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Abstract

Nuclei classification is a critical step in computer-aided diag-
nosis with histopathology images. In the past, various meth-
ods have employed graph neural networks (GNN) to ana-
lyze cell graphs that model inter-cell relationships by con-
sidering nuclei as vertices. However, they are limited by the
GNN mechanism that only passes messages among local
nodes via fixed edges. To address the issue, we develop a
cell graph transformer (CGT) that treats nodes and edges as
input tokens to enable learnable adjacency and information
exchange among all nodes. Nevertheless, training the trans-
former with a cell graph presents another challenge. Poorly
initialized features can lead to noisy self-attention scores and
inferior convergence, particularly when processing the cell
graphs with numerous connections. Thus, we further pro-
pose a novel topology-aware pretraining method that lever-
ages a graph convolutional network (GCN) to learn a fea-
ture extractor. The pre-trained features may suppress unrea-
sonable correlations and hence ease the finetuning of CGT.
Experimental results suggest that the proposed cell graph
transformer with topology-aware pretraining significantly im-
proves the nuclei classification results, and achieves the state-
of-the-art performance. Code and models are available at
https://github.com/lhaof/CGT

Introduction
Identifying cell types for histopathology image has emerged
as a fundamental task in computational pathology (Krithiga
and Geetha 2021; Amgad et al. 2022; Huang et al. 2023a).
By effectively classifying nuclei, medical professionals gain
crucial insights into the intricate cellular structures, which
helps make decisions related to disease diagnosis (Lagree
et al. 2021) and prognosis (Liu et al. 2022a). Thus, in this
paper, we focus on inferring the types of cell nuclei in a
histopathology image.

Deep learning (DL) based methods (Graham et al. 2019;
Abousamra et al. 2021; Doan et al. 2022) have been widely
applied to the nuclei classification task. Most of them em-
ploy convolutional neural networks (CNNs) to compute
pixel-wise local features and fail to consider the macrostruc-
ture of nuclei distribution (Anand, Gadiya, and Sethi 2020;
Javed et al. 2020). Another group of methods exploits the
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Figure 1: The idea of Topoloyg-aware Pre-training for Cell
Graph Transformer. Simple initialization for the cell graph
transformer fails to converge due to a large amount of unrea-
sonable connections. The topology-aware pre-training can
reduce the initial noise in features and boost the representa-
tion ability of the cell graph transformer.

cell graph of a histopathology image, and has been studied
for decades (Schnorrenberg et al. 1996; Hassan et al. 2022).
A Cell Graph is a set of vertices and edges, where a vertex is
a cell or nucleus and an edge is built between two neighbor-
ing cells. Recently, graph convolutional networks (GCNs)
have been used to learn embeddings with cell graphs (Zhou
et al. 2019; Zhao et al. 2020; Anklin et al. 2021; Hassan et al.
2022). These GCN-based solutions update the embedding of
a nucleus by aggregating its adjacent nuclei. However, these
GCN methods aggregate features along non-learnable edge
connections that are fixed after building a cell graph, which
limits the model capacity.

To overcome the issue, we propose a Cell Graph Trans-
former (CGT) for the nuclei classification task, inspired by
(Kreuzer et al. 2021; Ying et al. 2021; Kim et al. 2022). The
proposed CGT takes both nuclei and edges as input tokens to
compute any pairwise correlations among all tokens, which
can capture long-range contexts in a more flexible way. CGT
is a portable model that can identify cell types, based on
any form of binary segmentation or detection results of nu-
clei. These results could be obtained by existing methods or
manual labeling. In the CGT framework, we first compute
the centroid coordinates of nuclei from the segmentation/de-
tection result, then determine if two cells are connected by
an edge according to their spatial distance, and build up the
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topology of a cell graph. To obtain visual features for nodes
and edges, we develop a U-Net that outputs a pixel-wise fea-
ture map with an input image. To embed adjacency into the
CGT, we propose a cell-graph tokenization method that in-
tegrates the visual and position embeddings of nodes and
edges with two kinds of markers, which indicates the type
and neighborhood of a token. Afterward, the CGT encoder,
which is built of standard transformer layers, performs node-
level classification to output the cell types.

Importantly, we observe that simple initialization of the
feature extractor fails to train our proposed CGT model.
It may be due to that the pairwise attentions can be com-
puted between less correlated tokens, and result in noises
especially when the representations are not well initialized.
Therefore, we propose a novel topology-aware pretraining
strategy that replaces our proposed CGT with a GCN to
guide the learning of a feature extractor on the same nu-
clei classification task. The guiding GCN model only merges
the embeddings of adjacent nodes defined by the fixed
cell graph, which means less unreasonable correlations and
makes convergence easier. The pre-trained feature extractor
is supposed to synthesize structure-guided representations
that benefit the training of the proposed CGT framework.

Overall, our contributions have three folds:

• A nuclei classification framework, Cell Graph Trans-
former, which benefits from non-local contexts by com-
puting pairwise attentions among all nodes and edges;

• A topology-aware pretraining strategy that provides
topology-guided feature learning for reducing the initial
noise of the cell graph transformer;

• The proposed cell graph transformer significantly sur-
passes the state-of-the-art methods and our pretraining
strategy also brings an improvement to the baseline.

Related Work
Nuclei Classification for Histopathology Images. Early
solutions for nuclei classification involved the extraction
of manually defined features which are fed into classifiers
like SVM or AdaBoost (Liu, Mundra, and Rajapakse 2011;
Sharma et al. 2015). However, the handcrafted features limit
the representation capabilities of nuclei entities. Recently,
the nuclei classification models usually infer cell types based
on the CNNs for nucleus segmentation (Zhang et al. 2017;
Basha et al. 2018; Lou et al. 2022, 2023b; Ma et al. 2023;
Yu et al. 2023) or nucleus centroid detection (Abousamra
et al. 2021; Huang et al. 2023b). Graham et al. (2019) pro-
pose a CNN of three branches, predicting nucleus types
for the segmented nucleus instances. Doan et al. (2022) in-
corporated a weight map prediction technique to highlight
challenging pixel samples for improved classification. How-
ever, these CNN-based approaches are limited by their local
pixel-wise receptive field, and fail to capture instance-level
contexts among cell nuclei. Therefore, we use a cell graph
structure that describes the global relationship among nu-
cleus instances.
Graph Models in Computational Pathology. Graph mod-
els have been used in computational pathology for decades.

Demir, Gultekin, and Yener (2005) builds a graph by con-
sidering nuclei as nodes and binary connections as edges.
A perceptron is utilized for the detection of inflammation in
brain biopsy. Recently graph convolution networks (GCNs)
have been used as learnable models for the graphs derived
from histopathology images (Lou et al. 2023a). Some ap-
proaches (Zhou et al. 2019; Javed et al. 2020; Pati et al.
2022) classify whole slide images by defining nodes as nu-
cleus instances, superpixels, or tissue patches. In these meth-
ods, the node embeddings are hand-crafted or learned fea-
tures from pre-trained CNN models. NCCD (Hassan et al.
2022) has been proposed for GNN-based nucleus classifi-
cation recently. However, the GNN-based methods aggre-
gate features along non-learnable edges, which are fixed
and limit the model capacity. Thus, we develop a cell graph
transformer with learnable node connections and capture the
long-range contexts more flexibly.
Transformers for Graph. Transformer models have
emerged as crucial components in various domains such as
neural language processing (Vaswani et al. 2017) and com-
puter vision (Liu et al. 2021). Several existing approaches
have incorporated transformers to handle graph structures
in different manners. First, some methods employ Trans-
former layers as auxiliary modules within graph neural net-
works (Wu et al. 2021; Lin, Wang, and Liu 2021). Second,
attention matrices are introduced into the message-passing
mechanism (Dwivedi and Bresson 2020; Zheng et al. 2022).
However, these approaches are constrained by the non-
learnable edge connections in the graph structure and may
suffer from the issue of excessive smoothing caused by
the message-passing mechanism (Li, Han, and Wu 2018;
Oono and Suzuki 2020). Recently, researchers have made
progress in graph representation learning by employing pure
Transformer architectures with learnable positional encod-
ings (Kreuzer et al. 2021) or by utilizing sparse higher-order
Transformers (Kim, Oh, and Hong 2021). In this paper, we
propose a GCN-guided pretraining strategy that adapts vi-
sual features to a graph topology for better training a cell
graph transformer on the nuclei classification task.

Methodology
In this section, we introduce the proposed Cell Graph
Transformer framework, the proposed topology-aware pre-
training strategy, and the training-inference scheme.

Cell Graph Transformer

We propose a cell graph transformer (CGT) framework to
identify the category of each nucleus in histopathology im-
ages. To focus on the classification part, the CGT simply
adopts an existing model to provide binary (foreground v.s.
background) segmentation/detection results of nuclei. Since
CGT performs nuclei classification based on the position co-
ordinates of nuclei, it can adapt to various forms of segmen-
tation/detection results. As Figure 2 shows, our proposed
cell graph transformer has three parts: Cell Graph Construc-
tion, Cell Graph Tokenization (CGToken), and Transformer
Encoder.
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Figure 2: Overview of the Cell Graph Transformer (CGT) framework. The framework includes the construction and tokenization
of cell graphs as well as a transformer encoder. Tokens are the input feature vectors of the transformer encoder. Adjacency is
embedded into the tokens via link and token markers.

Cell Graph Construction. Building a cell graph requires
two inputs: 1. Centroid coordinates of nuclei computed by
the binary detector/segmentation tool; 2. A feature map f
is obtained by the feature extractor in Figure 2. Given the
centroids of n nuclei in an image, an undirected cell graph
G = (V,E) can be constructed by connecting each nucleus
centroid to its nearest k nuclei. Therefore, the cell graph
contains n nodes V = {v1, ..., vn} and D(= kn) edges
E = {e1, ..., eD}. The connections of nodes are represented
by a binary adjacency matrix A ∈ Rn×n, in which Ai,j=1 if
node vi and vj are connected.

To obtain the visual embeddings of nodes and edges, our
approach incorporates a U-Net architecture that leverages
an existing convolutional neural network (CNN) (Guo et al.
2023) as the encoder, and a feature pyramid network (FPN)
(Lin et al. 2017) as the decoder. The U-Net is initialized via
a novel pre-training strategy, which is introduced in the sub-
sequent subsection. Given a histopathology image with di-
mensions H × W , the U-Net takes the image as input and
generates a feature map f of size H

4 × W
4 × C from its

second-to-last layer. To describe a nucleus node vi, we first
sample the visual embedding zvi ∈ R1×C located at the cen-
troid coordinate of the nucleus from f . The vector zvi can
be calculated through bilinear interpolation by using feature
vectors at the four nearest integer coordinates on f . Besides,
we inject spatial positional information by computing a po-
sitional embedding vector ρi ∈ R1×C using the Sinusoidal
Position Encoding method (Vaswani et al. 2017). The node
feature is defined as the concatenation of zvi and ρi. For an
edge, the feature vector of its middle point is sampled from

the feature map f using bilinear interpolation. The sampled
vector is viewed as the edge visual embedding zed.

Cell Graph Tokenization. Tokenization is to convert raw
data into meaningful numerical representations called To-
kens that can be well encoded by transformers. We introduce
the Cell Graph Tokenization approach (CGToken), which
aims to translate the constructed cell graph into a set of to-
kens that standard transformer models can effectively pro-
cess. It is straightforward to regard the node and edge em-
beddings as (n+D) independent inputs, but it overlooks the
structural information contained within the graph. To exploit
the topology structure, we utilize Link Markers and Token
Markers. A cell graph transformer framework has two to-
ken markers denoted as Mv,Me, which are two 1×C vec-
tors and the learnable parameters of the framework. One is
for node tokens, while the other is for edges. The two token
markers are tuned in the training and fixed after training.

The link markers M l = {m1,m2, ...,mn} ∈ Rn×c are
orthonormal vectors that imply the adjacency of each token.
If vi and vj are linked by an edge, then [mi,mj ][mi,mi]

T =
1 and [mi,mj ][mj ,mj ]

T = 1, otherwise the dot production
is 0. This mechanism makes the transformer assign more at-
tention to the nodes connected in the cell graph. The link
markers are calculated by the Laplacian eigendecomposi-
tion (Dwivedi et al. 2020) of the adjacency matrix A:

L = I −Θ− 1
2AΘ− 1

2 = (M l)TαM l, (1)
where Θ is the degree matrix of the graph, I is an identity
matrix. α and M l are the eigenvalues and eigenvectors, re-
spectively. Then, we further define each node/edge token (tvi
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Figure 3: The proposed Topology-Aware Pretraining Strategy. It trains the feature extractor with an instance-level nuclei clas-
sification loss and two pixel-level auxiliary losses. The model weights of the trained feature extractor are then used to initialize
the feature extractor in training the proposed cell graph transformer.

/ ted) using node/edge visual feature, link and token makers:

tvi = [σ1([z
v
i , ρi]), σ3([mi,mi]),M

v] , i ∈ {1, · · · , n},
ted = [σ2(z

e
d), σ3([mi,mj ]),M

e] , d ∈ {1, · · · , D},
(2)

where zvi and ρi are the visual and positional embeddings
of the ith node. zed is the visual feature of the dth edge that
connects the ith and jth nodes. [·] denotes the concatenation
operator. σ1, σ2, σ3 are linear projection layers that convert
the dimension of their inputs to the same dimension C. After
computing Eq. (2), we obtain n node tokens and D edge
tokens. Each token is a vector of size 1× 3C.

Inference and Training Scheme
Given the (n+D) tokens, a linear projection layer converts
each of these tokens into a C-dimensional vector separately.
The resulting (n + D) vectors are then fed into the trans-
former encoder. We employ the standard transformer archi-
tecture (Vaswani et al. 2017) for each transformer layer in
the encoder. Each layer is composed of a stack of multi-head
self-attention layers and a feed-forward network. To classify
the categories of n nodes, we only select the first n features
O ∈ Rn×C from the output of the CGT encoder and send
these features into the classification layer. The classification
layer is built of a fully-connected (FC) layer and a Softmax
function: P = Softmax(σ(O)).

Before training the CGT encoder, we pretrain the fea-
ture extractor using our proposed topology-aware strategy
described in the next subsection. In the training stage, the
feature extractor is also fine-tuned with the transformer en-
coder synchronously. The classification loss of each nucleus
node has a cross-entropy term and a focal loss term, and is
defined as:

L(P, y) = −
B∑

b=1

yb logPb −
B∑

b=1

τb(1− Pb)
γyb logPb,

(3)
where γ is a hyper-parameter set to 2, B is the number of
categories, y is the true label, P is the prediction and τb is
the loss weight computed as the reciprocal of the proportion
of the bth class in the training set.

Topology-Aware Pretraining Strategy
In the proposed CGT, we find that the initial visual features
of nodes/edges play a crucial role in model training. At the

early training stage, if visual features are not well initialized,
computing correlations of all pairs of node/edge tokens may
produce unreliable attention, bringing noise into the CGT
training. Graph convolutional network (GCNs) and Trans-
formers have their own strengths in modeling graph data.
GCNs excel at capturing local structural information and
propagating it across the graph. We consider that the mes-
sage passing in GCNs is locally guided by fixed edges and
is more robust at the start of training. Thus, we propose a
pretraining strategy that employs a GCN to help learn the
feature extractor in advance. After that, the cell graph trans-
former is initialized with the GCN-guided representations,
which can help the transformer converge faster and improve
the final classification performance.

As shown in Fig. 3, the proposed pretraining strategy
trains a feature extractor with an instance-level nuclei clas-
sification loss and two auxiliary pixel-level losses (including
the Dice and Cross-entropy losses). The auxiliary losses are
for semantic segmentation, and the segmentation result is
predicted from the last layer of the feature extractor. Note
that these two segmentation losses aim at learning the fea-
ture extractor instead of producing nucleus masks. The seg-
mentation mask of nuclei is obtained via an existing segmen-
tation tool as shown in Fig. 2. To compute the instance-level
loss in Fig. 3, the second-last layer of the feature extrac-
tor yields a feature map to build the node/edge features of a
GCN (Li et al. 2021). The cell graph, the edges and their fea-
tures are defined as the same as those in our proposed CGT.
For nuclei segmentation and classification datasets (Gamper
et al. 2020; Graham et al. 2021), we define the node fea-
tures to exploit the segmentation masks, following Wei et
al. (2023). After that, both the node and edge features are in-
put to the GCN for node update. The enhanced node embed-
dings are fed into a linear classifier to predict nucleus types.
The instance-level nuclei classification loss is the same as
Eq. (3), by viewing P as the GCN prediction. In the pre-
training, the feature extractor and the GCN are end-to-end
tuned.

Experiments
Datasets. We utilize four nuclei classification datasets: Pan-
Nuke (Gamper et al. 2020), Lizard (Graham et al. 2021),
NuCLS (Amgad et al. 2022), and BRCA-M2C (Abousamra
et al. 2021). PanNuke, Lizard and NuCLS have the seg-
mentation masks of nuclei, while BRCA-M2C only pro-
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Method PanNuke NuCLS
AJI PQ Fd F i F c F d F ep Fne Favg AJI PQ Fd F t F st F s F o Favg

MCSPat - - 0.786 0.484 0.473 0.220 0.612 0.629 0.514 - - 0.658 0.488 0.267 0.581 0.035 0.343
Mask2former 0.616 0.666 0.792 0.400 0.426 0.289 0.668 0.617 0.480 0.229 0.331 0.432 0.367 0.098 0.521 0.000 0.247

SONNET 0.686 0.649 0.813 0.522 0.474 0.367 0.639 0.604 0.521 0.332 0.403 0.458 0.461 0.181 0.547 0.000 0.330
NCCD - - 0.800 0.571 0.525 0.354 0.660 0.588 0.539 - - - - - - - -
Hover. 0.663 0.631 0.793 0.510 0.478 0.265 0.627 0.636 0.503 0.467 0.429 0.662 0.469 0.272 0.586 0.023 0.337

Ours+Hover. 0.663 0.631 0.793 0.527 0.531 0.358 0.705 0.673 0.558 0.467 0.429 0.662 0.501 0.300 0.593 0.095 0.377
Ours+GT - - - 0.618 0.661 0.452 0.741 0.806 0.656 - - - 0.785 0.466 0.733 0.123 0.527

Table 1: Comparison with the state-of-the-art methods on PanNuke and NuCLS datasets. The best classification results are in
bold. ‘Hover.’ and ‘MCSPat’ denotes Hover-net and MCSPatnet. ‘Ours+Hover.’ and ‘Ours+GT’ denote our CGT framework
using the segmentation masks from a trained Hover-net model or ground truth.

Method Lizard Method BRCA-M2C
AJI PQ Fd Fne F ep F l F p F e F c Favg Fd F i F ep F s Favg

MCSPat. - - 0.705 0.110 0.604 0.457 0.228 0.210 0.478 0.347 DDOD 0.585 0.379 0.540 0.156 0.359
Mask2former 0.385 0.297 0.603 0.036 0.469 0.367 0.148 0.268 0.275 0.313 YOLOX 0.638 0.439 0.502 0.170 0.370

SONNET 0.434 0.447 0.597 0.197 0.610 0.322 0.328 0.402 0.421 0.380 ConvN.Uper. 0.785 0.423 0.636 0.353 0.471
NCCD - - 0.633 0.378 0.423 0.404 0.471 0.461 0.534 0.445 DINO 0.633 0.403 0.631 0.213 0.416
Hover. 0.463 0.460 0.732 0.221 0.693 0.447 0.369 0.387 0.493 0.435 MCSPat. 0.831 0.422 0.683 0.417 0.507

Ours+Hover. 0.463 0.460 0.732 0.302 0.724 0.438 0.434 0.416 0.548 0.477 Ours+MCSPat 0.831 0.447 0.732 0.428 0.536
Ours+GT - - - 0.508 0.868 0.543 0.537 0.585 0.678 0.620 Ours+GT. - 0.598 0.869 0.602 0.690

Table 2: Comparison with the state-of-the-art methods on Lizard and BRCA-M2C datasets. ‘ConvNUper.’ denotes the
ConvNext-UperNet. Since the BRCA-M2C is a nuclei detection and classification benchmark, several nuclei detection and
classification methods are utilized for comparison. The best classification results are in bold.

vides centroid annotations for nuclei detection and classi-
fication. The PanNuke dataset comprises 7901 images with
a size of 256× 256 from 19 organs, which includes the cell
types of inflammatory, connective, dead, epithelial, and neo-
plastic. The Lizard benchmark consists of 291 large images
with an average size of 1016 × 917, which is composed of
six existing datasets: ConSeP (Graham et al. 2019), CRAG,
GLAS (Sirinukunwattana et al. 2017), DigestPath, TCGA
(Grossman et al. 2016), and PanNuke. Lizard contains the
nucleus types of epithelial, lymphocyte, plasma, neutrophil,
eosinophil, and connective. The NuCLS dataset has 1744
image patches that are grouped into four superclasses: tu-
mor, stromal, sTILs, and other. The BRCA-M2C dataset in-
cludes 120 image patches collected from TCGA, has the cell
types of inflammatory, epithelial, and stromal. The data split
and more details are in the supplementary material.
Implementation details. The implementation is based on
PyTorch (Paszke et al. 2017) and PyTorch Geometric library
(Fey and Lenssen 2019). For the proposed CGT, the encoder
and decoder of the feature extractor have four layers and
three layers, respectively. The CGT encoder contains four
transformer layers. For the pretraining strategy, the GCN is
built of two GENConv (Li et al. 2020) layers. Our results
are reported as the average result of training with three dif-
ferent random seeds. The dimensions of type markers and
link markers are 64 and 16. The number of edges of each
node is 4. The pretraining strategy and the training of CGT
are run for 150 and 50 epochs, respectively, with the Adam
optimizer in an NVIDIA A-100 GPU. The initial learning
rates for pretraining and training are 10−4 and 10−5, respec-

tively. The overall training time is 2 days for each dataset.
Metrics. We utilize F-score (Graham et al. 2019) for eval-
uating classification performance. F i, F c, F d, F ep, Fne,
F t, F st, F s, F o, Fn, F l, F p, F e denote the class-wise
F-score for inflammatory, connective, dead, epithelial, neo-
plastic, tumor, stromal, sTIL, other, neutrophil, lymphocyte,
plasma, eosinophil, respectively. Favg denotes the average
F-score for all classes in the same dataset. For evaluating
segmentation and detection, we adopt Aggregated Jaccard
Index (AJI) (Mahmood et al. 2019), Panoptic Quality (PQ)
(Kirillov et al. 2019), and Detection Quality (Fd) (Graham
et al. 2019).

Comparison with the State-of-the-art Methods
For PanNuke, Lizard and NuCLS datasets, the proposed
CGT is compared with existing methods: Hover-net (Gra-
ham et al. 2019), MCSPatnet (Abousamra et al. 2021), SON-
NET (Doan et al. 2022), Mask2former (Cheng et al. 2022),
NCCD (Hassan et al. 2022). Among them, Hover-net, SON-
NET and Mask2former are nuclei segmentation and clas-
sification methods, MCSPatnet is a nuclei detection and
classification method and NCCD is a pure nuclei classifi-
cation method. For BRCA-M2C dataset, we compare the
proposed method with nuclei detection and classification
methods: DDOD (Chen et al. 2021), YOLOX (Ge et al.
2021), ConvNext-UperNet (Liu et al. 2022b), MCSPatnet
(Abousamra et al. 2021) and DINO (Zhang et al. 2022). In
Table 1 & 2, ‘Ours+Hover-net’ or ‘Ours+MCSpat’ indicates
that our CGT utilizes Hover-net or MCSPatNet to gener-
ate nuclei segmentation or detection results, without using
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Models Initializing Feature Extractor Classifier F i F c F d F ep Fne Favg

M1 UNet ImageNet pretrained Linear 0.510 0.463 0.065 0.668 0.000 0.341
M2 UNet ImageNet pretrained Transformer 0.456 0.381 0.166 0.601 0.614 0.444
M3 UNet ImageNet pretrained GCN 0.513 0.506 0.263 0.674 0.633 0.518
M4 UNet ImageNet pretrained CGToken+Transformer 0.435 0.104 0.057 0.526 0.602 0.344
M5 UNet Linear pretrained CGToken+Transformer 0.518 0.472 0.138 0.674 0.237 0.420
M6 UNet Transformer pretrained CGToken+Transformer 0.484 0.438 0.237 0.634 0.626 0.484
M7 UNet GCN pretrained Transformer 0.525 0.484 0.228 0.672 0.655 0.512

M8 (Ours) UNet GCN pretrained CGToken+Transformer 0.527 0.531 0.358 0.705 0.673 0.558

Table 3: Ablation study on PanNuke dataset. ‘CGToken+Transformer’ is the proposed classifier in our CGT framework. All the
results are based on the official data split of the PanNuke dataset. The best results are in bold.

Method #Para. (M) Infer Time (s) Model Size (Mb)
Hover-net 33.60 1799 144

Ours 37.43 447 465

Table 4: Computational efficiency on whole slide images.
Inference time is measured as the average time of inferring
ten whole slide images.

the predictions of cell types. The numerical results of SON-
NET and NCCD are collected from their papers. As Table 1
shows, our proposed method ‘Ours+Hover-net’ outperforms
the second best models by 1.9%, 3.4% and 3.2% in Favg on
PanNuke, NuCLS and Lizard, respectively. ‘Ours+MCSPat.’
surpasses the second-best model by 2.9% in Favg on the
BRCA-M2C dataset. Figure 4 presents a visual comparison
between our proposed CGT and Hover-net on two datasets.
Both methods employ the same segmentation masks, but our
method shows more accurate classification results of nuclei.
More visual results can be found in the appendix.
Effectiveness and Generalization of CGT. Note that the
segmentation tools used in our CGT can also produce clas-
sification results. Thus, the CGT is compared with them to
show its strength. Comparing ‘Ours+Hover’ with Hover-net
suggests that the CGT brings a significant improvement of
1.9%-3.4% in the average F-score on three benchmarks. Im-
portantly, on the BRCA-M2C dataset, the proposed CGT
also boosts MCSPatNet by 2.9% in Favg to achieve the state-
of-the-art performance. The improvements with two differ-
ent segmentation/detection tools verify the generalization of
our CGT framework.

In Table 1 & 2, ‘Ours+GT’ means that our CGT accesses
the ground truth of binary segmentation in the testing. It
shows that with more accurate nuclei centroids, our CGT can
produce better classification results. We claim that the pro-
posed cell graph transformer is a flexible framework that can
infer cell types with various segmentation/detection models
or manual annotations.
Computational efficiency of CGT. Table 4 displays the ef-
ficiency comparison between our proposed CGT and Hover-
net. To evaluate the feasibility of real-world applications
of CGT, we assessed the average parameter count (#Para),
inference time (Infer Time), and model size on ten whole
slide images (WSIs). These WSIs have an average size of

36210×71309. ‘Ours’ in Table 4 measures our method with-
out including the segmentation tool. Our method increases
400+ MB storage and 25% inference time when cooperat-
ing with existing segmentation methods, which is acceptable
considering the low cost of the hard disk and the significant
improvement of performance.

Ablation Study
In Table 3, we assess the strengths of CGT and the proposed
Topology-Aware Pretraining (TAP) strategy. In the testing
stage, all models adopt the binary segmentation masks gen-
erated by the same Hover-net. ‘UNet’ denotes the feature
extractor in CGT. ‘UNet ImageNet pretrained’ is to initial
the UNet with the ImageNet-1K pretrained weights. ‘Lin-
ear’, ‘Transformer’, ‘GCN’ and ‘CGToken+Transformer’
denote four classifiers: a linear embedding layer, a vanilla
transformer without graph structure, a graph convolutional
network and our proposed cell graph tokenization with a
transformer encoder, respectively. For example, UNet Lin-
ear/Transformer/GCN pretrained means using Linear/Trans-
former/GCN as the classifier to pretrain the UNet for initial-
ization. Our method is denoted as M8 where ‘UNet GCN
pretrained’ represents the TAP strategy.
Effectiveness of the proposed pretraining. To validate the
proposed pretraining strategy, we compare M8 with M4-M6
and find that M8 using the TAP strategy significantly outper-
forms M4-M6 by 21%, 13% and 7.4% in Favg , respectively.
The above results suggest that the TAP strategy using GCN
is more effective than the simple ImageNet-pretraining, the
pretraining guided by a linear layer and a vanilla trans-
former. We claim that it is because the TAP strategy makes
the visual features aware of the graph connections and better
adapt to our proposed CGT classifier.
Effectiveness of the CGT classifier. Comparing M8 to M7
suggests that our proposed classifier built of cell graph to-
kenization and transformer encoder surpasses the vanilla
transformer classifier without graph modeling by 4.6% in
Favg . Comparing M5 to M1 and M8 to M3 shows that our
proposed CGT classifier can outperform the linear and the
GCN classifier by 7.9% and 4% in Favg . Besides, M1-M3
can be viewed as the combinations of the existing initial-
ization and classifiers, and our overall method M8 exceeds
these solutions by 4%-21% in Favg .
Investigation of Hyper-parameters. In Figure 5, we study
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Figure 4: Visual comparison of the proposed CGT with Hover-net on PanNuKe (left) and NuCLS (right) datasets. GT denotes
the ground truth.

Figure 5: Analysis of different choices for layer num-
ber (L ∈ {1, 2, 3, 4}) in CGT and edge number (E ∈
{4, 8, 16, 32}) in GCN (the topology-aware pretraining) on
PanNuke dataset.

the number of transformer layers L of the CGT encoder on
PanNuke dataset. If we set L from 1 to 4, the average F-
score first decrease by 0.6% and then increases by 0.4% and
1.5%. The results indicate that the performance is improved
slightly with increasing transformer layers. Due to the GPU
memory limitation, we do not test for larger layer numbers.
The idea of our pretraining is that too dense connections
with inferior features could result in unreasonable correla-
tions and message passing, which affects the CGT training.
In contrast, the GCN using a sparse graph is more robust. To
verify the above idea, we use a denser graph for GCN-based
pretraining by increasing edge number E. In Figure 5, as E
increases from 4 to 8 and 32, the average F-score of GCN
does drop by 1.2% and 4.8%, which validates our assump-
tion.

Discussion
CGT vs. Transformer. The proposed CGT differs from
vanilla transformers that compute correlations and pass mes-
sages between each pair of nodes equally. In contrast, the
CGT defines edge features to describe pathological microen-

vironment and exploits link & token markers to learn con-
nections which emphasizes the attention between relevant
cells. In Table 3, the CGT (M8) outperforms the vanilla
transformer (M7/M2) by 4.6%-11% in Favg , which indi-
cates that the proposed CGT better models the cells and their
interactions in pathological images than the vanilla trans-
formers.
GCN pretraining vs. Transformer pretraining. We dis-
cuss why the pretraining with GCN as classifier (M8 in Ta-
ble 3) is better than the one with vanilla transformer (M6).
The GCN-pretraining adopts a sparse graph where the well-
defined connections could guide the reasonable propagation
of information. During the GCN-pretraining, the feature ex-
tractor is tuned by the gradients that are computed based on
the well-defined edges and can adapt to the topology of cell
graphs. However, in the transformer-pretraining, the gradi-
ents passed through the feature extractor are calculated from
any pairs of nodes, even those that are irrelevant. Thus, the
gradients in transformer-pretraining are more noisy and un-
reliable than those in GCN-pretraining, at the start of train-
ing.

Conclusion

In this paper, a cell graph transformer (CGT) framework is
proposed for identifying cell types with detected nucleus
centroids. Our method embraces the transformer as a cell
graph learner to fully exploit contexts and learn topologi-
cal features. Both cell nodes and edges are viewed as input
tokens to capture long-range correlations. The graph struc-
ture is embedded into the transformer encoder via link mark-
ers and token markers. Furthermore, we develop a novel
topology-aware pretraining strategy that employs the robust
local message-passing mechanism of graph convolutional
networks to help pretrain the feature extractor of CGT. The
experimental results display that the CGT model achieves
the state-of-the-art nuclei classification performance on ex-
isting benchmarks.
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