazaki, K.; Luu, K.; and Savvides,
M. 2022. Deep reinforcement learning in computer vision:
a comprehensive survey. Artif. Intell. Rev.

Li, H.; Li, J.; Zhao, D.; and Xu, L. 2021. DehazeFlow:
Multi-Scale Conditional Flow Network for Single Image
Dehazing. In NeurIPS.
Li, H.; Yang, Y.; Chang, M.; Chen, S.; Feng, H.; Xu, Z.;
Li, Q.; and Chen, Y. 2022. SRDiff: Single image super-
resolution with diffusion probabilistic models. Neurocom-
puting.
Li, Y.; Fan, Y.; Xiang, X.; Demandolx, D.; Ranjan, R.; Tim-
ofte, R.; and Van Gool, L. 2023. Efficient and explicit mod-
elling of image hierarchies for image restoration. In CVPR.
Lugmayr, A.; Danelljan, M.; Gool, L. V.; and Timofte, R.
2020. SRFlow: Learning the Super-Resolution Space with
Normalizing Flow. In ECCV.
Lyu, Z.; Xu, X.; Yang, C.; Lin, D.; and Dai, B. 2022. Ac-
celerating Diffusion Models via Early Stop of the Diffusion
Process. arXiv preprint arXiv: 2205.12524.
Menon, S.; Damian, A.; Hu, S.; Ravi, N.; and Rudin, C.
2020. PULSE: Self-Supervised Photo Upsampling via La-
tent Space Exploration of Generative Models. In CVPR.
Metzger, N.; Daudt, R. C.; and Schindler, K. 2023. Guided
Depth Super-Resolution by Deep Anisotropic Diffusion. In
CVPR.
Nichol, A. Q.; and Dhariwal, P. 2021. Improved Denoising
Diffusion Probabilistic Models. In ICML.
Opper, M.; and Sanguinetti, G. 2007. Variational inference
for Markov jump processes. In NeurlPS.
Pan, X.; Zhan, X.; Dai, B.; Lin, D.; Loy, C. C.; and Luo, P.
2022. Exploiting Deep Generative Prior for Versatile Image
Restoration and Manipulation. TPAMI.
Park, S. H.; Moon, Y. S.; and Cho, N. I. 2023. Perception-
Oriented Single Image Super-Resolution Using Optimal Ob-
jective Estimation. In CVPR.
Rana, K.; Dasagi, V.; Haviland, J.; Talbot, B.; Milford,
M.; and Sünderhauf, N. 2023. Bayesian controller fusion:
Leveraging control priors in deep reinforcement learning for
robotics. Int. J. Robotics Res.
Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh,
S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein,
M. S.; Berg, A. C.; and Fei-Fei, L. 2015. ImageNet Large
Scale Visual Recognition Challenge. IJCV.
Saharia, C.; Ho, J.; Chan, W.; Salimans, T.; Fleet, D. J.; and
Norouzi, M. 2022. Image Super-Resolution via Iterative Re-
finement. TPAMI.
San-Roman, R.; Nachmani, E.; and Wolf, L. 2021. Noise
Estimation for Generative Diffusion Models. arXiv preprint
arXiv: 2104.02600.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal Policy Optimization Algorithms.
arXiv preprint arXiv: 1707.06347.
Song, J.; Meng, C.; and Ermon, S. 2021. Denoising Diffu-
sion Implicit Models. In ICLR.
Stephens, C.; and Exton, C. 2022. Balancing Multiplayer
Games across Player Skill Levels using Deep Reinforcement
Learning. In ICAART.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

4024



Wang, H.; Chen, X.; Ni, B.; Liu, Y.; and Liu, J. 2023.
Omni Aggregation Networks for Lightweight Image Super-
Resolution. In CVPR.
Wang, Y.; Lv, K.; Huang, R.; Song, S.; Yang, L.; and Huang,
G. 2020. Glance and Focus: a Dynamic Approach to Reduc-
ing Spatial Redundancy in Image Classification. In NeurIPS.
Wang, Y.; Yu, J.; and Zhang, J. 2023. Zero-Shot Image
Restoration Using Denoising Diffusion Null-Space Model.
In ICLR.
Watson, D.; Ho, J.; Norouzi, M.; and Chan, W. 2021. Learn-
ing to Efficiently Sample from Diffusion Probabilistic Mod-
els. arXiv preprint arXiv: 2106.03802.
Whang, J.; Delbracio, M.; Talebi, H.; Saharia, C.; Dimakis,
A. G.; and Milanfar, P. 2022. Deblurring via Stochastic Re-
finement. In CVPR.
Xin, J.; Li, J.; Jiang, X.; Wang, N.; Huang, H.; and Gao, X.
2022. Wavelet-Based Dual Recursive Network for Image
Super-Resolution. TNNLS.
Yu, K.; Dong, C.; Lin, L.; and Loy, C. C. 2018a. Crafting
a Toolchain for Image Restoration by Deep Reinforcement
Learning. In CVPR.
Yu, K.; Dong, C.; Lin, L.; and Loy, C. C. 2018b. Crafting
a Toolchain for Image Restoration by Deep Reinforcement
Learning. In CVPR.
Yuan, J.; Jiang, H.; Li, X.; Qian, J.; Li, J.; and Yang, J.
2023. Structure Flow-Guided Network for Real Depth
Super-resolution. In Williams, B.; Chen, Y.; and Neville,
J., eds., AAAI.
Zhang, W.; Liu, Y.; Dong, C.; and Qiao, Y. 2022a. RankSR-
GAN: Super Resolution Generative Adversarial Networks
With Learning to Rank. TPAMI.
Zhang, X.; Zeng, H.; Guo, S.; and Zhang, L. 2022b. Ef-
ficient Long-Range Attention Network for Image Super-
Resolution. In ECCV.
Zhang, Y.; Li, K.; Li, K.; Wang, L.; Zhong, B.; and Fu, Y.
2018. Image Super-Resolution Using Very Deep Residual
Channel Attention Networks. In ECCV.
Zhou, Y.; Liu, B.; Zhu, Y.; Yang, X.; Chen, C.; and Xu, J.
2023. Shifted Diffusion for Text-to-Image Generation. In
CVPR.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

4025


