
CoSTA: End-to-End Comprehensive Space-Time Entanglement for
Spatio-Temporal Video Grounding

Yaoyuan Liang*1, Xiao Liang*1, Yansong Tang†1, Zhao Yang2,
Ziran Li3, Jingang Wang3, Wenbo Ding1, Shao-Lun Huang1

1Shenzhen Key Laboratory of Ubiquitous Data Enabling,
Tsinghua Shenzhen International Graduate School, Tsinghua University

2University of Oxford,
3Meituan Inc.

Abstract

This paper studies the spatio-temporal video grounding
task, which aims to localize a spatio-temporal tube in an
untrimmed video based on the given text description of an
event. Existing one-stage approaches suffer from insuffi-
cient space-time interaction in two aspects: i) less precise
prediction of event temporal boundaries, and ii) inconsis-
tency in object prediction for the same event across adja-
cent frames. To address these issues, we propose a framework
of Comprehensive Space-Time entAnglement (CoSTA) to
densely entangle space-time multi-modal features for spatio-
temporal localization. Specifically, we propose a space-time
collaborative encoder to extract comprehensive video fea-
tures and leverage Transformer to perform spatio-temporal
multi-modal understanding. Our entangled decoder couples
temporal boundary prediction and spatial localization via
an entangled query, boasting an enhanced ability to capture
object-event relationships. We conduct extensive experiments
on the challenging benchmarks of HC-STVG and VidSTG,
where CoSTA outperforms existing state-of-the-art methods,
demonstrating its effectiveness for this task.

Introduction
Spatio-temporal video grounding (STVG) (Huang et al.
2018; Su, Yu, and Xu 2021; Yang et al. 2022a; Jin et al.
2022) is the task of localizing natural language in untrimmed
videos, where a linguistic expression describes an event hap-
pening to an object, and the objective is to predict a spatio-
temporal tube (i.e., a sequence of bounding boxes) that lo-
calizes that object. Different from conventional spatial (Liu
et al. 2019a,b; Yang et al. 2020; Deng et al. 2021; Li and
Sigal 2021) and temporal grounding tasks (Anne Hendricks
et al. 2017; Zhang et al. 2019b; Chen et al. 2020; Zhang
et al. 2020a, 2021), which focus specifically on either spa-
tial or temporal dimensions, STVG requires joint space-time
localization based on the given linguistic query. As a result,
it poses a more difficult challenge in respect to multi-modal
learning—the modeling and exploitation of spatio-temporal
dependencies in visual features.
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Figure 1: The task of spatio-temporal video grounding takes
an untrimmed video and a text description as inputs, and
predicts a spatio-temporal tube that corresponds to the event
and the object described. (a) The previous state-of-the-art
method (Jin et al. 2022) employs a spatial encoder (e.g.,
2D CNN) to extract frame-wise video features and decodes
the results in a parallel way. (b) Our CoSTA encodes both
spatial and temporal video features and utilizes an entan-
gled decoder to produce the final predictions. (c) The spatio-
temporal tubes predicted by our method (in red) and by that
of (Jin et al. 2022) (in yellow), highlighting our method’s
temporal consistency in object grounding by comparison.

An increasing amount of attention has been drawn to the
STVG task over the past few years. In recent literature,
two-stage and one-stage models are the two mainstream ap-
proaches to capturing multi-modal correspondences in the
video and text inputs. The two-stage paradigm (Yamaguchi
et al. 2017; Tang et al. 2021; Zhang et al. 2020c) is to first
extract object proposals (Zhang et al. 2020c) or tube propos-
als (Tang et al. 2021) by leveraging a pre-trained object or
tube detector. The proposals are then ranked based on cross-
modal similarity measures, from which one proposal is se-
lected as the prediction. Such approaches heavily rely on the
pre-trained tube extractor and cannot recover from proposal
failures. Meanwhile, the success of end-to-end Transformer-
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based object detection systems (e.g., (Carion et al. 2020;
Meng et al. 2021; Liu et al. 2022)) has inspired several of the
recent developments of one-stage approaches (Yang et al.
2022a; Jin et al. 2022). Typically, they interpret the video as
a sequence of individual frames and employ a Transformer
encoder to perform frame-wise multi-modal feature encod-
ing. Then tube decoding (the process of predicting a tube
from the multi-modal features) is factorized into two sub-
tasks (see Fig. 1a): temporal boundary prediction and bound-
ing box prediction, which are achieved by parallel predic-
tion heads (Yang et al. 2022a) or a pair of decoupled de-
coders (Jin et al. 2022) based on query-to-feature similar-
ity. The two types of boundaries are composed in a post-
processing step to generate the final spatio-temporal tube.

Although great progress has been made, the exploration
for effective means of interaction between spatial and tem-
poral information (residing in both visual and linguistic
data) is far from sufficient in the existing paradigms. Specif-
ically, language information is fused with individual frames
and multi-modal encoding does not exploit temporal infor-
mation. As a consequence, these approaches are less effec-
tive at learning features that are discriminative of the tem-
poral boundaries of events, which is critical to obtaining
accurate tube predictions in this task. This phenomenon is
highlighted in Fig. 2, where we report the vIoU and sIoU
metrics1 of the state-of-the-art method (Yang et al. 2022a;
Jin et al. 2022) in comparison with those of our method.
Obtaining a good vIoU critically depends on the accu-
rate prediction of temporal boundaries, while doing well in
sIoU mainly concerns with bounding box predictions over
the spatial dimensions. It can be seen that the existing ap-
proaches perform well as measured by sIoU but struggle
to obtain a high vIoU , and by comparison, our proposed
method achieves a significantly higher vIoU . Moreover, at
the parallel tube decoding stage of the existing approaches,
the absence of mutual awareness between spatial location of
the object and time boundary of the event potentially leads
to an inconsistency in spatial grounding over consecutive
frames (depicted in Fig. 1c).

To address the issues above, we propose Comprehensive
Space-Time entAnglement (CoSTA), an end-to-end frame-
work for the STVG task. The “comprehensiveness” is re-
flected in the following way: We conduct space-time inter-
action in the video encoding, the multi-modal fusion, and
the tube decoding stages, whereas the existing approach (Jin
et al. 2022) only performs it during multi-modal fusion. As
shown in Fig. 1b, CoSTA is built upon an encoder-decoder
architecture, in which the encoder fully integrates spatial and
temporal features in a video, with the purpose of facilitat-
ing motion-aware multi-modal reasoning, and the decoder
makes bounding box predictions and temporal boundary
predictions in a connected way that exploits the dependency
between the duration of the event and the target object.
More concretely, we capture the visual features via the pro-

1The definitions of sIoU and vIoU are detailed in Exper-
iments/Datasets and Metrics/Evaluation metrics section. Intu-
itively, the ground-truth time boundaries are known when calcu-
lating sIoU , but unknown when calculating vIoU .

Figure 2: Comparisons between our method and other state-
of-the-art methods (Yang et al. 2022a; Jin et al. 2022) in
sIoU and vIoU. Left: Existing methods have comparable
performance with ours on spatial-only grounding. Right:
Our method obtains significantly higher vIoU while hav-
ing a faster convergence rate.

posed space-time collaborative encoder under a hierarchical
scheme, and then utilize a Transformer encoder (Arnab et al.
2021; Bertasius, Wang, and Torresani 2021; Jin et al. 2022)
to perform joint spatio-temporal multi-modal alignment. Af-
terwards, our decoder bridges temporal boundary prediction
and spatial localization via the proposed “entangled query,”
which enforces the model to localize the target object ac-
cording to the correlation between the duration of the event
and the object’s spatial appearance. This framework enables
fuller spatio-temporal interaction, and as a result, yields
more accurate grounding in both space and time. We conduct
extensive experiments and obtain new state-of-the-art results
on two challenging STVG benchmarks, HC-STVG (Tang
et al. 2021) and VidSTG (Zhang et al. 2020c), which demon-
strates the effectiveness of the proposed method.

Related Work
Spatio-temporal video grounding (STVG). This task aims
to retrieve a spatio-temporal tube from an untrimmed video
corresponding to a given sentence query, which involves
performing both temporal video grounding and frame-wise
spatial grounding. Annotating both temporal boundaries
and frame-wise bounding boxes in a video is a complex
and labor-intensive task. To address this challenge, earlier
STVG methods focus on solving this problem under weakly-
supervised settings (Huang et al. 2018; Shi et al. 2019; Chen
et al. 2019; Chen, Bao, and Kong 2020; Tan et al. 2021).
Concurrently, some supervised methods (Yamaguchi et al.
2017; Tang et al. 2021; Zhang et al. 2020c) employ a pre-
trained tube extractor to generate tube proposals as potential
candidates. These proposals are ranked based on their sim-
ilarity with the sentence query, and the best-matching pro-
posal is selected as the final prediction.

Without pretrained proposal extractors, STGVBert (Su,
Yu, and Xu 2021) extends ViLBERT (Lu et al. 2019) to
the video grounding task and simultaneously models both
spatial and temporal interactions in an end-to-end way. In-
spired by MDETR (Kamath et al. 2021) in image ground-
ing, TubeDETR (Yang et al. 2022a) develops a one-stage
Transformer encoder-decoder model for STVG, with slow-
fast multi-modal encoding and parallel space-time decoding.
Most recently, STCAT (Jin et al. 2022) employs a Trans-
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Figure 3: Overview of the proposed CoSTA. Given an untrimmed video and a sentence description, our model first employs
a proposed space-time video encoder (illustrated in Fig. 4) and a text encoder (e.g., RoBERTa (Liu et al. 2019c)) to extract
unimodal features respectively. Then the extracted features are concatenated and sent to the multi-modal encoder, which is
composed of N spatio-temporal encoding layers. Finally, our proposed space-time entangled decoder (illustrated in Fig. 5)
decodes a spatio-temporal tube as the final prediction.

former encoder at both the frame level and a global level to
perform better cross-modal alignment, which is followed by
a template-based module designed for alleviating the predic-
tion inconsistency problem faced with previous work. De-
spite the impressive progress, existing work still struggles
to balance spatial and temporal cues for making more pre-
cise predictions. In this paper, we perform comprehensive
space-time entanglement in the video encoding, the multi-
modal fusion, and the tube decoding stages, which leads to
fuller space-time interaction and hence better performance
in terms of both spatial and temporal metrics.

Vision-language understanding. Inspired by the huge suc-
cess of Transformers (Vaswani et al. 2017) in the natural
language processing domain, many lines of research (Li
et al. 2019; Su et al. 2019; Sun et al. 2019; Li et al.
2020; Kamath et al. 2021; Yang et al. 2021; Radford et al.
2021; Xu et al. 2021; Kim, Son, and Kim 2021; Yang
et al. 2022b, 2023) extend the Transformer-based architec-
ture and the pre-training paradigm (Devlin et al. 2019) to
visual-linguistic tasks. Some (Li et al. 2020; Kim, Son, and
Kim 2021; Li et al. 2023a; Liu et al. 2023) propose to
pre-train Transformer-based models on large-scale image-
text datasets to align visual-linguistic information, leading
to substantial improvements in various down-stream tasks.
Others (Sun et al. 2019; Li et al. 2021; Xu et al. 2021;
Li et al. 2023b; Ding et al. 2022; Botach, Zheltonozhskii,
and Baskin 2022; Hui et al. 2021) extend the Transformer
framework to tackle video-language understanding tasks. In
this paper, we focus on simultaneously modeling spatial and
temporal representations in the context of cross-modal un-
derstanding for videos and text in the STVG task.

Method
The overall pipeline of our proposed model, CoSTA, is il-
lustrated in Fig. 3, which consists of a space-time feature
encoding stage and a space-time entangled decoding stage.
Given an untrimmed video, V , and a language query, S , the
aim of our model is to output an object tube, B = {bi}tei=ts

,
where bi = (xi, yi, wi, hi) indicates the spatial coordinates
of the object, and ts and te refer to the temporal boundaries
of the event. In this section, we first present space-time fea-
ture encoding, then describe space-time entangled decoding.
Finally, we detail the loss functions used for optimization.

Space-Time Feature Encoding
The space-time feature encoding involves video encoding
and multi-modal fusion. Intuitively, by mining space-time
correlations in the video and aligning multi-modal features,
the model can gain a deeper understanding of the events or
actions referred to by the text. To achieve this, we first pro-
pose a space-time collaborative encoder to extract video fea-
tures, then leverage a Transformer encoder to align video
and language representations with global multi-modal tem-
poral dependencies in mind.
Space-time collaborative video encoding. Leveraging 3D-
CNN is a straightforward approach to obtain temporal in-
formation in videos (Tran et al. 2015; Carreira and Zisser-
man 2017; Gao et al. 2017; Tran et al. 2019; Zhang et al.
2021). However, it also introduces the problem of spatial
misalignment, where temporal convolution or pooling pol-
lutes single-frame representations (Botach, Zheltonozhskii,
and Baskin 2022; Hui et al. 2021). Alleviating this prob-
lem is critical to addressing the STVG task, which demands
precise spatial representations to localize the object. To this
end, we propose a simple yet effective space-time collabo-
rative encoder to learn video representations.
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Figure 4: Feature map fusion in our space-time video en-
coder, where xl and yl are 2D feature maps and fused spatio-
temporal feature maps from the l-th block, respectively.

Given an input video, V ∈ RT×H′×W ′×C′
, we first em-

ploy a 2D backbone (e.g., ResNet) to extract four sets of
multi-scale spatial feature maps {xl}4l=1 for each frame,
where xl ∈ RT×Hl×Wl×Cl . Here, l ∈ {1, 2, 3, 4} indexes a
stage in the backbone network. Then the spatial features are
fused with temporal features modeled by a hierarchy of 3D
CNN (e.g., a 3D ResNet) layers. We denote the fused spatio-
temporal feature maps as {yl}4l=1, where y1 is directly ob-
tained by fusing first-stage outputs, and the rest of fusion is
operated as follows:

yl = ϕl(yl−1)⊙ xl, l ∈ {2, 3, 4} , (1)

where ϕl denotes four stages of the 3D backbone, xl de-
notes spatial feature maps, ‘⊙’ denotes the connection of
two pathways. We keep the temporal stride as 1 so that the
output feature maps are not temporally downsampled. As
empirically detailed in the ablation studies, we have exper-
imented with different connection functions and found that
using the sum with feature normalization works the best for
our model. We also detail the empirical study of alternative
designs in the supplementary material.

Finally, we employ the last spatio-temporal feature maps
y4 as video features, which are further projected and flat-
tened to yield the visual input of our multi-modal Trans-
former, denoted as Fv ∈ RT×HW×C .
Space-time multi-modal fusion. After obtaining the video
features, we employ a stack of Transformer encoder lay-
ers to fuse them with linguistic features, Fl ∈ RT×N×C ,
which are obtained from a pre-trained language model (e.g.,
RoBERTa (Liu et al. 2019c)) with an appended linear pro-
jection layer. The linguistic features are repeated T times to
align with the T frames.

Inspired by existing work on video Transformers (Arnab
et al. 2021; Jin et al. 2022), we perform factorized spatio-
temporal encoding, which also corresponds to the “factor-
ized encoder” variant in (Arnab et al. 2021). First, we con-
catenate the visual features with linguistic features at the
sequence dimension. Then, we add T learnable [CLS] to-
kens {ci}Ti=1 (one per frame) to obtain the input to the spa-
tial self-attention layer, yielding features denoted as Fs ∈
RT×(HW+N+1)×C . Notably, since the features are spatio-
temporal, the self-attention layers perform motion-aware
alignment between the video and text inputs. To model
long-term temporal dependencies, we concatenate the out-
put [CLS] tokens to form the input to the temporal interac-

tion layers, denoted as Ft ∈ RT×C . The spatio-temporal
multi-modal fusion is performed for N times, encoding the
video-language input into contextualized features, Fout ∈
RT×(HW+N)×C , for decoding. Meanwhile, we also obtain
a series of updated [CLS] tokens, {ci}Ti=1, which model
global multi-modal context for individual frames and are
further utilized for query generation in the next step.

Space-time Entangled Decoding
In order to predict the target “object tube” from the encoded
contextual features, previous work (Yang et al. 2022a; Jin
et al. 2022; Su, Yu, and Xu 2021) performs parallel de-
coding, where the spatial location of the object and tem-
poral boundaries of the event are only aware of each other
in a post-processing stage. The target tube is synthesized
by heuristically truncating the box sequence based on the
predicted temporal boundaries, which potentially introduces
invalid object-event combinations. To address this, we pro-
pose a space-time entangled decoder that bridges temporal
boundary prediction and spatial localization via “entangled
queries,” which explicitly align the event and the object.
Specifically, we first perform temporal decoding, then gen-
erate entangled queries to decode the spatial location. The
process is detailed in the following.
Temporal boundary prediction. The temporal decoder is
built with a stack of Transformer decoder layers. Each layer
mainly includes a self-attention sub-layer, a cross-attention
sub-layer, and a feed-forward sub-layer. The prediction is
based on a query-to-feature measure. As illustrated in the
left side of Fig. 5a, the temporal queries Q = {qi}Ti=1 are
formed by adding projected [CLS] tokens {ci}Ti=1 with 1D
sinusoidal time embeddings (Vaswani et al. 2017), which
can be formulated as:

qi = W(θt(ci) + PE(i)), i ∈ 1, 2, 3, ..., T, (2)

where θt denotes an MLP projection, PE denotes the 1D
positional encoding, and W denotes a linear projection. In
each decoding layer, the temporal queries first go through
inter-frame self-attention, then, each query only attends to
the encoded features of the corresponding frame in intra-
frame cross-attention. Finally, we apply a prediction head
on the output of the last layer to obtain the start and end
probabilities for each frame, denoted as pt ∈ [0, 1]2. The
frames with maximum and valid (i.e., t̂e > t̂s) start or end
probabilities are chosen as the temporal boundaries [t̂s, t̂e].
Entangled query generation. As detailed in Fig. 5a, we
bridge the temporal decoder with the spatial decoder via
“entangled queries,” which consist of an event part and an
object part. The event query refers to the time boundary pre-
dicted by the temporal decoder, and the object part is a set of
positional queries (Meng et al. 2021; Liu et al. 2022; Liang
et al. 2023) that perform spatial localization. Such design en-
forces the spatial decoder to ground objects according to the
correlation between the duration of the event and the spatial
appearance of the object in each frame. In our study, we in-
terpret the object query as 4D anchor boxes (Liu et al. 2022).
Our proposed method is a general strategy, and most of the
positional query variants (Meng et al. 2021; Liu et al. 2022)
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Figure 5: (a) Illustration of the spatio-temporal entangled de-
coder, and the entangled query generation process. The event
part of the entangled query indicates whether the object ap-
pears in the current frame, while the object part contains the
object’s spatial information. (b) The entangled query updat-
ing mechanism in our spatial decoder.

of DETR-like decoders can be integrated to our method by
being taken as the object part in our entangled query.

We start with the formulation of the event part. According
to the time boundaries predicted previously, we harvest a set
of binary labels {ai}Ti=1, which indicate whether each frame
belongs to the target event and can be formulated as:

ai =

{
1, if i ∈ [t̂s, t̂e],

0, otherwise.
(3)

Then we embed each label via a learnable embedding layer.
To model the duration of the event, 1D sinusoidal embed-
ding is performed within time boundary [t̂s, t̂e]. The event
part of the entangled query is finally formulated as follows:

Temi =

{
Emb(ai) + PE(i), if i ∈ [t̂s, t̂e],

Emb(ai), otherwise.
(4)

Due to the similar role between our object part and the
positional query in DETR-like models (for spatial localiza-
tion), following (Liu et al. 2022; Jin et al. 2022), we view
them as 4D anchor boxes, which are initialized as:

Anci = SE(σ(θs(ci))), (5)

where θs is MLP projection with 4 output channels, σ(·)
denotes the sigmoid function, and SE denotes 2D sinusoidal
positional encoding (Carion et al. 2020). The event part and
object part are then sent to the spatial decoder for spatial
localization.
Spatial localization. Fig. 5b depicts the details of the inter-
action mechanism of our entangled query in the spatial de-
coder. In each decoder layer, the event and object parts are
first summed up for inter-frame self-attention, then concate-
nated for intra-frame cross-attention. The event query and
object query aggregate the context features simultaneously,
hence the anchors are updated with awareness of the rela-
tionship between the event and the target object. The anchor

renewed by the last layer are the final spatial location of the
objects, bt ∈ [0, 1]4, within the time boundaries, t ∈ [ts, te].
Finally, the generated bounding box sequence forms the out-
put object tube, B̃ ∈ [0, 1]4(te−ts+1).
Training strategy. At the training stage, we employ a sam-
pling mechanism with ratio β ∈ [0, 1] to randomly select the
time binary label ai from ground truth or from the temporal
prediction, which leads to faster convergence.

Loss Function
The model takes in a couple of videos and linguistic expres-
sions, where each video is annotated with a set of bounding
boxes, B ∈ [0, 1]4(te−ts+1), and the temporal boundaries,
[ts, te]. We use the sum of the Generalized IoU (Rezatofighi
et al. 2019) loss and the L1 loss for spatial optimization:

Ls = λ0Lgiou(B, B̃) + λ1∥B − B̃∥1. (6)

As for temporal supervision, following (Yang et al. 2022a;
Jin et al. 2022; Rodriguez et al. 2020), we employ two 1D
Gaussian distributions, πs and πt, to represent “soft” super-
vision signals, and use the Kullback-Leibler divergence loss
to measure the distance between the prediction and ground-
truth distributions. The loss is formulated as follows:

Lt = LKLs(πs, π̃s) + LKLe(πe, π̃e). (7)

Lastly, we also supervise the “attendance” of the target
object in each frame, which is predicted from the [CLS] to-
kens from the encoder and the queries updated by the last
decoder layer, denoted as Le and Ld, respectively. The over-
all loss function is defined as:

L = Ls + λ2Lt + λ3Le + λ4Ld, (8)

where the different λs are balancing weights.

Experiments
Datasets and Metrics
Datasets. We evaluate our proposed method on two main-
stream benchmarks HC-STVG (Tang et al. 2021) and Vid-
STG (Zhang et al. 2020c), which are annotated with both
spatial bounding boxes and temporal boundaries. HC-STVG
dataset consists of 5,660 videos in human-centric scenar-
ios with annotated spatio-temporal tubes of the target per-
son and is divided into training and test subsets with 4,500
and 1,160 video-sentence pairs. This dataset is extended to
HC-STVG V2 with added data and cleaned labels, which
contains 10,131 and 3,482 videos in training and valida-
tion subsets, respectively. VidSTG dataset totally consists
of 99,943 sentence-tube pairs, where the language descrip-
tions can be categorized into 44,808 declarative sentences
and 55,135 interrogative sentences, with 79 types of various
objects queried in 6,924 videos. Annotations in VidSTG are
divided into training, validation and test subsets with 80,684,
8,956 and 10,303 distinct sentence-tube pairs corresponding
to 5,436, 602 and 732 videos.
Evaluation metrics. We follow (Zhang et al. 2020c; Yang
et al. 2022a; Jin et al. 2022) and choose m vIoU and
vIoU@R as the evaluation criteria. The vIoU metric is de-
fined as vIoU = 1

|Su|
∑

t∈Si
IoU

(
b̂t, bt

)
, where Su and Si

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

3328



Methods Params/M HC-STVG V1
m tIoU m vIoU vIoU@0.3 vIoU@0.5

STGVT — — 18.15 26.81 9.48
STVGBert — — 20.42 29.37 11.31
TubeDETR 185.7 43.70 32.40 49.80 23.50
STCAT 207.8 49.44 35.09 57.67 30.09
CoSTA (Ours) 235.0 52.85 38.97 63.10 38.19

Table 1: Performance comparisons of the state-of-the-art on
the HC-STVG v1 test set (%).

ST-Encoder ST-Decoder m tIoU m vIoU vIoU@0.3 vIoU@0.5
✓ ✓ 52.85 38.97 63.10 38.19
✓ 51.34 36.39 61.33 36.14

✓ 47.59 34.45 55.69 28.34

Table 2: Ablation results of spatio-temporal entanglement on
the HC-STVG v1 test set.

are the temporal union and intersection between the groung-
truth tubes and the predicted ones. Besides, bt and b̂t indicate
the ground-truth bounding box and the predicted bounding
box at frame t. The m vIoU score is the average of vIoU
scores over all samples in the test set. Moreover, vIoU@R
is defined as the percentage of test samples whose vIoU>R
among all videos in the test set. Additionally, we also adpot
tIoU and sIoU to individually evaluate the temporal or spa-
tial grounding accuracy of our model, where the former is
defined as the temporal IoU measured between the ground-
truth tubes and the predicted tubes Si/Su, while the latter
one is calculated as the average of all IoUs between labeled
bounding boxes and the predictions within ground-truth time
boundary.

Comparison with State-of-the-arts
In Tab. 1 and Tab. 4, we compare CoSTA with state-
of-the-art methods on two mainstream benchmarks HC-
STVG (Tang et al. 2021) and VidSTG (Zhang et al. 2020c)
for STVG task. Notably, our method attains the best per-
formance among all evaluation metrics across all datasets.
Specifically, on HC-STVG V1 our model outperforms the
second-best method STCAT (Jin et al. 2022) on m vIoU
and vIoU@0.5 metrics by large margins of 3.88%/8.10%.
Meanwhile, our approach also shows its superiority over all
existing methods on VidSTG across all performance met-
rics in Tab. 4. As the object queried in interrogative sen-
tences, our CoSTA attains 2.17%/1.38% absolute improve-
ment on m vIoU and vIoU@0.5 metrics comparing to the
second-best method (Jin et al. 2022). It is worth noting that
our CoSTA exhibits greater improvement when dealing with
HC-STVG dataset, which involves longer sentences with di-
verse events. This further demonstrates that our model ex-
cels better at entangling spatial and temporal information in
complex multi-modal contexts.

Ablation Study
In this section, we conduct extensive ablation experiments
to first study the impact of performing various degrees of

m tIoU m vIoU vIoU@0.3 vIoU@0.5
(a) 2D/3D visual backbones
2D backbone only 50.09 37.57 60.42 34.41
3D backbone only 52.59 36.08 59.10 32.67
2D & 3D backbones 52.85 38.97 63.10 38.19
(b) connection between video backbone
concatenate 48.62 32.67 59.89 32.69
Hadamard product 49.12 34.39 60.93 34.36
sum w. feat. norm. 52.85 38.97 63.10 38.19
(c) ratio of temporal ground truth for spatial decoding
0% 51.94 37.54 62.55 37.23
30% 52.37 38.41 62.78 37.69
50% 52.79 38.80 63.04 37.94
90% 52.85 38.97 63.10 38.19
100% 52.91 38.89 63.01 38.10

Table 3: Ablation studies on the HC-STVG v1 test set.

space-time entanglement in our framework, then ablate the
alternative implementation of our CoSTA. The experiments
are conducted on the test set of the HC-STVG v1 dataset.
Impact of the spatio-temporal entanglement. In this sec-
tion, we ablate the impact of space-time entanglement at
the feature encoding stage (ST-encoder) and the tube decod-
ing stage (ST-decoder) in Tab. 2. We first ablate the impact
of ST-encoder by replacing our video encoder with a 2D
ResNet-101 backbone and removing the temporal encoding
layers in our space-time multi-modal fusion Transformer.
As shown in the third line of Tab. 2, this leads to a large
drop of 5.26%, 7.41% and 9.85% on tIoU, vIoU@0.3 and
vIoU@0.5 metrics, respectively. To ablate our ST-decoder,
we remove the entangled query between temporal and spa-
tial decoder, hence the spatial encoder is not aware of the
time boundary of the event and the spatial query is directly
initialized from [CLS] token. We can observe that the re-
moval of the space-time entanglement in decoding stage
leads to a drop of 1.77% and 2.05% in vIoU@0.3 and
vIoU@0.5, demonstrating the advantages of our space-time
entangled decoder.
Components of the video encoder. We empirically study
the components of our visual encoder in Tab. 3a. It is worth
noting that our full visual encoder incorporating both back-
bones outperforms each individual one on all evaluation
metrics. We can observe that employing the 3D backbone
leads to an improvement of 2.50% on m tIoU compared to
the 2D backbone. However, due to the spatial misalignment
in single-frame representation, it underperforms the 2D-
backbone in terms of m vIoU, vIoU@0.3 and vIoU@0.5.
Our visual encoder capitalizes on the strengths of both 2D
and 3D backbones, resulting in the best performance on both
spatial and temporal metrics.
Connections between visual backbones. In Tab. 3b, we
explore different fusion methods between every block of
two visual backbones in our video encoder, including 1)
first concatenating the spatial and temporal features then us-
ing a convolutional layer to reduce channel dimension, 2)
Hadamard product between two types of feature map, and
3) summing up with feature normalization. We observe that
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Methods Parameters/M Declarative Sentences Interrogative Sentences
m tIoU m vIoU vIoU@0.3 vIoU@0.5 m tIoU m vIoU vIoU@0.3 vIoU@0.5

STGRN (Zhang et al. 2020c) — 48.47 19.75 25.77 14.60 46.98 18.32 21.10 12.83
STGVT (Tang et al. 2021) — — 21.62 29.80 18.94 — — — —
OMRN (Zhang et al. 2020b) — 50.73 23.11 32.61 16.42 49.19 20.63 28.35 14.11
STVGBert (Su, Yu, and Xu 2021) — — 23.97 30.91 18.39 — 22.51 25.97 15.95
TubeDETR (Yang et al. 2022a) 185.7 48.10 30.40 42.50 28.20 46.90 25.70 35.70 23.20
STCAT (Jin et al. 2022) 207.8 50.82 33.14 46.20 32.58 49.67 28.22 39.24 26.63
CoSTA (Ours) 235.0 52.08 35.09 48.44 34.03 51.84 29.86 41.31 28.02

Table 4: Performance comparisons of the state-of-the-art on the VidSTG test set (%).

Figure 6: Visualized examples (Tang et al. 2021) of the spatio-temporal tubes and corresponding attention maps of the ground
truth (green) and predictions produced by our approach (yellow) in comparison with STCAT (Jin et al. 2022) (cyan).

combining the spatial and temporal features by summing
with normalization performs best in our space-time collabo-
rative video encoder.
Ratio of the temporal ground truth in training. In Tab. 3c,
we ablate the ratio of the ground truth that employed in
the entangled query generation at training stage. Generally,
the performance improves as more ground truth data is in-
corporated into the training process. We observe that the
correct time boundary can help the model perform event-
object alignment. Notably, since the impact of exposure
bias (Zhang et al. 2019a), incorporating all ground truth
leads to a decrease of 0.09% in vIoU@0.5 comparing to
90% ground truth, indicating that balancing the gap between
training and inference is in demand for our entangled query.

Visualization
In Fig. 6, we visualize some challenging scenarios and
qualitatively compare the predicted tube of CoSTA with

STCAT (Jin et al. 2022) on HC-STVG dataset. Our method
gains more accurate time boundaries of the events in both
scenarios. Furthermore, in the scene depicted at the bot-
tom, we observe that STCAT suffers from inconsistency ob-
ject prediction. It struggles with correctly aligning the “run
away” event with the little boy presented in different frames
while CoSTA identifies the same object over frames.

Conclusion
In this paper, we have presented a comprehensive space-
time entanglement framework for tackling the task of spatio-
temporal video grounding, which addresses the issue of in-
sufficient space-time interaction in existing methods. Exten-
sive experiments have demonstrated its advantage with re-
spect to state-of-the-art methods.
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