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Abstract

Vision and language foundation models (VLMs) have show-
cased impressive capabilities in 2D scene understanding.
However, their latent potential in elevating the understand-
ing of 3D autonomous driving scenes remains untapped. In
this paper, we propose VLM2Scene, which exploits the po-
tential of VLMs to enhance 3D self-supervised representation
learning through our proposed image-text-LiDAR contrastive
learning strategy. Specifically, in the realm of autonomous
driving scenes, the inherent sparsity of LiDAR point clouds
poses a notable challenge for point-level contrastive learn-
ing methods. This method often grapples with limitations
tied to a restricted receptive field and the presence of noisy
points. To tackle this challenge, our approach emphasizes
region-level learning, leveraging regional masks without se-
mantics derived from the vision foundation model. This ap-
proach capitalizes on valuable contextual information to en-
hance the learning of point cloud representations. First, we
introduce Region Caption Prompts to generate fine-grained
language descriptions for the corresponding regions, utiliz-
ing the language foundation model. These region prompts
then facilitate the establishment of positive and negative text-
point pairs within the contrastive loss framework. Second,
we propose a Region Semantic Concordance Regularization,
which involves a semantic-filtered region learning and a re-
gion semantic assignment strategy. The former aims to fil-
ter the false negative samples based on the semantic dis-
tance, and the latter mitigates potential inaccuracies in pixel
semantics, thereby enhancing overall semantic consistency.
Extensive experiments on representative autonomous driving
datasets demonstrate that our self-supervised method signifi-
cantly outperforms other counterparts. Codes are available at
https://github.com/gbliao/VLM2Scene.

Introduction
3D scene understanding from LiDAR point clouds is a cru-
cial perception component in autonomous driving. Most ex-
isting deep learning-based methods have yielded notewor-
thy progress with massive labeled data in this area (Qi et al.
2017a,b; Guo et al. 2020; Gao et al. 2021; Zhu et al. 2021;
Hou et al. 2022). However, the manual annotation of point
clouds is a resource-intensive endeavor, impeding its practi-
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cality within real-world autonomous driving scenarios. Con-
sequently, self-supervised learning for 3D scene understand-
ing, which harnesses the power of unlabeled data and defines
the pretext task as semantic segmentation, arises as a promis-
ing and meaningful realm of study (Fei et al. 2023).

Vision and language foundation models (VLMs), in-
cluding Contrastive Vision-Language Pre-training (CLIP)
(Radford et al. 2021), Bootstrapping Language-Image Pre-
training (BLIP-2) (Li et al. 2023), and Segment Anything
(SAM) (Kirillov et al. 2023), have recently gained sig-
nificant attention. CLIP, utilizing large-scale web-crawled
image-text data, constructs powerful vision-language em-
beddings that show promising performance in zero-shot im-
age classification. Effectively training on extensive image-
text web data through image-text contrastive and matching
losses, BLIP2 showcases an impressive ability for zero-shot
image-to-text generation. In addition, SAM trains on a vast
amount of image data (11 million images, 1 billion masks),
revealing robust zero-shot segmentation capabilities. While
these methods exhibit remarkable zero-shot image under-
standing abilities within open-world scenarios, their direct
suitability for 3D tasks poses a challenge due to the scarcity
of massive 3D annotations and large-scale 3D-text data.

To address this challenge, the recent effort (Chen et al.
2023) explores the utilization of CLIP for self-supervised
3D scene understanding. It begins by employing template
text prompts alongside the annotation-free segmentation
model MaskCLIP (Zhou, Loy, and Dai 2022) to generate
image pixel predictions. Subsequently, a pixel-point con-
trastive learning scheme is proposed to transfer these image
pixel predictions to 3D space through projection. Despite
these advancements, some limitations may hinder its suit-
ability for comprehensive 3D scene understanding. First, the
mentioned textual embeddings are directly extracted from
the dataset’s categories (e.g., car, bus, pedestrian, etc.) us-
ing brief templates (e.g., a photo of a {}, there is a {}
in the scene, etc.). Yet, these text descriptions may fail to
provide a fine-grained depiction of the scene. Second, in
outdoor autonomous driving scenes, the inherent sparsity
within LiDAR-generated point clouds is a pronounced char-
acteristic. This inherent sparsity magnifies the difficulty of
employing the point-level contrastive learning method, be-
cause this mode of point-level learning might be susceptible
to challenges arising from restricted receptive fields, limited
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context, and the potential erroneous pixel semantics.
Building upon the impressive accomplishments of VLMs,

we ask: Can we harness the strengths of VLMs to overcome
these limitations and advance 3D representations for scene
understanding? In pursuit of this goal, our core idea is to
utilize VLMs for image-text-LiDAR self-supervised learn-
ing, aiming to capture useful contextual knowledge to en-
hance 3D representations. To this end, two critical factors
come into play: (1) the model should learn more specific and
fine-grained language descriptions, and (2) the model should
fully explore informative region-level representations.

In this paper, we present VLM2Scene, an innovative ap-
proach to region-level image-text-LiDAR contrastive learn-
ing from two perspectives. Specifically, we initiate the
process by extracting class-agnostic regions (i.e., regional
masks without semantics) from the image using SAM. Sub-
sequently, 1) to enrich region-level text prompts, we intro-
duce a strategy called Region Caption Prompts. This ap-
proach leverages the powerful image-to-text generation ca-
pabilities of BLIP-2, generating specific, fine-grained cap-
tions for each region derived from SAM. These captions en-
compass details like location relationships and color prop-
erties, thereby significantly diversifying the textual con-
tent. 2) To enhance consistent region-wise representations,
we present Region Semantic Concordance Regularization,
which involves semantic-filtered region learning and a re-
gion semantic assignment strategy, with the following con-
siderations. A straightforward method is to employ region-
wise image-LiDAR contrastive learning based on SAM’s
region masks. However, in this way, semantically identical
parts of the same object are treated as negative samples and
pushed away, making it challenging to learn. To mitigate this
issue, we propose a semantic-filtered region learning strat-
egy. This strategy leverages distances between regions in
the text space to guide the contrastive loss calculation pro-
cess, effectively filtering out false negative samples. Further-
more, considering potential incorrect pixel semantics from
the vanilla CLIP visual encoder, a region semantic assign-
ment strategy is introduced, that collaborates with SAM’s
masks to enhance regional semantic consistency.

Our contributions can be summarized as follows:
• We propose VLM2Scene, a novel approach aimed at har-

nessing the potential of VLMs to leverage text and image
cues to enhance LiDAR representation in driving scenes.

• We propose Region Caption Prompts and Region Seman-
tic Concordance Regularization, which exploit region-
level image-text-lidar contrastive learning, elevating the
quality of 3D context representation learning for scene
understanding.

• Extensive experiments show that our method can im-
prove 3D representation and achieve superior results for
downstream automatic driving semantic segmentation.

Related Work
Autonomous Driving Scene Understanding
Scene understanding plays a crucial role in ensuring the
safety and efficiency of autonomous driving systems. Cur-
rent supervised methods for 3D scene understanding have

made tremendous progress (Qi et al. 2017a,b; Thomas et al.
2019; Tang et al. 2020; Choy, Gwak, and Savarese 2019;
Zhang et al. 2022; Gao et al. 2021; Zhu et al. 2021; Hou
et al. 2022; Wu et al. 2022; Lai et al. 2023; Kong et al. 2023).
However, these approaches exhibit a strong reliance on ex-
tensive annotation endeavors, hindering their usefulness in
real-world autonomous driving scenarios. To overcome this
restriction, some methods (Liu et al. 2021; Sautier et al.
2022; Chen et al. 2023; Mahmoud et al. 2023; Peng et al.
2023) made an attempt to mitigate the demands of 3D an-
notation by transferring 2D image knowledge. Importantly,
how to transfer knowledge from a 2D network to a 3D net-
work becomes critical in the learning of 3D representations.
In this work, we aim to explore image and text knowledge
from vision and language foundation models (VLMs), such
as CLIP, BLIP-2, and SAM, to better advance 3D represen-
tations for autonomous driving scene understanding.

3D Self-supervised Representation Learning
Unlike 2D vision tasks (He et al. 2020; Chen et al. 2020b;
Grill et al. 2020; Chen and He 2021; Chen et al. 2020a;
He et al. 2022), which are often pre-trained on large-scale
datasets like ImageNet (Deng et al. 2009), pre-training for
3D vision tasks faces distinct challenges. The high cost of
data annotation and the inherent sparsity of outdoor Li-
DAR point clouds make it difficult to effective 3D pre-
training. Recently, self-supervised representation learning
for 3D scene understanding has gained a lot of attention
(Fei et al. 2023). PointContrast (Xie et al. 2020) first shows
that the contrastive learning paradigm helps 3D models
learn valuable features from unlabeled RGB-D datasets.
These pre-trained representations exhibit their efficacy in 3D
scene segmentation. PPKT (Liu et al. 2021) exploits 2D-3D
knowledge transferring to take advantage of the abundant
semantic information learned from large-scale 2D datasets,
which boosts the performances in 3D downstream tasks.
However, in outdoor scenarios characterized by sparse Li-
DAR points, the point-level contrastive learning strategy
in PointContrast and PPKT might fail to capture the fea-
tures of sparse objects. To mitigate the sparse issue, SLidR
(Sautier et al. 2022) proposes a 2D-3D representation distil-
lation method based on super-pixels, and ST-SLidR (Mah-
moud et al. 2023) further introduces a semantically tolerant
loss to alleviate the local semantic ambiguity. Nevertheless,
hand-crafted super-pixel may inherently fail to accurately
provide semantically consistent segmentation regions, limit-
ing accurate contextual understanding. The up-to-date work
CLIP2Scene (Chen et al. 2023) transfers 2D pixel knowl-
edge from CLIP (Radford et al. 2021) to the 3D network
based on a point-level contrastive learning scheme. How-
ever, such a point-level method suffers from the potential
noise point or erroneous pixel semantics due to the lack of
region-level representations.

Overall, considering the sparsity of outdoor LiDAR
point clouds and the limitations of the point-level learning
scheme, we explore the potential of vision and language
models (VLMs) to make the best of region-wise text and
image knowledge, enhancing informative 3D context repre-
sentation learning for scene understanding.
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Figure 1: Illustration of our VLM2Scene. First, LiDAR point cloud and multi-view images are fed into a trainable 3D network
and a frozen CLIP image encoder for feature extraction, respectively. Then, we use the vision foundation model SAM to
generate class-agnostic masks over images. To enrich textual representation and better leverage CLIP knowledge, we propose
Region Caption Prompts, that utilize an image caption foundation model BLIP-2 to produce fine-grained region-wise captions
according to region inputs. These prompts are later used to extract text embedding by the CLIP text encoder. Moreover, the
3D features and 2D features are grouped into region representations, respectively, and then our proposed Semantic-Filtered
Contrastive Loss and Region Semantic Assignment strategy are used to enhance 3D representations.

Methodology
Vision and language foundation models have shown im-
pressive capabilities in 2D scene understanding (Radford
et al. 2021; Kirillov et al. 2023). However, whether their
capability can promote 3D autonomous driving scene un-
derstanding is a challenging question. Therefore, in this pa-
per, we study the self-supervised image-text-LiDAR con-
trastive learning with vision and language foundation mod-
els (VLMs) for 3D autonomous driving scene understand-
ing, namely VLM2Scene.

Reviewing and Motivations
Reviewing VLMs. VLM denotes a sophisticated deep learn-
ing model that is pre-trained on large amounts of data, whose
capability empowers it to excel in diverse downstream tasks.
For instance, CLIP (Radford et al. 2021), BLIP-2 (Li et al.
2023), and SAM (Kirillov et al. 2023) show impressive
zero-shot image classification, image-to-text generation, and
class-agnostic segmentation performance, respectively, and
have attracted a lot of attention lately.
• CLIP contains a vision model and a text model and de-

signs an image-text contrastive learning strategy. This en-
ables CLIP to associate images and their corresponding
text descriptions in a shared embedding space, resulting
in powerful open-world image classification.

• BLIP-2 proposes a Querying Transformer to bridge the
vision-language gap and bootstrap vision-to-language

generative learning, which enables BLIP-2 to obtain im-
pressive performance in image-to-text generation.

• As for the vision foundation model, SAM combines an
image encoder, a prompt encoder, and a mask decoder,
which is trained on a large amount of labeled data (11
million images, 1 billion masks). These massive amounts
of training data allow it to obtain excellent class-agnostic
region proposals across a wide range of distributions.

Recently, CLIP2Scene (Chen et al. 2023) attempts to
leverage CLIP for 3D scene understanding. It consists of a
2D frozen annotation-free segmentation model MaskCLIP
(Zhou, Loy, and Dai 2022) and a 3D network (Choy, Gwak,
and Savarese 2019) to be trained. CLIP2Scene feeds fixed
template texts into MaskCLIP to generate pixel-level image
pseudo-labels. Then, it devises the pixel-point contrastive
learning scheme at the point level. However, certain limita-
tions may hinder their 3D representation learning. First, the
aforementioned textual embeddings are straightforwardly
generated from the category names (e.g., car, pedestrian,
etc) of the dataset with fixed and short templates (e.g., a
photo of a {}, etc). These text descriptions lack a realis-
tic and detailed description of the scene. Second, the inher-
ent sparsity in LiDAR point clouds poses the challenges of
point-level contrastive learning, attributed to factors such as
restricted receptive fields, limited context, and the suscepti-
bility to noisy points or erroneous pixel semantics.
Motivations. Motivated by the above analysis, we propose
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"a traffic cone is sitting on the ground."

"a man in a yellow vest and 
safety hat is standing on a street."

"a red fire hydrant sitting 
on the side of the road."

"the back end of a 
yellow car on the road."

"a large excavator is 
parked in front of a man."

"a close up of a truck 
with a large tire."

Visualization of masks from SAM

Figure 2: Visualization of the mask result from SAM (blue
dotted box) and some generated region caption examples.
In each example, the upper section shows the visual image
region, while the lower section displays the corresponding
fine-grained and specific text.

to make the most of the advantages of VLMs to promote 3D
self-supervised representation learning. As depicted in Fig.
1, the image pixel features and point features are extracted
by leveraging the CLIP visual encoder and a 3D network, re-
spectively. Considering the bottlenecks of point-level men-
tioned above, we propose to exploit the foundation model
SAM to produce class-agnostic regions over the image, and
two region-aware strategies are introduced to make the best
of region-level image and point features.

• First, unlike conventional methods that merely use class
names with fixed templates, we propose Region Caption
Prompts for region-wise textual embedding generation.
Specifically, we combine the region masks derived from
SAM with the input image, and leverage the BLIP-2 to
generate fine-grained and rich caption descriptions over
the regions. Then, these generated region captions are fed
into the frozen text encoder of CLIP to produce region-
wise textual embeddings.

• Second, given the impressive consistency of region
masks from SAM, a Region Semantic Concordance Reg-
ularization strategy is proposed. It consists of a semantic-
filtered region learning strategy and a region semantic as-
signment strategy, effectively enhancing the perception
of contextual information and forcing the consistency of
region representations.

Region Caption Prompt Strategy
Using short and brief template sentences with category
names as text prompts for text embedding extraction poten-
tially constrains the model’s perception capacity. To over-
come this constraint and improve the text quality, we pro-
pose a Region Caption Prompt (RCP) strategy that en-
riches region-level text prompts with more fine-grained and
specific language descriptions.

For this purpose, we leverage the image-to-text genera-
tion strength of BLIP-2 (Li et al. 2023) to generate a series
of raw language descriptions associated with the specified

region based on the supplied SAM’s masks and the origi-
nal visual image. Specifically, we first crop the correspond-
ing visual image region as foreground by region masks from
SAM. To better understand the contextual information, we
use a regular box to truncate the region that contains exactly
the object and keep the background information of this re-
gion. Then, we input the above visual region into the BLIP-2
model and used a text prompt to guide raw language descrip-
tion generation, such as ‘Question: what is the content of
the image? Answer:’. In particular, we set a minimum area
of the mask to prevent the generation of overly localized or
meaningless descriptions. Furthermore, we manually filter
out descriptions that are irrelevant or meaningless to the cat-
egories of the pre-training dataset, such as ’a cloudy sky’, to
produce meaningful and descriptive captions that enhance
region texts for each category.

Therefore, in each iteration of the pre-training, for each
scene, we first generate rich and diverse regional text de-
scriptions and categorize them by dataset categories. Then,
we leverage the CLIP text encoder to derive the fine-grained
region text embeddings tr ∈ RB×L. Meanwhile, we also
employ the template text embeddings tc ∈ RB×L obtained
from the template-based text prompts used in CLIP2Scene
for pre-training. Here, B and L denote the number of the
pre-training dataset’s class and the feature dimension, re-
spectively. In this way, the generated region texts and the
template texts can complement each other, resulting in bet-
ter performance as the experiment shows.

As depicted in Fig. 2, we present the text enrichment ex-
ample from our RCP. We can see that 1) Our RCP can gener-
ate realistic and specific region-level captions for each sce-
nario. 2) Moreover, it also presents finer-grained and com-
prehensive descriptions, such as location relationships, color
attributes, etc. 3) By applying our RCP, we exploit the po-
tential of text modality to capture meaningful semantic in-
formation for the following contrastive learning process, en-
hancing 3D self-supervised representation learning.

Region Semantic Concordance Regularization
The CLIP-based pixel-point contrastive learning paradigm is
crucial for achieving cross-modal alignment and enhancing
3D representation learning (Chen et al. 2023). A straightfor-
ward method is to use a frozen CLIP visual encoder to ex-
tract pixel-wise image features, and align it to corresponding
point features by leveraging the 2D-3D calibration matrix.
However, this point/pixel level contrastive learning method
may lack sufficient receptive field that is incapable of per-
ceiving context environments. Additionally, inaccurate se-
mantic prediction from the CLIP visual encoder (e.g., (b) of
Fig. 4) may mislead the learning of 3D feature representa-
tion, resulting in unsatisfactory performance.

To tackle the above challenges, we propose leverag-
ing well-grouped region proposals from vision foundation
model SAM, and utilizing region-level contrastive learning
with visually similar features to enhance 3D feature repre-
sentations. Specifically, we denote E3D

θ as the trainable 3D
network and E2D

θ as the frozen CLIP image encoder, that
takes the LiDAR point cloud and corresponding multi-view
images as input, respectively. Through feature extraction,
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Figure 3: First row: Camera Images. Second row: Visualiza-
tion of the corresponding mask result from SAM. However,
the vanilla per-mask-driven contrastive learning method
treats other semantically identical parts of the same object as
negative samples (e.g. the case in the green box), resulting
in false negative samples. Accordingly, such false negative
samples will interfere with the regional semantic structure
for accurate 3D representation learning.

the 3D point cloud features FP ∈ RN×D and 2D image
pixel features FI ∈ Rh×w×C can be produced. Here, N
and D denote the number and the feature dimension of the
point cloud feature, respectively. h,w, and C indicate the
size and the feature dimension of the image feature, respec-
tively. To pre-train the 3D point cloud network without any
annotated labels, we transfer the image knowledge to the 3D
network via cross-modal alignment. To achieve this, we first
use a trainable point cloud projection layer to map the FP
to the share contrastive loss embedding space, resulting in
F̂P ∈ RN×L. The image pixel features FI is mapped to
F̂I ∈ Rh×w×L with a frozen projection layer from the CLIP
image encoder. Then, we leverage known sensor calibration
parameters to build point-pixel correspondence {pi, xi}Ki=1,
where pi and xi denote the i-th paired point feature and
image pixel feature, respectively. K indicates the number
of pairs. Notably, different from previous point-level con-
trastive learning, we conduct a region-level solution to pro-
mote informative feature learning. Concretely, based on the
point-pixel pair correspondence and the region masks from
SAM, we compute the region-wise point and pixel repre-
sentation and then group them with mean pooling operation
into region point representation P ∈ RM×L and region pixel
representation Q ∈ RM×L, respectively. In this way, vanilla
region-level feature contrastive learning can be calculated:

L(P,Q) = − 1

M

M∑
i=0

log

 e((pi·qi)/τ)∑
j ̸=i e

((pi·qj)/τ) + e((pi·qi)/τ)

 ,

(1)
where · indicates the scalar product operation for similarity

measurement. τ denotes the temperature term.
Although the aforementioned vanilla region-level con-

trastive learning can promote 3D representation learning, it
fails to consider the self semantic conflict issue as shown
in Fig. 3. In other words, different parts belonging to the
same object may be labeled as different mask regions, due
to the random point prompts of the original SAM model. The

(a) Image input

(c) Examples of region prediction

(b) Prediction by CLIP visual encoder 

(d) Prediction by our method with RSA 

Figure 4: Illustration of different image predictions. From
(b), we can see that the prediction by the CLIP visual en-
coder can only roughly identify the localization of objects,
but lacks precise edges and may even generate incorrect re-
gional predictions. From (c), our RSA strategy can impose
semantic consistency by leveraging region-level masks com-
pared to pixel-level, thus producing more precise represen-
tations (d) for self-supervised learning.

above process will treat such semantically identical parts of
the same object as negative samples, pushing away these
false negative samples and making it challenging to learn.
To mitigate this issue, we propose a Semantic-Filtered Re-
gion Learning (SFR) strategy, that leverages the image re-
gion feature and text embeddings to filter out regions shar-
ing similar texts. In other words, we can use the distance
between regions in the text space as a guiding signal for con-
trastive loss calculation. Specifically, for two regions i and
j present in the image, if ϵ > Φ(ti, xi) − Φ(ti, xj), where
ϵ is a small threshold, and Φ is the cosine-similarity mea-
surement, the semantic of i and j will be inferred to very
close, and j will be removed from the negative samples of
i during contrastive loss computing. Thus, for each positive
sample pi, we use Tij denotes the indicator function that de-
termines whether negative sample qj will be filtered based
on the above calculation process. Concretely, the negative
sample will be removed when Tij is equal to 0, and retained
when 1 otherwise. This process can be formulated as:

Lsfr(P,Q) =

− 1

M

M∑
i=0

log

 e((pi·qi)/τ)∑
j ̸=i Tij · e((pi·qj)/τ) + e((pi·qi)/τ)

 .

(2)
In addition to semantic feature learning via image-LiDAR

pairs, we also consider the semantic assignment via image-
text-LiDAR pairs for better 3D representations. The re-
cent CLIP2Scene uses CLIP to produce 2D pixel labels via
image-text pairs and assigns these pixel labels to 3D points.
However, it may fall short of elaborate object localization
and even generate noisy assignments as shown in (b) of Fig.
4, hindering accurate 3D representation learning. To allevi-
ate this issue, we propose a Region Semantic Assignment
(RSA) strategy, that imposes a per-mask constraint on se-
mantic assignment. Concretely, for each region mask assign-
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Method Reference nuScenes KITTI
LP 1% 5% 10% 25% 100% 1%

Random N/A 8.10 30.30 47.84 56.15 65.48 74.20 39.50
PointContrast (Xie et al. 2020) ECCV20 21.90 32.50 - - - - 41.10

DepthContrast (Zhang et al. 2021) ICCV21 22.10 31.70 - - - - 41.50
PPKT (Liu et al. 2021) arXiv21 35.90 37.80 53.74 60.25 67.14 74.52 44.00

SLidR (Sautier et al. 2022) CVPR22 38.80 38.30 52.49 59.84 66.91 74.79 44.60
CLIP2Scene (Chen et al. 2023) CVPR23 - 33.05 52.18 59.87 66.87 74.63 43.10

ST-SLidR (Mahmoud et al. 2023) CVPR23 40.48 40.75 54.69 60.75 67.70 75.14 44.72
VLM2Scene (Ours) 51.54 47.59 58.08 63.08 68.39 75.42 47.37

Table 1: Performance comparison with other methods pre-trained on nuScenes and fine-tuned on nuScenes, and SemanticKITTI.
LP indicates linear probing with frozen backbones. We report the mIoU scores for evaluation.

ment, we count the number of categories appearing in the
region. Then, we sort them and select the category with the
most occurrences to assign as the semantic of this region. It
aims at reducing errors and inconsistencies by selecting the
most semantically similar factors per region, improving the
quality of semantic assignment as shown in (c) and (d) of
Fig. 4. Then, we use the same cross-entropy loss calculation
as CLIP2Scene with our improved semantic assignment to
optimize the 3D network, and this process can be denoted
as Lras. In summary, the total pre-training loss consists of
Lsfr and Lras, which can be formulated: L = Lsfr +Lras.
More details are presented in the appendix.

Experiments
Experiments Setup
Datasets. To evaluate the performance of our proposed
methods, we conduct experiments on two large-scale au-
tonomous driving datasets, i.e., SemanticKITTI (Behley
et al. 2019) and nuScenes (Caesar et al. 2020). The Se-
manticKITTI dataset, collected in urban street scenes by
a Velodyne HDL-64E LiDAR sensor, is a comprehensive
dataset for LiDAR autonomous driving semantic scene un-
derstanding. It contains 22 point cloud sequences and 19
classes for training and evaluation. The large autonomous
driving dataset nuScenes provides a substantial number of
samples for scene understanding in urban scenes. It contains
700 training scenes, 150 validation scenes, and 150 testing
scenes, with a total of 1000 driving scenes and 16 classes.
Implementation Details. Following previous works
(Sautier et al. 2022; Mahmoud et al. 2023), only keyframes
from the 600 nuScenes training sequences are used for self-
supervised pre-training without labelled data. Then, the pre-
trained network is fine-tuned on nuScenes to evaluate the
pre-training performance and on SemanticKITTI to validate
the generalization ability. We follow previous works (Sautier
et al. 2022; Mahmoud et al. 2023) to use the Minkowski U-
Net (Choy, Gwak, and Savarese 2019) as the 3D network
to generate the point cloud feature, which uses 3 × 3 × 3
kernels for all sparse convolutional layers. Based on the 2D
MaskCLIP network (Zhou, Loy, and Dai 2022), the attention
pooling operation of the CLIP ViT-B (Radford et al. 2021)
image encoder is modified to extract image features, text
embedding, and pixel-text correspondences. Particularly, the
CLIP model is frozen during training, and the generations
of class-agnostic masks from SAM ViT-H (Kirillov et al.

2023) and fine-grained region captions from BLIP-2 (Li
et al. 2023) are implemented offline. For pre-training, we
use the SGD optimizer with a cosine scheduler to pre-train
our 3D network for 50 epochs on eight NVIDIA Tesla A100
GPUs with a total batch size of 16. For fine-tuning, we fol-
low the evaluation protocol of (Sautier et al. 2022; Mahmoud
et al. 2023) to finetune our pre-trained 3D network on Se-
manticKITTI and nuScenes by using different proportions
of annotated data.
Metric. We adopt the recognized mean Intersection-over-
Union (mIoU) score across all classes for 3D autonomous
driving semantic segmentation evaluation.

Comparison Results
We evaluate the pre-training effectiveness of our proposed
approach against state-of-the-art techniques on two popular
autonomous driving datasets. Specifically, we present the re-
sults of random initialization and six prior methods in Table
1. We can observe that 1) our proposed VLM2Scene pre-
training strategy can achieve impressive performance gain
on downstream tasks, especially with limited annotated data
for fine-tuning. For instance, our approach provides a 6.84%
mIoU improvement for the 1% few-shot fine-tuning task
over the second-best ST-SLidR on the nuScenes dataset. 2)
Pre-training with our method provides a significant gain of
11.06% for linear probing, exhibiting the better quality of
our pre-trained representations. 3) The superior performance
on SemanticKITTI demonstrates the strong generalization
ability of our method.

Moreover, we present the per-class IoU of different meth-
ods when using 1% labelled data for fine-tuning in Table 2.
Our approach yields much better results than others for each
class, especially for bus, construction vehicle, and truck. We
attribute this to the fact that our approach can enhance the
semantics of these classes for better representation learning.

Ablation Study
Component Analysis. To verify the effectiveness of our
proposed strategies, we conduct the ablation experiments
and report in Table 3. The baseline model leverages
template-based text prompts and point-level contrastive
learning for 3D self-supervised learning. Compared to the
baseline model, our region caption prompt (RCP) strategy
improves the performance by 4.6% and 3.0% when us-
ing 1% and 5% annotated data for fine-tuning, respectively.
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Random 30.3 0.0 0.0 8.1 65.0 0.1 6.6 21.0 9.0 9.3 25.8 89.5 14.8 41.7 48.7 72.4 73.3
PointContrast 32.5 0.0 1.0 5.6 67.4 0.0 3.3 31.6 5.6 12.1 30.8 91.7 21.9 48.4 50.8 75.0 74.6

DepthContrast 31.7 0.0 0.6 6.5 64.7 0.2 5.1 29.0 9.5 12.1 29.9 90.3 17.8 44.4 49.5 73.5 74.0
PPKT 37.8 0.0 2.2 20.7 75.4 1.2 13.2 45.6 8.5 17.5 38.4 92.5 19.2 52.3 56.8 80.1 80.9
SLidR 38.3 0.0 1.8 15.4 73.1 1.9 19.9 47.2 17.1 14.5 34.5 92.0 27.1 53.6 61.0 79.8 82.3

CLIP2Scene 33.1 0.0 1.9 10.4 70.2 1.5 9.1 41.3 0.0 20.0 28.3 87.8 15.6 37.1 52.7 74.8 77.6
ST-SLidR 40.8 0.0 2.7 16.0 74.5 3.2 25.4 50.9 20.0 17.7 40.2 92.0 30.7 54.2 61.1 80.5 82.9

Ours 47.6 0.0 7.3 49.0 77.7 17.1 30.3 53.2 40.7 20.2 51.9 92.5 36.2 57.6 62.3 82.2 83.0

Table 2: Per-class 3D semantic segmentation IoU performance on the nuScenes vaild set when fine-tuning with 1 % labels.

Methods Components nuScenes
RCP SFR RSA 1% 5%

Baseline 38.8 51.6

Ours

✓ 43.4 54.6
✓ 43.8 55.0

✓ 42.1 53.6
✓ ✓ 46.5 56.9

✓ ✓ 45.4 56.3
✓ ✓ ✓ 47.6 58.1

Table 3: Ablation Study of each component.

These results demonstrate that the fine-grained and specific
region caption prompts can provide more meaningful se-
mantic information from the text modality. The semantic-
filtered region learning (SFR) and region semantic assign-
ment (RSA) also contribute to a performance gain of 5.0%
and 3.3% when using 1% annotated data for fine-tuning, re-
spectively. This can be attributed to the fact that our region-
level contrastive learning can capture informative contextual
representations, leading to better results. Moreover, the com-
bination of different strategies leads to further gain. Finally,
the integration of all our components achieves the best per-
formance, which is 8.8% and 6.5% better than the baseline,
respectively. Overall, these results demonstrate the effective-
ness of each component and also show the availability of
VLMs for 3D scene representation learning.
The Region Caption Prompt Strategy. In Table 4, we con-
duct a comparative analysis to verify how text prompt af-
fects performance. When only performing template-based
text prompts for per-training, the model achieves 45.4% and
56.3% using 1% and 5% labelled data for fine-tuning, re-
spectively. Notably, a significant performance drop can be
seen when our region caption prompts (RCP) strategy is
omitted during pre-training. This suggests that our RCP is
beneficial for rich and informative region semantic under-
standing via text prompts, promoting the model’s capacity.
Moreover, we noticed that the template-based text prompts
and our region caption prompts can complement each other,
further improving our model’s performance.
The Region Semantic Concordance Regularization.
From Table 4, we utilize different main contrastive learning

Strategies Methods nuScenes
1% 5%

RCP

only template prompts 45.4 56.3
only RCP 46.5 57.1

Ours 47.6 58.1

RSC

w point-level 43.4 54.6
w super-pixel 44.1 55.1

w/o semantic filtering 45.0 55.9
Ours 47.6 58.1

Table 4: Experimental results for different strategies.

manners to evaluate our approach. 1) w point-level: we use
the pixel-point contrastive learning from CLIP2Scene for
pre-training. 2) w super-pixel: we replace the region masks
from VLMs with the super-pixel from SLIC (Achanta et al.
2012). 3) w/o semantic filtering: we remove the process of
false negative samples as stated in Equation (2). We can see
that leveraging region-wise learning manner is better than
point-level due to the informative context cues. However,
super-pixel-wise and region-mask-wise (i.e., w/o semantic
filtering) may suffer from the self semantic conflict issue,
resulting in the bottleneck of performance. The experimen-
tal results reveal that our region masks generated from our
method yield more representative and highly accurate fea-
tures, and the filtering of false negative samples achieves ef-
fective improvement for 3D scene understanding.

Conclusion
In this paper, we explore a VLMs-assisted self-supervised
approach for 3D scene understanding in the wild, namely
VLM2Scene. To imbue richer semantic information, we pro-
pose Region Caption Prompts for more meaningful and
fine-grained region-level semantic understanding. Besides,
to overcome the limitations of point-level contrastive learn-
ing, we propose Region Semantic Concordance Regular-
ization for informative region-level representation enhance-
ment. Extensive experiments verify the superiority of our ap-
proach for 3D representation enhancement. We hope that our
VLM2Scene will inspire more exciting research in harness-
ing VLMs for 3D pre-training in the future.
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