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Abstract

Vignetting commonly occurs as a degradation in images re-
sulting from factors such as lens design, improper lens hood
usage, and limitations in camera sensors. This degradation af-
fects image details, color accuracy, and presents challenges
in computational photography. Existing vignetting removal
algorithms predominantly rely on ideal physics assumptions
and hand-crafted parameters, resulting in the ineffective re-
moval of irregular vignetting and suboptimal results. More-
over, the substantial lack of real-world vignetting datasets
hinders the objective and comprehensive evaluation of vi-
gnetting removal. To address these challenges, we present
VigSet, a pioneering dataset for vignetting removal. VigSet
includes 983 pairs of both vignetting and vignetting-free
high-resolution (over 4k) real-world images under various
conditions. In addition, We introduce DeVigNet, a novel
frequency-aware Transformer architecture designed for vi-
gnetting removal. Through the Laplacian Pyramid decom-
position, we propose the Dual Aggregated Fusion Trans-
former to handle global features and remove vignetting in
the low-frequency domain. Additionally, we propose the
Adaptive Channel Expansion Module to enhance details in
the high-frequency domain. The experiments demonstrate
that the proposed model outperforms existing state-of-the-
art methods. The code, models, and dataset are available at
https://github.com/CXH-Research/DeVigNet.

Introduction
Vignetting is a common optical degradation that results in a
gradual decrease in brightness toward the edges of an image.
It occurs due to multiple factors such as lens characteristics,
filter presence, aperture settings, focal length settings, etc.

Some may confuse the difference between Low-Light Im-
age Enhancement (LLIE) and vignetting removal. LLIE fo-
cuses on enhancing the overall brightness of images cap-
tured in low-light conditions. Its goal is to improve visibil-
ity, reduce noise, and enhance contrast in dark regions. On
the other hand, vignetting removal specifically addresses the
uneven light projection effects in specific regions of an im-
age, typically towards the edges. Its purpose is to correct this
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(d) ELGAN (e) Ours (f) Target

Figure 1: The visual results display the effects of different
methods on the input (a) with vignetting, including the tra-
ditional methods (b) and (c), the LLIE model (d), and Devi-
gNet (e). Our model effectively removes vignetting.

effect and restore a more uniform brightness across the im-
age. Therefore, these two tasks serve distinct purposes and
aim to enhance different aspects of image quality.

There are mathematical and prior-based methods avail-
able for vignetting removal (Zheng et al. 2008, 2013; Lopez-
Fuentes, Oliver, and Massanet 2015). Nevertheless, these ap-
proaches have limitations. These approaches ideally assume
that the optical center is located at the center of the image,
which may not be valid in real-world scenarios. Moreover,
these methods can demonstrate bias under certain conditions
and frequently necessitate extensive parameter adjustments
to achieve optimal performance. In addition, these param-
eters are highly sensitive to high-resolution images, often
leading to inferior outcomes. Another significant challenge
arises from the absence of ground truth in the datasets used
for evaluation, which contributes to subjective assessments
of the experimental results.

To tackle the issue of vignetting, we introduce a dataset
named VigSet. The dataset comprises 983 pairs of images
captured under various environmental and lighting condi-
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tions. Each pair consists of an image captured under op-
timal lighting conditions, without vignetting, and its cor-
responding vignetting-free ground truth image. Addition-
ally, we present DeVigNet, a network that employs Dual
Aggregated Fusion Transformer and Adaptive Channel Ex-
pansion for vignetting removal. We utilize the Laplacian
Pyramid (Burt and Adelson 1987; Liang, Zeng, and Zhang
2021; Li et al. 2023a,b) to decompose the image into high-
frequency and low-frequency components (You et al. 2022).
This decomposition enhances vignetting removal by im-
age sharpening and edge enhancement. We introduce the
Dual Aggregated Fusion Transformer for vignetting removal
in the low-frequency component, as it primarily contains
smoother color information that represents the overall color
and distribution. Additionally, the high-frequency compo-
nent utilizes the Adaptive Channel Expansion Module for
handling color edges, texture details, and specific color char-
acteristics. Our experimental results demonstrate the state-
of-the-art performance of our method. In addition, Figure 1
provides an intuitive indication of the favorable outcomes
attained by DeVigNet. The main contributions of this article
are as follows:
• We present VigSet, the first vignetting dataset that in-

cludes high-resolution vignetting images along with the
corresponding vignetting-free ground truth. VigSet aims
to alleviate the current scarcity of vignetting datasets by
providing a substantial number of samples accompanied
by accurate ground truth information.

• We propose DeVigNet, a network that is based on
the Dual Aggregated Fusion Transformer and Adaptive
Channel Expansion. It represents the first learning-based
model for high-resolution vignetting removal.

• Quantitative and qualitative experiments demonstrate
that DeVigNet outperforms state-of-the-art methods on
vignetting datasets.

Related Work
Vignetting Removal
A limited number of studies in the field of traditional
vignetting removal has proposed methods that are based
on mathematical principles, statistical analysis, and prior
knowledge. SIVC (Zheng et al. 2013) utilizes the symme-
try properties of semicircular tangential gradients and RG
distributions to estimate the optical center and correct vi-
gnetting. Goldman et al. assume that the vignetting in the
image exhibits radial symmetry around its center (Goldman
2010). RIVC (Lopez-Fuentes, Oliver, and Massanet 2015),
addresses vignetting removal through the minimization of
the log-intensity entropy.

Low-Light Image Enhancement
Traditional methods (Wang et al. 2013; Guo, Li, and Ling
2016; Jobson, Rahman, and Woodell 1997; Cai et al. 2017;
Fu et al. 2016, 2015) for Low-Light Image Enhancement
often refers to the Retinex theory or histogram equalization.

Recently, the utilization of these learning-based ap-
proaches gain traction as a prevalent solution for enhanc-
ing low-light images. Several widely recognized datasets

are utilized by these learning-based methods. For instance,
Wei et al. propose a Low-Light dataset (LOL) (Wei et al.
2018) containing pairs of low/normal-light images. The
MIT-Adobe FiveK dataset (Bychkovsky et al. 2011) com-
prises 5,000 photos that are manually annotated. To ensure
the highest quality, the dataset underwent retouching by a
team of 5 trained photographers, rendering it well-suited for
supervised learning in the context of LLIE. In terms of effec-
tive methods, certain technologies also made contributions.
Wang et al. propose Uformer (Wang et al. 2022) employ-
ing both local and global dependencies to restore images.
The KinD (Zhang, Zhang, and Guo 2019) method proposed
by Zhang et al. can be trained and achieves impressive re-
sults without the need for explicitly defining a ground truth
dataset. Liu et al. (Liu et al. 2021) present a retinex-based
network that is both lightweight and efficient. Guo et al. en-
ables end-to-end training without the need for reference im-
ages (Guo et al. 2020). Li et al. (Li, Guo, and Loy 2021)
introduce an adaptive LLIE network that can operate under
diverse lighting conditions without dependence on paired or
unpaired training data. Lim et al. (Lim and Kim 2020) pro-
pose a method that can independently recover global illumi-
nation and local details from the original input, and gradu-
ally merge them in the image space. Jiang et al. (Jiang et al.
2021) put forward unsupervised learning into the realm of
LLIE using GAN.

Dataset
In our research on vignetting removal, we encounter limi-
tations in the existing datasets available for evaluating the
performance of these methods. These datasets often consist
of low-quality images or lack the necessary characteristics
for effectively assessing vignetting removal algorithms. Un-
fortunately, at present, there is no accessible dataset exclu-
sively designed for vignetting removal that provides reliable
ground truth for objective evaluation.

Consequently, we introduce VigSet, the first high-
resolution dataset that offers a comprehensive collection of
paired vignetting and ground truth images, specifically de-
signed for vignetting removal. It consists of 983 pairs of
photos captured by DSLR camera and two mobile phones.
What distinguishes VigSet from other vignetting datasets is
its exceptional diversity, substantial quantity, and most no-
tably, the inclusion of accurate ground truth. This ground
truth information serves as a reliable reference for evalu-
ating the effectiveness and performance of vignetting re-
moval algorithms. Furthermore, VigSet stands out as a high-
resolution dataset, with images boasting an impressive mean
resolution of 5340× 3697. This high-resolution characteris-
tic enables researchers and practitioners to conduct detailed
analyses and evaluations of vignetting removal techniques.

Equipment for Data Collection
VigSet employs a variety of three distinct capture devices:
Fujifilm X-T4, ONE PLUS 10PRO, and iPhone SE.

In well-lit situations, vignetting is generally not notice-
able. Therefore, we use an ND filter to reduce illumination
and capture photos with vignetting. The center light, which
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passes through an ND filter, travels a shorter distance com-
pared to the light at the edges. This difference in distance
contributes to the occurrence of vignetting.

(a) (b) (c)

Figure 2: (a) represents the visual depiction of our data ac-
quisition equipment. (b) is the image showcasing of ND fil-
ter. and (c) illustrates the data collection process conducted
by us under optimal lighting conditions along with a preview
after the installation of the ND filter.

Additionally, to ensure that there is no displacement be-
tween each pair of photos and to enhance data diversity, it
is crucial to avoid dynamic objects such as swaying tree
leaves, moving vehicles, and glass reflections on specific
objects that are susceptible to motion. Therefore, we select
multiple distinct indoor environments for the data collection.
To reduce device vibration caused by manual camera shut-
ter presses, we use remote shutter control to capture steps 2
and 4, as illustrated in Figure 2 (c).

(a) (b)

Figure 3: (a) represents the image without vignetting. (b)
represents the image with vignetting.

Data Collection and Processing
Figure 2 (a) provides a preview of our experimental config-
uration designed for capturing VigSet. The process of col-
lecting data is facilitated by adjusting the white ND value
controller located on the camera ND filter, as depicted in
Figure 2 (c). During the data collection process, we capture
images from real-world scenes utilizing experimental equip-
ment. We use a tripod to stabilize the camera and control un-
related variables. The steps of the data collection process are
as follows.

1. The camera settings, such as focal length, aperture, ex-
posure, and ISO, are set to fixed values.

2. A vignetting-free image is captured with an ND value of
0, as shown in Figure 3 (a)

3. Continuously modify the value of the ND filter until no-
ticeable vignetting becomes visible in the image.

4. An image with vignetting is captured, as shown in Fig-
ure 3 (b)

We exclude images exhibiting obvious motion distortion or
lack of focus. Moreover, we conduct group reviews of these
photographs to identify and remove any outliers and dupli-
cates.

Methodology
We propose a multi-frequency network based on Dual Ag-
gregated Fusion Transformer with Adaptive Channel Ex-
pansion to exploit the features of images at various scales.
Specifically, the structure of DeVigNet, as illustrated in Fig-
ure 4, includes three major components: The Dual Aggre-
gated Fusion Transformer (DAFT), the Adaptive Channel
Expansion Module (ACEM), and the Hierarchical Channel
Attention Module (HCAM). In the upcoming sections, we
will introduce these components of DeVigNet and the learn-
ing criteria.

Dual Aggregated Fusion Transformer
The Dual Aggregated Fusion Transformer (DAFT) is a
neural network designed specifically for handling low-
frequency information in images. As the foundational archi-
tecture, the Fusion Transformer employs multiple attention
mechanisms to capture various points of focus, enabling the
model to effectively incorporate both local and global in-
formation within its representation. Fusion Transformer sig-
nificantly boosts the expressive capacity of the Transformer
network. Figure 4 illustrates the location of these four fu-
sion transformers, wherein each transformer comprises two
modules. Each module contains 1, 2, 3, or 4 Transformer
Blocks (Dosovitskiy et al. 2021) from left to right. The out-
put of the first module is passed on to the second module,
and the final output is obtained by adding the output of the
second module to the output of the first module.

Inspired by (Cun, Pun, and Shi 2020), the Aggregation
Node is designed as integration operations on the input fea-
tures. By aggregating the semantic information extracted by
the fusion transformer, a richer and more comprehensive
global feature representation can be obtained. This Structure
facilitates an improved understanding of the image’s struc-
ture, texture, and global properties by the model in low fre-
quency, leading to enhancing vignetting removal.

Adaptive Channel Expansion Module
While the primary cause of vignetting is low-frequency
color information, some edge information of the images re-
mains. Therefore, motivated by U-Net (Ronneberger, Fis-
cher, and Brox 2015), we propose a structure that inte-
grates Adaptive Contrast Enhancement Module (ACEM)
and Laplacian pyramid reconstruction for optimal vignetting
removal results in high-frequency.

ACEM is a lightweight module that does not employ any
activation functions, and it is proven that there will be no
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Figure 4: The overall architecture of DeVigNet comprises the Dual Aggregated Fusion Transformer, Adaptive Channel Ex-
pansion Module, and Hierarchical Channel Attention Module (HCAM). Initially, the input image is decomposed into its high-
frequency and low-frequency components using a Laplacian pyramid. Subsequently, the low-frequency component of the image
undergoes processing with DAFT and HCAM to capture global information. Next, ACEM is employed in the reconstruction of
the high-frequency component of the Laplacian pyramid to enhance edge information. Finally, a vignetting-free image result is
produced.

decrease in performance. Inspired by (Ba, Kiros, and Hinton
2016), the beginning section of ACEM is LayerNorm, which
improves stability and reduces computational overhead. The
following convolutional layers capture feature information
at varying scales. Inspired by (Chen et al. 2022), the Simpli-
fied Channel Attention (SCA) and SimpleGate techniques
are utilized to enhance network performance. SimpleGate
divides the feature maps into two channel dimensions and
multiplies them together, leading to a reduction in computa-
tional load and complexity. The formula is as follows:

SimpleGate(X,Y) = X⊙Y, (1)
where X and Y are feature maps of the same size. Simpli-
fied Channel Attention (SCA) can be considered as a stream-
lined adaptation of Channel Attention (CA). It captures the
essence of CA by retaining only two vital components: ag-
gregating global information and enabling channel-wise in-
teraction. SCA can be described as :

SCA(X) = X ∗Wpool(X). (2)
W denotes a fully connected layer. pool represents the
global average pooling procedure which combines spatial
data into channels. ∗ indicates a channel-wise multiplication.

Hierarchical Channel Attention Module
Inspired by (Wang et al. 2023), The Hierarchical Channel
Attention Module (HCAM) module is dedicated to the hi-
erarchical fusion of features and the acquisition of learn-
able correlations across diverse layers. The primary func-
tion of HCAM is to compute and apply attention weights
to the input feature map, resulting in the refinement and
enhancement of vignetting features. Initially, HCAM per-
forms a transformation on the input I ∈ RH×W×3 to
yield RN×H×W×C , N = 3, from successive layers. Subse-
quently, the Q (query), K (key), and V (value) features are
extracted using convolutional layers. Subsequently, the Q,
K, and V features are extracted using convolutional layers.

In this module, Inner-Product Attention plays a crucial
role in calculating attention scores by computing the dot
product between the query and the key. HCAM adaptively
fuses features from different hierarchical levels by con-
ducting weighted operations between values and attention
scores. The corresponding output feature Rout can be de-
scribed as:

Rout = W1×1LA(Q,K,V) +Rin , (3)
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Methods LOL MIT-Adobe FiveK
PSNR ↑ SSIM ↑ MAE ↓ LPIPS ↓ PSNR ↑ SSIM ↑ MAE ↓ LPIPS ↓

Input 7.77 0.20 99.80 0.42 12.26 0.61 55.98 0.22
LIME 16.76 0.44 30.59 0.31 13.30 0.75 52.12 0.09
MSRCR 13.17 0.45 52.71 0.33 13.31 0.75 50.82 0.12
NPE 16.97 0.47 32.89 0.31 17.38 0.79 31.22 0.10
WV-SRIE 11.86 0.49 65.56 0.24 18.63 0.84 26.27 0.08
PM-SRIE 12.28 0.51 63.28 0.23 19.70 0.84 23.42 0.07
JieP 12.05 0.51 64.34 0.22 18.64 0.84 26.42 0.07
RetinexNet 16.77 0.42 32.02 0.38 12.51 0.69 52.73 0.20
KID 17.65 0.77 31.40 0.12 16.20 0.79 35.16 0.11
DSLR 14.98 0.60 48.90 0.27 20.24 0.83 22.45 0.10
ELGAN 17.48 0.65 34.47 0.23 16.00 0.79 36.37 0.09
RUAS 16.40 0.50 39.11 0.19 17.91 0.84 33.12 0.08
Zero_DCE 14.86 0.56 47.07 0.24 15.93 0.77 36.36 0.12
Zero_DCE++ 14.75 0.52 45.94 0.22 14.61 0.42 39.25 0.16
Uformer 18.55 0.73 28.91 0.23 21.92 0.87 17.91 0.06
Ours 21.33 0.76 19.30 0.16 23.10 0.84 15.43 0.16

Table 1: Quantitative results on LOL and MIT-Adobe FiveK datasets in terms of PSNR, SSIM, LPIPS and MAE. The top two
results are marked in bold and underline.

where LA represents Layer Attention, W1×1 indicates Con-
volution 1× 1, LA can be written as:

LA(Q̂, K̂, V̂) = V̂ softmax(Q̂K̂/α), (4)

Learning Criteria

During the training phase, we employ two loss functions,
namely Mean Squared Error (LMSE) and Structural Sim-
ilarity Index Measure (LSSIM ) (Wang et al. 2004), which
offer significant advantages in preserving the intricate de-
tails of the image. The mathematical expressions for these
losses are as follows:

Ltotal = LMSE + λ ∗ LSSIM , (5)

The weight of LSSIM is empirically set to 0.4.

Experiments
Experiment Settings

In order to ensure the highest level of fidelity and reliabil-
ity in our experiments, we make the deliberate decision to
exclusively use the VigSet dataset for vignetting removal.
Moreover, we also conduct experiments in the field of LLIE
to demonstrate the versatility of DeVigNet in global illumi-
nance adjustment.

In our experiments, we leverage the following datasets:
VigSet: This dataset contains 983 image pairs. We allo-

cate 803 pairs for training purposes and reserve the remain-
ing 180 pairs for testing.

MIT-Adobe FiveK (Bychkovsky et al. 2011) & LOL-
v1 (Wei et al. 2018): For these datasets, we adopt the exper-
imental settings delineated in (Wang et al. 2023), ensuring
consistency with prior research.

Evaluation Metrics We evaluate the quality of the
enhanced images using four widely adopted metrics:
Peak Signal-to-Noise Ratio (PSNR), Structural Similarity
(SSIM), Mean Absolute Error (MAE). In addition, to bet-
ter align with human perceptual conditions, we utilize the
Learned Perceptual Image Patch Similarity (LPIPS). These
metrics are commonly used in the assessment of image
enhancement and low-level computer vision tasks. Higher
PSNR and SSIM scores indicate improved visual quality,
while lower MAE and LPIPS suggest better accuracy in rep-
resenting the original image.

Implementation Details We employ PyTorch to imple-
ment our model and conduct experiments using the NVIDIA
A40 GPU. We utilize the Adam optimizer, adhering to its
default parameter settings. During the training process, all
models are trained at a resolution of 512 × 512 and subse-
quently tested at different resolutions. Additionally, we set
the batch size to 1 and the learning rate to 1e− 4.

Comparisons with State-of-the-Art
We perform a comprehensive evaluation of state-of-the-art
vignetting removal methods on the VigSet dataset. The com-
pared vignetting methods include SIVC (Zheng et al. 2008)
and RIVC (Lopez-Fuentes, Oliver, and Massanet 2015).
These methods serve as benchmarks for evaluating the per-
formance of our proposed vignetting removal technique.

Furthermore, we also conduct additional experiments
with state-of-the-art LLIE methods. We compare DeVigNet
with traditional LLIE methods such as LIME (Guo, Li, and
Ling 2016), MSRCR (Jobson, Rahman, and Woodell 1997),
and NPE (Wang et al. 2013). Additionally, we evaluate
the performance of learning-based LLIE methods, includ-
ing WV-SRIE (Fu et al. 2016), PM-SRIE (Fu et al. 2015),
Uformer (Wang et al. 2022), KID (Zhang, Zhang, and Guo
2019), DSLR (Lim and Kim 2020), ELGAN (Jiang et al.
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Methods 512× 512 1024× 1024 2048× 2048
PSNR ↑ SSIM ↑ MAE ↓ LPIPS ↓ PSNR ↑ SSIM ↑ MAE ↓ LPIPS ↓ PSNR ↑ SSIM ↑ MAE ↓ LPIPS ↓

Input 12.08 0.59 60.04 0.18 12.08 0.58 60.04 0.18 12.08 0.58 60.04 0.19
RIVC 13.08 0.59 55.17 0.18 13.08 0.59 55.17 0.18 13.08 0.59 55.17 0.19
SIVC 14.65 0.62 43.71 0.17 14.65 0.61 43.69 0.17 14.65 0.60 43.70 0.18
LIME 12.42 0.41 51.29 0.41 12.42 0.39 51.29 0.40 12.41 0.37 51.32 0.42
MSRCR 11.20 0.39 60.43 0.44 11.20 0.37 60.43 0.45 11.20 0.35 60.44 0.46
NPE 15.72 0.51 38.60 0.33 15.72 0.49 38.59 0.32 15.72 0.47 38.60 0.33
WV-SRIE 18.84 0.60 26.67 0.22 18.84 0.58 26.67 0.23 18.84 0.56 26.67 0.24
PM-SRIE 19.45 0.66 24.81 0.16 19.45 0.64 24.81 0.17 19.45 0.62 24.81 0.19
JieP 18.93 0.58 26.33 0.24 18.93 0.55 26.32 0.25 18.93 0.54 26.32 0.27
KID 14.73 0.71 44.01 0.18 14.74 0.71 43.95 0.22 14.73 0.71 44.00 0.31
DSLR 19.37 0.65 24.10 0.16 19.37 0.64 24.07 0.20 19.35 0.62 24.10 0.29
ELGAN 16.32 0.73 37.77 0.10 16.32 0.72 37.76 0.11 16.31 0.72 37.77 0.12
RUAS 15.54 0.60 36.93 0.22 15.54 0.57 36.92 0.24 15.54 0.56 36.92 0.25
Zero-DCE 16.28 0.58 34.77 0.26 16.28 0.57 34.77 0.26 16.28 0.55 34.78 0.26
Zero-DCE++ 16.82 0.55 32.31 0.20 16.82 0.52 32.32 0.21 16.81 0.51 32.34 0.23
Uformer 20.95 0.77 21.32 0.19 20.60 0.77 22.80 0.25 20.67 0.77 22.69 0.28
Ours 22.96 0.79 15.82 0.09 22.94 0.78 15.84 0.11 22.94 0.77 15.85 0.13

Table 2: Quantitative results on VigSet in terms of PSNR, SSIM, LPIPS and MAE. The top two results are marked in bold and
underline.

Ablation Study 512× 512 1024× 1024 2048× 2048
PSNR ↑ SSIM ↑ MAE ↓ LPIPS ↓ PSNR ↑ SSIM ↑ MAE ↓ LPIPS ↓ PSNR ↑ SSIM ↑ MAE ↓ LPIPS ↓

Input 12.08 0.59 60.04 0.18 12.08 0.58 60.04 0.18 12.08 0.58 60.04 0.19
Ours w/ Depth=3 16.04 0.69 32.44 0.16 16.04 0.69 32.44 0.17 16.04 0.70 32.44 0.19
Ours w/ Depth=4 13.94 0.66 42.62 0.21 13.94 0.67 42.63 0.23 13.94 0.68 42.63 0.22
Ours w/o ACEM 19.66 0.76 23.77 0.11 19.66 0.74 23.78 0.14 19.65 0.74 23.79 0.17
Ours w/o DAFT 18.25 0.73 28.75 0.14 18.25 0.72 28.75 0.15 18.25 0.72 28.75 0.16
DHAN w/ ACEM 21.84 0.75 17.73 0.20 20.95 0.74 19.96 0.21 21.13 0.74 19.25 0.23
Ours 22.96 0.79 15.82 0.09 22.94 0.78 15.84 0.11 22.94 0.77 15.85 0.13

Table 3: Quantitative results of the ablation study on three datasets in different resolutions. The top two results are marked in
bold and underline.

(a) Input (b) ELGAN (c) UFormer (d) Zero-DCE

(e) RIVC (f) SIVC (g) Ours (h) Target

Figure 5: Visual comparison of various Vignetting Removal and LLIE methods on the VigSet dataset is presented. The figure
clearly illustrates the presence of noticeable vignetting in methods (b), (f), and (e). Color degradation or distortion issues are
apparent in methods (c) and (d).

2021), JieP (Cai et al. 2017), RUAS (Liu et al. 2021), Zero-
DCE (Guo et al. 2020), and Zero-DCE++ (Li, Guo, and Loy
2021).

Qualitative results, as shown in Figure 5 demonstrate that
our method exhibits significant superiority over others in
the vignetting dataset. Our results display enhanced image
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(a) Input (b) ELGAN (c) UFormer (d) Zero-DCE

(e) LIME (f) NPE (g) Ours (h) Target

Figure 6: A visual comparison of different LLIE methods is conducted on the MIT-Adobe FiveK dataset. (b), (e), and (f) exhibit
overexposure in the entire image. Both (d) and (e) exhibit either blurriness or distortion, respectively.

clarity and more prominent vignetting removal. Moreover,
our method achieves competitiveness on the LLIE dataset as
shown in Figure 6.

In terms of quantitative results, by comparing our pro-
posed method with these state-of-the-art vignetting and
LLIE methods as displayed in Table 1 and Table 2, we can
assess its effectiveness and performance in relation to ex-
isting methods. This comprehensive evaluation provides in-
sights into the strengths and weaknesses of different ap-
proaches and helps to advance the field of vignetting re-
moval.

Conventional methods heavily depend on assumptions
based on physics, which are not consistently accurate. Ad-
ditionally, current LLIE methods are not well-suited for ad-
dressing the issue of vignetting. Therefore, based on the data
from Table 2, it is evident that traditional methods and LLIE
methods exhibit substantial disparities compared to other
methods in multiple metrics, particularly in terms of MAE.
Additionally, we conducted supplementary quantitative ex-
periments on a LLIE dataset, as presented in Table 1. The
results illustrate the strong performance of our method in
LLIE. Besides, with the advancement of current technology,
capturing high-resolution images become an essential rou-
tine. DeVigNet stands out as the most efficient approach in
achieving superior results in vignetting removal across vari-
ous resolutions when compared to other existing methods.

Ablation Studies
We maintain a similar parameter count across all combina-
tions to ensure a fair comparison. DAFT and ACEM are re-
moved respectively using the comment-out method in the
experiments. As shown in Table 3, we conduct ablation stud-
ies evaluating various components of our model at differ-
ent image resolutions. These components include varying
the depth of the Laplacian pyramid, as well as ablating the
ACEM and DAFT modules.

As the depth of the Laplacian pyramid increases, the mag-
nitude of the low-frequency component decreases. This re-

duction directly impacts the quality of vignetting removal,
especially with respect to preserving low-frequency color in-
formation.

DAFT plays a pivotal role in capturing global color infor-
mation within the low-frequency component of an image.
Therefore, models lacking DAFT suffer performance degra-
dation due to the loss of global color context.

Meanwhile, ACEM is primarily utilized to retain edge
details during image reconstruction, focusing on the high-
frequency portion. Removing ACEM causes models to lose
textural information in the reconstruction phase, thereby
deteriorating performance due to the absence of high-
frequency context.

Additionally, we replace DAFT with DHAN (Cun, Pun,
and Shi 2020), the results are shown in Table 3. Accordingly,
DAFT and ACEM are responsible for the low-frequency and
high-frequency components, respectively. While each com-
ponent contributes individually to improved vignetting re-
moval performance, their combined effect yields optimal re-
sults by leveraging complementary global and local context.

Conclusion
In this paper, we introduce Vigset, the first large-scale high-
resolution vignetting removal dataset with ground truth im-
ages. Vigset comprises 983 pairs of images captured under
different lighting conditions and in various scenes. Addition-
ally, we propose a novel method called DeVigNet, specif-
ically designed for vignetting removal on this dataset. It
includes three components: The Dual Aggregated Fusion
Transformer, the Adaptive Channel Expansion Module and
the Hierarchical Channel Attention Module. By utilizing the
Laplacian pyramid, DeVigNet performs vignetting removal
on the color information in the high-frequency and low-
frequency domains of the image, thereby achieving optimal
results. DeVigNet effectively eliminates vignetting effects in
images, demonstrating superior performance compared to
existing methods in terms of both quality and quantity for
vignetting removal.
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