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Abstract
Recent research has shown significant interest in image-based
glass surface detection (GSD). However, detecting glass sur-
faces in dynamic scenes remains largely unexplored due to
the lack of a high-quality dataset and an effective video glass
surface detection (VGSD) method. In this paper, we propose
the first VGSD approach. Our key observation is that reflec-
tions frequently appear on glass surfaces, but they change dy-
namically as the camera moves. Based on this observation,
we propose to offset the excessive dependence on a single un-
certainty reflection via joint modeling of temporal and spatial
reflection cues. To this end, we propose the VGSD-Net with
two novel modules: a Location-aware Reflection Extraction
(LRE) module and a Context-enhanced Reflection Integration
(CRI) module, for the position-aware reflection feature ex-
traction and the spatial-temporal reflection cues integration,
respectively. We have also created the first large-scale video
glass surface dataset (VGSD-D), consisting of 19,166 im-
age frames with accurately-annotated glass masks extracted
from 297 videos. Extensive experiments demonstrate that
VGSD-Net outperforms state-of-the-art approaches adapted
from related fields. Code and dataset will be available at
https://github.com/fawnliu/VGSD.

Introduction
Glass surfaces, including glass windows / walls / doors, per-
vade our everyday lives. Their existence significantly im-
pacts various computer vision tasks, such as depth estima-
tion (Bhat, Alhashim, and Wonka 2021), 3D scene under-
standing (Ye et al. 2021, 2022b,a), and vision-language nav-
igation (Anderson et al. 2018; Liu et al. 2023b,a). For ex-
ample, undetected glass surfaces could lead to mishaps like
the crashing of drones and robots onto them. Thus, detecting
glass surfaces is an essential prerequisite for enhancing the
scene-understanding capabilities of vision systems.

Mei et al. (Mei et al. 2020) proposes the first image-
based glass surface detection method and utilizes the con-
trasted features to localize the glass regions. Subsequent
works leverage various priors for glass surface detection, in-
cluding boundary (He et al. 2021), reflection (Lin, He, and
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Figure 1: Comparison of our VGSD-Net with the state-of-
the-art image-based glass detection methods, GlassNet (Lin,
He, and Lau 2021) and PGSNet (Yu et al. 2022). They
produce temporal-inconsistent results when applied to the
VGSD task, as they do not exploit any temporal informa-
tion. In contrast, our method learns dynamic reflection cues
from the video, yielding more accurate and robust results.

Lau 2021), and context (Yu et al. 2022). Despite their suc-
cess, none of them are tailored for video-based glass surface
detection. On the other hand, real-world computer vision ap-
plications such as autonomous driving and robotic naviga-
tion are video-centric rather than image-centric. Effectively
addressing the Video Glass Surface Detection (VGSD) prob-
lem can offer substantial benefits to them.

There are two main challenges for handling the VGSD
problem. First, as existing glass detection methods are pre-
dominantly designed for single-image input, their priors/as-
sumptions may not hold true in dynamic scenes. As shown
in Fig. 1, GlassNet (Lin, He, and Lau 2021) fails to detect
glass surfaces in the third frame as they do not explore tem-
poral reflections, and the insufficient contexts (e.g., the top-
left region of the bottom image) fail PGSNet (Yu et al. 2022)
to produce complete glass maps. Second, there are currently
no datasets available for the VGSD problem.

In this paper, we aim to address the above two challenges.
First, we observe that glass surfaces often contain reflections
that exhibit a dynamic behavior across multiple frames of
the input video (i.e., the location and appearance of reflec-
tions on the glass surface change dynamically, as the camera
moves). Inspired by this observation, we propose a novel ap-
proach, named VGSD-Net, which integrates multi-view dy-
namic reflections across multiple frames for VGSD. VGSD-
Net contains two novel modules: a Location-aware Reflec-
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tion Extraction (LRE) module and a Context-enhanced Re-
flection Integration (CRI) module. The LRE module utilizes
a masked deformable attention mechanism to extract local-
ized reflection features, which can prompt deformable at-
tention with position awareness. We then feed the reflection
features from different frames to the CRI module to exploit
multi-view dynamic reflection cues spatially and temporally.
While the reflection may vary in intensity in some regions of
single frames (e.g., the region inside the red box in Fig. 1),
our approach can still identify the whole glass surfaces accu-
rately due to the effective incorporation of spatial and tem-
poral reflection cues across frames.

Second, we build the first large-scale video glass surface
detection dataset (VGSD-D). It contains 297 videos (last-
ing 575 seconds in total) with 19,166 image frames, all of
which are carefully annotated with corresponding glass sur-
face masks. We have conducted extensive experiments on
our dataset to evaluate the performance of the proposed ap-
proach. Results show that our method outperforms 17 state-
of-the-art methods in related tasks.

The key contributions of this work can be summarized as:
• We propose the first video glass surface detection

method, VGSD-Net, to exploit dynamic reflection cues
for video glass surface detection. It has a novel Location-
aware Reflection Extraction (LRE) module to restrict
the deformable attention to localized features surround-
ing the predicted glass regions, and a novel Context-
enhanced Reflection Integration (CRI) module to incor-
porate spatial-temporal reflection cues across frames.

• We construct the first large-scale video glass surface de-
tection dataset, VGSD-D, which contains 19,166 image
frames from 297 videos with corresponding manually an-
notated glass surface masks.

• Extensive evaluations show that our method outperforms
17 existing state-of-the-art methods from relevant tasks
on our proposed VGSD-D dataset.

Related Work
Glass Detection. Mei et al. (Mei et al. 2020) propose the
first glass detection dataset for glass surface detection. Lin et
al. (Lin, He, and Lau 2021) further introduce a more chal-
lenging glass surface dataset, and exploit glass reflections to
refine the glass regions. Later, Lin et al. (Lin, Yeung, and
Lau 2022b) propose the first large-scale RGB-D dataset for
glass surface detection. Mei et al. (Mei et al. 2022) integrate
polarization cues for glass segmentation and create a new
RGB-Polarization dataset. Lin et al. (Lin, Yeung, and Lau
2022a) utilize the semantic feature extractor to exploit the
semantic relationship between glass and non-glass regions,
enhancing the glass detection in single-image.

LiDAR-based methodologies for detecting glass surfaces
have been explored, albeit with inherent challenges. In gen-
eral, LiDAR alone cannot be used to detect glass surfaces,
as laser beams will pass through glass. To address this lim-
itation, Yang et al. (Yang and Wang 2008) propose to in-
tegrate LiDAR with ultrasonic sensors. Glass surfaces can
be detected by comparing the returned signals from the two
sensors. However, as ultrasonic sensors have low sampling

rates, they cannot be used to handle 3D scenes at video rates.
Tibebu et al. (Tibebu et al. 2021) propose an alternative
approach, using variations in range measurements across
neighboring point clouds to identify glass surfaces.

A related task of transparent object detection also raises
considerable attention. Several methods explore diverse
techniques such as quantized local features (Fritz et al.
2009), depth cues (Guo-Hua, Jun-Yi, and Ai-Jun 2019), po-
larization information (Kalra et al. 2020), trimap cues (Liu
et al. 2021a,b). Instead of relying on additional inputs, Xie et
al. (Xie et al. 2020) propose a boundary-aware segmenta-
tion network that directly operates on the RGB image to de-
tect transparent objects, and build a new transparent object
dataset. He et al. (He et al. 2021) further propose to learn
enhanced boundary cues via a refined differential module.

In contrast to existing methods that primarily address
image-based glass detection, our work tackles the more chal-
lenging VGSD problem. The concurrent work (Qiao et al.
2023) needs polarization information as additional input,
limiting its application in new scenes (e.g., polarization cues
are unavailable). In our work, we propose to leverage multi-
view dynamic reflection cues extracted from the video to
detect glass surfaces. To facilitate our research, we also con-
struct a comprehensive and large-scale VGSD dataset.

Mirror Detection. Yang et al. (Yang et al. 2019) propose
first mirror detection dataset and detect mirrors by model-
ing contrasted information. Subsequent approaches expand
on this by exploiting various information for mirror detec-
tion, such as correspondence (Lin, Wang, and Lau 2020),
depths (Mei et al. 2021; Tan et al. 2021), semantics (Guan,
Lin, and Lau 2022), chirality cue (Tan et al. 2022), con-
text (Yu et al. 2022) and symmetry (Huang et al. 2023).
Recent works further address this problem from a learning-
based perspective, such as efficiency (He, Lin, and Lau
2023) and self-supervised learning (Lin and Lau 2023).
Most recently, Lin et al. (Lin, Tan, and Lau 2023) build the
first video mirror detection dataset, and also develop the first
video mirror detection network.

Unlike mirrors, which only reflect the scene, glass sur-
faces produce dual images (i.e., a reflected image from the
scene in front of the glass and a transmitted image from the
scene behind the glass). This complexity can cause existing
mirror detection methods to misinterpret the visual informa-
tion from glass surfaces.

Video-based Salient Object Detection (VSOD) aims to
segment the salient foreground objects from the background
in the entire video. Early methods (Wei et al. 2012; Wang,
Shen, and Porikli 2015) rely on hand-crafted features to
detect and segment salient objects in the video. Wang et
al. (Wang, Shen, and Shao 2017) pioneer the application of
deep learning to VSOD. Gu et al. (Gu et al. 2020) further de-
sign a pyramid-constrained self-attention module for direct
temporal information modeling. Zhang et al. (Zhang et al.
2021) use dynamic filters to model interactions between
consecutive frames. Optical flow, as a time-continuous prior,
is also introduced in several optical flow-centric VSOD
methods (Li et al. 2019; Su et al. 2023).

However, as glass may not necessarily be salient, these
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Figure 2: The schematic illustration of our method. With
two consecutive frames, It, It+1, with t ∈ {1, 2, · · · , N}
and one randomly selected frame In, the proposed method
first extract their multi-scale visual features via a shared en-
coder. Then, we employ the Location-aware Reflection Ex-
traction (LRE) module to extract localized reflection fea-
tures for each frame, which are then spatially and temporally
integrated via the Context-enhanced Reflection Integration
(CRI) module, to form the enhanced features for each frame.
One shared decoder is finally utilized to output the predicted
glass masks, Mf

t , Mf
t+1, Mf

n. We leverage reflections as the
auxiliary output (i.e., Rt, Rt+1, Rn) to enhance the overall
efficiency of the glass detection process.

VSOD methods cannot be used to solve the VGSD problem.

Method
Overview
Our key observation is that while reflections frequently ap-
pear on glass surfaces, they display dynamic behavior in
the video, with the location and appearance of the reflec-
tions changing as the camera position shifts. This observa-
tion motivates us to exploit multi-view dynamic reflections
for learning a more robust reflection-based glass surface rep-
resentation for video glass surface detection.

Fig. 2 illustrates the overall structure of the proposed
VGSD-Net. Given three glass images as inputs, with the first
two images (It and It+1) taken from adjacent frames, and
the third image In randomly selected from other frames in
the same video, we first extract their multi-scale visual fea-
tures {F1

i , ...,F
5
i}, i ∈ {t, t + 1, n} via a shared encoder.

Subsequently, low-level features F1
i and high-level features

F5
i are fed into the mask head for intermediate mask pre-

diction Mc
i . F1

i , F5
i and Mc

i are combined with the input
frame Ii to extract localized reflection features through the
Location-aware Reflection Extraction (LRE) module. The
extracted reflection features across all frames are then sent
into the proposed Context-enhanced Reflection Integration
(CRI) module, to facilitate the cross-frame information ex-
change and integration. Finally, these refined features, com-
bined with multi-level visual features, are sent to the shared
decoder to predict both reflection and glass surface mask for
each frame.
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Figure 3: Illustration of the Location-aware Reflection Ex-
traction (LRE) module. The position map Mc is explicitly
introduced into the masked deformable attention (MDA) to
drive the model to focus on the glass-related reflections.

Location-aware Reflection Extraction Module
Reflections may appear on both glass and non-glass sur-
faces (e.g., smooth walls or floors), while those in non-
glass regions can be highly distracting to glass surface de-
tection. Hence, understanding the position information is
crucial, and directly applying the position-unaware auto-
encoder (Lin, He, and Lau 2021) for reflection capture does
not work well, as validated in Table 2. To this end, we ex-
plore position-aware deformable attention for extracting lo-
calized reflection features.

Fig. 3 shows the architecture of the LRE module, which
leverages the masked deformable attention mechanism (i.e.,
MDA) to extract localized reflection features. Specifically,
MDA takes the feature map X ∈ RH×W×C and the pre-
dicted intermediate glass mask Mc ∈ RH×W from the mask
head as inputs. It first divides the X into multiple S×S non-
overlapping sub-windows, denoted as Xs ∈ RS2×HW

S2 ×C ,
and utilize three linear projection layers1 to transform it to
query, key and value tensors, Q, K and V. Then, we con-
duct informative regions selection to pick the most infor-
mative regions and eliminate those sub-windows that are all
non-glass within the local regions. We apply average pooling
within each sub-window to Q and K to obtain region-level
query and key, Qr,Kr ∈ RS2×C , and compute the region-
to-region affinity matrix Ar = Qr(Kr)⊤ ∈ RS2×S2

. The
row-wise ranking (Zhu et al. 2023) on the Ar is performed
to select the top k most relevant sub-windows for each sub-
window in K and V, and obtain Kt,Vt ∈ RS2× kHW

S2 ×C .
The query features Q, along with the selected key and value
features Kt and Vt, are then used to form the MDA2:

MDA(X,P) = softmax(Q(Kt)⊤ +P)Vt, (1)
where the P is the position map and can be obtained by:

P(x, y) =

{
0 if Mc(x, y) = 1,
−∞ otherwise, (2)

We then encapsulate the MDA into the transformer block to
form the masked deformable block:

X̃ = MDA(LN(X),Mc) +X, (3)

F̃ = MLP(LN(X̃)) + X̃, (4)
1No dim. reduction and the shape of Q,K,V, are same as the Xs.
2Note that since the LRE will process all frames, all subscripts

are omitted in this subsection for simplicity.
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Figure 4: Overview of the proposed Context-enhanced Re-
flection Integration (CRI) module. The features of differ-
ent frames undergo enhancement via a Contextual Feature
Aggregation (CFA) operation, and are then combined and
directed to the temporal and spatial transformer blocks for
inter-frame information exchange and integration.

where LN and MLP denote the Layer Normalization and
Multi-Layer Perception. X is the concatenation of the input
frame I, low-level features F1 and high-level features F5. In
this way, the most informative neighboring glass regions are
selected and the model can be prompted to focus on them.

Context-enhanced Reflection Integration Module
Despite the incorporation of localized reliable reflection fea-
tures within the LRE module, reflections from discontinuous
glass regions are often under-detected. This phenomenon
is more noticeable across frames. To this end, we propose
the Context-enhanced Reflection Integration (CRI) module,
which has a CFA for contextual contrasts enrichment, a TTB
for temporal reflection feature aggregation, and an STB for
spatial reflection feature aggregation.

As shown in Fig. 4, the three input reflection feature maps
are independently fed to the Contextual Feature Aggregation
(CFA) to extract multi-scale contrast contextual semantics,
which can facilitate the model to learn the contrast informa-
tion between glass and non-glass regions. Here, we take the
F̃t as an example of how CFA works:

F̃c
t = CFA(F̃t) = [CE2(F̃t), CE4(F̃t), CE8(F̃t)], (5)

where the [·] is the concatenation operation, followed by a
convolution layer with the kernel size of 3×3 for dimen-
sion reduction. CEr(·) represents the contrast-enhancement
mechanism (Ding et al. 2018) with a convolution dilation
rate of r, with:

CEr(F̃t) = fl(F̃t)− fr(F̃t), (6)

where the f(·) represents the feature extraction unit that con-
sists of a convolution layer with the kernel size of 3×3, a
batch normalization, and a ReLU layer. l = 1 and r indi-
cate dilation rate in f(·). In our method, we resort to the
multi-scale parallel dilation mechanism (i.e., r ∈ {2, 4, 8})
to merge the reflection features of glasses of different dis-
tances and sizes in the surrounding regions.

With the contextual-enhanced reflection features
F̃c

t , F̃c
t+1, F̃c

n extracted from the CFA, we first concatenate
them to form a new feature F ∈ RT×Cf×Hf×Wf , where Cf ,
Hf , and Wf represent the channels, height, and width of F,

respectively, and T denotes the number of frames, set to 3
by default. F is reshaped to FT ∈ R(Hf×Wf )×T×Cf and fed
to the Temporal Transformer Block (TTB) for inter-frame
temporal information integration. The temporal-enhanced
features are also reshaped to FS ∈ RT×(Hf×Wf )×Cf and
fed to the Spatial Transformer Block (STB) for further
inter-frame spatial information integration. The workflow is
as follows:

F̃ts
t , F̃ts

t+1, F̃ts
n = STB(TTB(F̃c

t , F̃c
t+1, F̃c

n)). (7)

TTB and STB share the same structure (i.e., a vision trans-
former block (Dosovitskiy et al. 2020)), but are applied to
different input dimensions. In this way, both reliable lo-
cal features of the LRE and weakly responsive features
from discontinuous glass regions are enhanced by temporal-
spatial inter-frame feature integration.

Loss Function
We train our network with two loss items: the glass sur-
face supervision term and the auxiliary reflection supervi-
sion term. The total loss L can be written as:

L =
∑

i∈{t, t+1, n}

(
∑

j∈{c, f}

Lmask(M
j
i , M∗

i )+Lref (Ri, R∗
i )),

(8)
where Mc

i and Mf
i are predicted intermediate and final glass

masks. Ri is the predicted reflection map. M∗
i and R∗

i de-
note the ground truth glass masks and reflections. We adopt
the pixel position-aware loss (Wei, Wang, and Huang 2020)
as the mask loss Lmask. For the reflection loss, we employ
the reflection removal method (Dong et al. 2021) to generate
pseudo-GT reflection maps, and Lref is:

Lref (Ri, R∗
i ) = Lmse(Ri, R∗

i ⊙P∗
i ) + Lpen(Ri, P∗

i ),
(9)

where ⊙ denotes element-wise multiplication. Lmse is stan-
dard MSE loss. Lpen is a penalty item to constrain the re-
flection regions to exist within the glass regions only, as:

Lpen(Ri, P∗
i ) = ||Ri ⊙P∗

i −Ri||2. (10)

Video Glass Surface Detection Dataset
To facilitate the learning of the video glass surface detec-
tion problem, we build the first large-scale video glass sur-
face detection dataset, named VGSD-D. It includes 19,166
image frames from 297 videos with diverse scenes, where
all frames are carefully annotated with the corresponding
masks. Some example video frames are shown in Fig. 5.

Dataset Construction
We use smartphones to collect the majority of videos with
glass surfaces in diverse daily-life scenes (e.g., office, class-
room, mall), and we also collect another four video clips
from the existing VSOD datasets (Perazzi et al. 2016; Xu
et al. 2018). After collecting all videos, we manually trim
the videos to make sure that each frame has at least one
glass region. Then, we can obtain 297 video sequences with
19,166 image frames and 575 seconds of duration, where all
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Figure 5: Visual display (left: frames; right: masks) of several examples of proposed Video Glass Surface Detection dataset.

Dataset #Videos #Labeled Frames Time (s). Max Reso.

GSD - 4012 - 3456×4608
GSDS - 4519 - 1024×1280

DAVIS 50 3455 144 1920×1080
VOS 200 7467 3870 800×800
DAVSOD 226 23,938 798 360×640

Visha 120 11,685 390 1280×720

VMD 269 15,066 502 1920×1080

Ours 297 19,166 575 1920×1080

Table 1: Statistical comparison between the dataset for rele-
vant tasks and our proposed VGSD-D dataset.

frames are carefully annotated with corresponding ground
truth glass surface masks by professional annotators. They
are randomly divided into a training set (12,315 frames
from 192 videos) and a testing set (6,851 frames from 105
videos). The frame rate is 30 fps for all video sequences.

Dataset Analysis
Table 1 summarizes our VGSD-D statistics compared to
prior datasets from the relevant areas, including image-
based glass detection (GSD (Lin, He, and Lau 2021) and
GSDS (Lin, Yeung, and Lau 2022a)), salient video object
detection (DAVIS (Perazzi et al. 2016), VOS (Li, Xia, and
Chen 2017) and DAVSOD (Fan et al. 2019)), video shadow
detection (Visha (Chen et al. 2021)) and video mirror detec-
tion (Lin, Tan, and Lau 2023). Fig. 6 provides a statistical
analysis of the glass surface properties in our dataset.
Area distribution. Fig. 6(a) shows the ratio of glass area
over the image area (glass area distribution). Our dataset
contains mirrors covering a wide range of area ratios, and
most glasses fall in the range of [0.1, 0.8]. Glass fall in the
range of (0, 0.1] corresponds to images wherein the glass
region is relatively small or situated distantly in the back-
ground. Detecting and classifying such glass surfaces could
pose a considerable challenge for models due to potential
distractions from the surrounding context. Conversely, ra-
tios in the range [0.8, 1.0) represent images where the glass
region dominates or entirely occupies the frame. Although
detection in these instances may be less complex, compre-
hending the context of the image could also be a hurdle.
Color contrast distribution. We also analyze the global
color contrast between the glass and non-glass regions by
calculating the χ2 distance between their RGB histograms,
following the approach in (Li et al. 2014). Additionally,

(a) glass area distribution (b) color contrast distribution

Figure 6: Statistics of the constructed VGSD-D dataset.

we compare this color contrast distribution with two ex-
isting image-based glass detection datasets, GSD (Lin, He,
and Lau 2021) and GSDS (Lin, Yeung, and Lau 2022a),
as shown in Fig. 6(b). It demonstrates that VGSD-D has a
higher proportion of images with low color contrasts (<0.4)
than the GSD and GSDS datasets. This results in increased
complexity in detecting glass regions, underscoring the dis-
tinctiveness and challenges of the VGSD-D dataset.

Experiments
Implementation Details and Evaluation Metrics
We build our method using PyTorch toolbox and conduct
all experiments on a Tesla V100 GPU with 32 GB mem-
ory. We adopt the Adam optimizer with a weight decay of
5 × 10−4 and a maximum learning rate of 5 × 10−5. The
cosine learning rate scheduler and warm-up are used to ad-
just the learning rate. The batch size and training epochs are
5 and 15. The input images were randomly flipped horizon-
tally and were resized to 416×416 for network training. We
employ ResNext-101 (Xie et al. 2017) pre-trained on Im-
ageNet as the encoder. We set the number of masked de-
formable blocks in LRE to m = 4. The window size and k
in MDA are empirically set to 7×7 and 4. The mask head
contains two convolution layers with a batch normalization
operation and a Sigmoid activation function.

We adopt four widely used dense prediction evaluation
metrics: Intersection over Union (IoU), pixel accuracy, Bal-
ance Error Rate (BER), and Mean Absolute Error (MAE), to
evaluate the performance of our video glass detection model.

Comparing to the State-of-the-art Methods
We systematically evaluate the efficacy of the proposed
method by comparing it with 17 state-of-the-art meth-
ods from 7 relevant tasks, including salient object de-
tection (GateNet (Zhao et al. 2020), MINet (Pang et al.
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Figure 7: Qualitative comparison of eight state-of-the-art methods from seven relevant tasks and our approach.

Methods Task IoU↑ Accuracy↑ BER↓ MAE↓
GateNet

SOD
0.657 0.806 19.63 0.203

MINet 0.697 0.842 15.69 0.163
ZoomNet 0.741 0.865 13.30 0.138

UFO VSOD 0.634 0.745 22.43 0.254

DeepLab
SS

0.705 0.845 16.67 0.155
Segformer 0.744 0.855 13.50 0.145
SAM 0.710 0.832 15.15 0.172

TVSD VSD 0.728 0.860 13.52 0.140
SC-Cor 0.765 0.875 12.15 0.125

MirrorNet
MD

0.740 0.863 13.44 0.200
PMDNet 0.765 0.879 11.47 0.181
VCNet 0.751 0.873 12.17 0.168

VMD VMD 0.763 0.878 12.44 0.123

GDNet

GSD

0.735 0.858 13.18 0.172
EBLNet 0.764 0.868 13.25 0.134
GlassNet 0.762 0.877 12.02 0.187
PGSNet 0.703 0.846 15.11 0.156

Ours 0.802 0.899 9.54 0.099

Table 2: Quantitative comparisons of our method with 17
relevant methods from 7 relevant tasks. Best results are
shown in bold.

2020), ZoomNet (Pang et al. 2022)), video salient ob-
ject detection (UFO (Su et al. 2023)), semantic segmen-
tation (DeepLab (Chen et al. 2017), Segformer (Xie et al.
2021), SAM (Kirillov et al. 2023)), video shadow detection
(TVSD (Chen et al. 2021), SC-Cor (Ding et al. 2022)), mir-
ror detection (MirrorNet (Yang et al. 2019), PMDNet (Lin,
Wang, and Lau 2020), VCNet (Tan et al. 2022)), video mir-
ror detection (VMD (Lin, Tan, and Lau 2023)), glass de-
tection (GDNet (Mei et al. 2020), EBLNet (He et al. 2021),
GlassNet (Lin, He, and Lau 2021), PGSNet (Yu et al. 2022)).

Table 2 shows the quantitative comparison, and our
method achieves the best performance on all metrics. Specif-

Methods Params.↓ FLOPs↓ FPS↑ IoU↑
GDNet 201.72M 271.69G 5.90 0.735
EBLNet 111.45M 303.86G 8.79 0.764
GlassNet 83.72M 108.98G 5.92 0.762
PGSNet 198.12M 113.02G 7.14 0.703

Ours 64.06M 88.55G 15.04 0.802

Table 3: Efficiency comparison between existing glass de-
tection methods and our approach.

ically, the proposed method outperforms the best single-
image glass detection method GlassNet by 20.63% In com-
parison to the semantic segmentation methods, e.g., Seg-
former and SAM, our method still outperforms them by
a large margin. Particularly, SAM tends to misclassify the
objects behind glass surfaces as the non-glass, due to the
intricate reflection and refraction phenomena. As shown
in Table 3, we also conduct efficiency comparisons of our
method with existing glass detection methods, including the
assessments of model parameters, FLOPs, and FPS. The re-
sults demonstrate that our model has fewer parameters and
is faster than state-of-the-art image-based glass detection
methods. In particular, our method surpasses PGSNet in IoU
by 14.08%, with approximately 3× fewer parameters and
21.63% FLOPs reduction.

We also provide the visual comparisons with state-of-the-
art methods in Fig. 7. Notably, most competing methods are
susceptible to interference by objects in the non-glass re-
gion that are similar in shape or appearance to the glass sur-
face. (e.g., the number 9 in the first case, and the walls be-
hind the glass in the second case). In addition, objects inside
the glass can also interfere with the glass detection process,
causing existing competing methods to misidentify them as
non-glass areas (e.g., window frames in the third case). In
contrast, our method can reduce the distraction of these non-
glass regions and detect all glass surfaces accurately with the
incorporation of the location-aware and context-enhanced
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B CRE LRE CRI IoU↑ Accuracy↑ BER↓ MAE↓CFA TTB STB

① ✓ 0.734 0.865 13.35 0.136

② ✓ ✓ 0.743 0.870 13.10 0.129
③ ✓ ✓ 0.751 0.874 12.95 0.126
④ ✓ ✓ ✓ 0.774 0.883 11.39 0.117
⑤ ✓ ✓ ✓ ✓ 0.794 0.895 10.32 0.105
⑥ ✓ ✓ ✓ ✓ 0.786 0.892 10.38 0.107
⑦ ✓ ✓ ✓ ✓ ✓ 0.802 0.899 9.54 0.099

Table 4: Ablation analysis of the proposed network struc-
ture on the proposed VGSD-D dataset. B denotes the base-
line network that uses only encoder and mask head for glass
mask prediction. CRE indicates that we substitute the mask
concatenation for the explicit position usage in the LRE.

Methods IoU↑ Accuracy↑ BER↓ MAE↓
❶ Ours w/o Lmask(M

c, M∗) 0.781 0.884 10.88 0.117
❷ Ours w/o Lref (R, R∗) 0.753 0.877 12.04 0.124
❸ Ours w/o Lpen(R, P∗) 0.783 0.889 10.91 0.112
❹ Ours 0.802 0.899 9.54 0.099

Table 5: Ablation analysis of the used loss functions on the
proposed VGSD-D dataset. All subscripts of the M, R, and
P are omitted for clarity.

multi-view reflection cues.

Ablation Study
We perform internal analyses to verify the effectiveness
of each component of our approach. ① We first construct
the baseline model using the encoder, mask head, and
Lmask(M

c, M∗). To validate the LRE module, in ②, we
build a variant of the LRE by concatenating the predicted
intermediate mask Mc with I, F1 and F5 to form a new in-
put to the standard deformable attention block. Then, in ③,
we directly incorporate the LRE module into the baseline.
Based on the variant in ③, we gradually insert CFA, TTB,
and STB in the CRI module to validate their effectiveness in
④-⑥. Note that the total loss L are utilized for ②-⑦.

The quantitative results presented in Table 4, with fol-
lowing conclusions: (1) introducing reflection cues does im-
prove model performance compared to the baseline (see ①
vs ②); (2) explicit position map is more efficient than the
naive implicit concatenation (see ② vs ③); (3) contextual se-
mantics introduced by CFA (④) can boost the performance
improvement even without cross-frames integration; and (4)
While the TTB achieves slightly better performance than the
STB (⑤ vs ⑥), the concurrent utilization of both elements
promotes a significant performance improvement (⑤ vs ⑦
and ⑥ vs ⑦), which demonstrates the complementarity of
the two blocks. We also display the visual comparisons in
Fig. 8. Obviously, the baseline model can only locate part
of the glass surfaces and is not sensitive to reflection cues.
LRE can include more glass surface regions with the help
of position-aware reflection features (see the left corner of

Image B B + LRE Ours Our Reflec.

Figure 8: Visual comparison of different ablated models. B
denotes the baseline in Table 4.

Image Ours Our Reflection GT

Figure 9: Failure cases illustration.

the glass surfaces). Finally, RCI further helps to improve re-
gions with weak reflection within a single frame by fusing
information between multiple frames.

In Table 5, we also investigate the impact of various
loss components by independently disabling the intermedi-
ate mask supervision and the auxiliary reflection supervision
in ❶ and ❷, and ablated the effect of Lpen in ❸ by removing
it in the Lref . The results demonstrate that: (1) Intermediate
mask supervision is essential because it ensures the accuracy
of the position map used in the LRE module; (2) The reflec-
tion prior is the key of our model and is indispensable, with-
out it, the BER metric plummets by 20.77%; and (3) The
penalty term can further boost the glass detection accuracy
by constraining the regions of generated reflection maps.

Conclusion
In this paper, we have explored the video glass surface
detection problem. We address this problem from two as-
pects. First, we have proposed a VGSD-Net for video glass
surface detection, which includes two novel modules: the
Location-aware Reflection Extraction (LRE) module for
extracting position-aware localized reflection features via
masked deformable attention-based blocks, and the Context-
enhanced Reflection Integration (CRI) module for incorpo-
rating multi-view dynamic reflections from the video se-
quences. Second, we have built the first large-scale video
glass surface detection dataset. It contains 19,166 image
frames from 297 videos (lasting 575 seconds in total). Fi-
nally, experimental comparisons also show that our method
outperforms state-of-the-art methods from relevant tasks.

Nonetheless, our approach does have limitations. If tem-
poral reflections in some regions of all video frames are too
weak to be detected, our method may fail to detect all glass
surfaces accurately. Fig. 9 shows that our method will in-
correctly classify the frames of the window behind the main
glass surfaces as non-glass regions due to weak reflection
on these regions. Incorporating inherent structure cues (Liu
et al. 2023c) in images is a potential solution.
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