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Abstract
Existing causal representation learning methods are based on
the causal graph they build. However, due to the omission
of bias within the causal graph, they essentially encourage
models to learn biased causal effects in latent space. In this
paper, we propose a novel causally disentangling framework
that aims to learn unbiased causal effects. We first introduce
inductive and dataset biases into traditional causal graph for
the physical concepts of interest. Then, we eliminate the neg-
ative effects from these two biases by counterfactual inter-
vention with reweighted loss function for learning unbiased
causal effects. Finally, we employ the causal effects into the
VAE to endow the latent representations with causality. In
particular, we highlight that removing biases in this paper is
regarded as a part of learning process for unbiased causal
effects, which is crucial for causal disentanglement perfor-
mance improvement. Through extensive experiments on real-
world and synthetic datasets, we show that our method out-
performs different baselines and obtains the state-of-the-art
results for achieving causal representation learning.

Introduction
Disentangled representation learning (DRL) (Bengio,
Courville, and Vincent 2013) aims at identifying and sep-
arating underlying independent semantic factors of interest
from observed data. Though DRL has achieved many ad-
vances (Gilpin et al. 2018; Creager et al. 2019; Zhu et al.
2020; Montero et al. 2020), these methods hold a collective
assumption that the underlying semantic factors are mutu-
ally independent, which is inadaptable in most real circum-
stances. This is because the underlying semantic factors of
interest are often causally related rather than mutually in-
dependent (Bengio et al. 2019). And not capturing causal
relationships between underlying factors limits the general-
ization of disentanglement on causally related factors sce-
narios (Shen et al. 2022). To this end, the task of causal rep-
resentation learning (Suter et al. 2019) has been proposed,
for learning causal relationships among underlying seman-
tic factors of interest during DRL.

To realize causal representation learning, many meth-
ods (Khemakhem et al. 2020; Yang et al. 2021; Brehmer
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et al. 2022; Lippe et al. 2022; Reddy, Balasubramanian et al.
2022; Shen et al. 2022) design complex mechanisms to en-
dow underlying semantic factors of interest with causality
learned from observed data. The important part of these
methods is learning causal effects of factor pairs. However,
these methods ignore the impact of inductive and dataset bi-
ases in the observed data on learning causal effects. Taking
CelebA dataset (Liu et al. 2015) in Figure 1 (a) as an ex-
ample, it includes semantic factors age, gender, bald and
beard. Figure 1 (b.1) shows the causal graph constructed by
current methods. The causal graph illustrates the causal rela-
tionships among age, gender, bald and beard. When models
learn causal effect from age to bald, there are inductive bi-
ases, factors affect bald besides age, that influence learning
causal effect. For instance, the image influences the values of
both age and bald. If models observe that bald is always with
sunglasses and not bald always occurs without sunglasses in
images, there will be negative effects from the image to bald
through sunglasses. Besides, some factors not in the image
such as genes, habits and jobs also influence the value of
bald. On this occasion, the causal effect from age to bald
learned by models is mixed by direct causal effect from age
to bald and negative effects from inductive biases. More-
over, dataset bias affects learning causal effect from age to
bald as well. Concretely, when not bald sample size far ex-
ceeds bald sample size, the learned causal effect from age to
bald will also be weakened, since bald sample is not easily
observed. With inductive and dataset biases, causal effects
they learned are biased that deviate from the actual values,
and thus the performance of causal representation learning
would be harmed.

To address the problem, in this paper, we propose Coun-
terFactual Intervention Variational AutoEncoder (CFI-VAE)
to remove the influences of inductive and dataset biases
in causal representation learning. Given images and weak
supervision annotations, CFI-VAE first learns an unbiased
causal effect matrix by counterfactual intervention with
reweighted loss function. Then, the images are transferred
to independent exogenous variables through an encoder. The
exogenous variables consist of independent representations
corresponding to the physical concepts of interest and other
information in images. With causal effect matrix, the in-
dependent representations are endowed with causality as
causal representations through a nonlinear Structural Causal

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

3234



1

43

2 x

e

d

(a)

(b)

x

ui uj e

ui0

x
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Figure 1: The motivation and key idea of our approach. In
part (a), we visualize the CelebA (Liu et al. 2015) with con-
cepts of (1)age, (2)gender, (3)bald and (4)beard. In part
(b), we show the comparisons between the traditional causal
graph (b.1) and our constructed causal graph with inductive
and dataset biases (b.2). In our causal graph, the red links de-
note the influences from inductive biases and the blue links
denote the influence from dataset bias. Note that the blue
links are dotted lines, because dataset bias has no causal ef-
fect on concept nodes while it can interfere with learning
causal effect through concept nodes. In part (c), to remove
inductive biases, we construct a causal graph with the nodes
x (image), ui (causal variable), uj (result variable) and e
(variables affect result variable while not in image, such as
gene, habit and job), where x and e are inductive biases, and
get the causal effect. Then, we adopt counterfactual inter-
vention on causal variable ui to cut off the impact from in-
ductive biases on it and get the counterfactual causal effect.
The inductive biases are removed by calculating the subtrac-
tion between the original and counterfactual causal effects.

Model (SCM) (Pearl 2009a). Finally, the model reconstructs
the images by a decoder with causal representations and
other information as input. In the process of CFI-VAE, the
core is removing inductive and dataset biases for learning
unbiased causal effects. For this, we introduce inductive and
dataset biases into traditional causal graph as Figure 1 (b.2).
Inspired by the causal inference methods (Pearl, Glymour,
and Jewell 2016), we adopt counterfactual intervention to
remove the negative effects from inductive biases. Specifi-
cally, as shown in Figure 1 (c), we construct a factual causal
graph, which includes the inductive biases, the causal vari-
able and the result variable. Then, we adopt counterfactual
intervention on causal variable to cut off the impact from in-
ductive biases on it. During this process, inductive biases are
unchanged between the factual and counterfactual. There-
fore, we can calculate the difference between the factual and
counterfactual to remove the negative effects from induc-
tive biases and obtain causal effect on result variable only
from causal variable. For removing dataset bias, we improve
the loss function that optimizes counterfactual intervention
module by adjusting the weight of each class samples con-
tributing to loss function. Through removing inductive and
dataset biases, our model learns unbiased causal effects and

improve the performance of causal representation learning.
In the experiments, we evaluate our method on real-world

and synthetic datasets. The significant performance gained
over baselines shows the effectiveness of our causal rep-
resentation learning method. The contributions of our pro-
posed method are summarized as follows:
• We show that inductive and dataset biases cause learning

biased causal effects and harm the performance of causal
representation learning.

• We propose a framework called CounterFactual Interven-
tion Variational AutoEncoder (CFI-VAE) to remove in-
ductive and dataset biases for learning unbiased causal
effects and improve the performance of causal represen-
tation learning.

• We demonstrate that the proposed CFI-VAE is more ef-
fective than the state-of-the-art methods for achieving
causally disentangling representation.

Related Work
Causal representation learning approaches. Current ex-
isting causal representation learning methods mostly fall
broadly into two categories. The first category meth-
ods (Ahuja, Hartford, and Bengio 2022; Brehmer et al. 2022;
Gresele et al. 2021; Lachapelle et al. 2022; Yao et al. 2021;
Lippe et al. 2022) realize causal representation learning un-
der supervision of ground truth counterfactual images gen-
erated according to causal graph. However, the ground truth
counterfactual images are often not accessible in real-world
cases, such as CelebA (Liu et al. 2015). The second category
methods (Kocaoglu et al. 2017; Yang et al. 2021; Shen et al.
2022; Reddy, Balasubramanian et al. 2022) realize causal
representation learning under supervision of annotations and
causal graph. Particularly, (Kocaoglu et al. 2017) employed
a generator neural network to fit the causal effects of causal
graph in annotations, for implicit representation learning.
(Yang et al. 2021) utilized VAE (Kingma and Welling 2013)
network with an SCM (Pearl 2009a) to endow explicit repre-
sentations with causal effects of causal graph in annotations,
while the causal graph possessed spurious links. (Shen et al.
2022) adopted GAN (Goodfellow et al. 2014) architecture to
learn causal effects of causal graph in annotations and trans-
mit them in explicit representations through an SCM. How-
ever, all these methods ignore the impact of biases which
affects the performance of learning causal effects.

Causal inference. Causal inference (Pearl et al. 2000)
has garnered increasing attention in computer vision, in-
cluding visual recognition (Tang et al. 2020), vision dia-
log (Liu et al. 2022), semantic segmentation (Zhang et al.
2020) and image reconstruction (Sauer and Geiger 2021), as
it helps to discern causal effect from conventional correla-
tion effect (Pearl 2009a). Concretely, causal inference uti-
lizes the additional notion of intervention to remove bias ef-
fect for obtaining causal effect from conventional correlation
effect (Pearl et al. 2000).

Removing biases. There are inductive bias and dataset
bias influencing causally disentangling performance. For in-
ductive bias, causal inference could remove it through causal
intervention and counterfactual. (Yue et al. 2020; Wang et al.
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Figure 2: Our causally disentangling framework CFI-VAE. Given image x and annotations u, the model learns an unbiased
causal effect matrix A. During this process, counterfactual intervention is adopted to remove inductive biases x and e, and
the loss function (Lcausal) optimizing the counterfactual intervention module is reweighted to re-balance class distribution for
removing dataset bias d. Then, the encoder transfers x to exogenous variables ϵ, which consist of independent representations
ϵs corresponding to the physical concepts of interest and other information in the image ϵr. After that, ϵs are endowed with A
as causal representations zs through the nonlinear SCM. Next, causal representations zs and other information ϵr are merged
into latent representations z. Finally, the decoder reconstruct the image x with z as input.

2021; Zhao et al. 2022) utilized causal intervention to re-
move inductive bias effect for obtaining causal effect. (Tang
et al. 2020; Bhat et al. 2022; Niu et al. 2021) propose that
comparing between the factual and counterfactual will natu-
rally remove the effect of bias, since the bias is the only thing
unchanged between the two alternatives. Dataset bias is
largely attributed to unbalance class distribution of datasets.
The most widely-used solution is to re-balance the contri-
bution of each class by re-sampling, re-weighting and logit
adjustment (Zhang et al. 2023). Re-sampling methods (Hu
et al. 2020; Mahajan et al. 2018) adjust class sample sizes for
re-balancing. Re-weighting methods (Cao et al. 2019; Cui
et al. 2019) attempt to endow different classes with different
weights in loss function. Logit adjustment methods (Menon
et al. 2020; Wu et al. 2021) adjust the prediction logits to
alleviate the class imbalance.

Methodology
Problem Definition
Consider a set of images X with labels U , where each im-
age x ∈ X has annotations u ∈ U . The task of causally
disentangling is to fit causal effects of causal graph in an-
notations u and inject them into latent representations of
image x. The most important thing in the task is learning
appropriate causal effects. Many methods design complex
models to learn causal effects. However, they don’t take in-
ductive and dataset biases into account, which have negative
effects on learning causal effects. Taking learning causal ef-
fect from annotation age to annotation bald as an example,
for inductive bias, image x affects the values of two annota-
tions simultaneously and some factors not in image such as
genes, habits and jobs also affect bald. When these factors
mix together, it’s difficult to observe causal effect on bald
only from age. For dataset bias, unbalanced class distribu-

tion between bald and not bald also harms learning causal
effect from age to bald. Therefore, our goal is to remove in-
ductive and dataset biases to learn unbiased causal effects
for improving causally disentangling performance.

Overall Model
The architecture of CFI-VAE is depicted in Figure 2. Given
image x and annotations u, we first obtain the unbiased
causal effect matrix A through counterfactual intervention
with reweighted loss function. Then, we transfer image x to
independent Gaussian exogenous factors ϵ through an en-
coder. Exogenous factors ϵ consist of independent represen-
tations ϵs corresponding to the physical concepts of inter-
est and other information in the image ϵr. With independent
representations ϵs and matrix A, familiar with (Yang et al.
2021), we convert ϵs to causal representations zs through
a nonlinear SCM (Pearl 2009a). Note that causal represen-
tations zs possess linear causality through structural equa-
tions, and then are extended to nonlinear cases through neu-
ral networks. Finally, we merge causal representations zs
and other information ϵr into latent representations z and
z are transformed to image x through a Decoder. Overall,
CFI-VAE is a three-step process that firstly extracts latent
representations from the image, then injects causal effects
of annotations into latent representations through SCM and
finally reconstructs the image with latent representations.
Therefore, to make sure the learned latent representations
conform to actual representations of image, the objective of
CFI-VAE is given by:

Lgen = DKL(q(z|x, u), p(z|x, u)) (1)

where DKL represents the Kullback-Leibler (KL) diver-
gence, x is the image, z are the latent representations, u are
the annotations, q is learned representations distribution and
p is actual representations distribution. However, the actual
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distribution p(z|x, u) cannot be calculated directly (Doersch
2016), thus we convert the objective as Equation 2:

L = Lrec + Lkl

= −Ez∼qE,F (z|x,u)logpD(x|z, u)
+DKL(qE,F (z|x, u), pλ(z|u))

(2)

where E is the Encoder, D is the Decoder, F is the causal
functions in nonlinear SCM and λ represents functions of
z conditioning on u. Details of proof are given in Ap-
pendices. The first term Lrec can be calculated as Binary
Cross-Entropy loss between input and reconstructed images.
The second term Lkl represents KL divergence between
qE,F (z|x, u) and pλ(z|u). The former is a variational poste-
rior distribution and the latter is a factorized Gaussian condi-
tional prior. In order to get Lkl, we first obtain qE,F (z|x, u).
In the nonlinear SCM, like (Yang et al. 2021), independent
representations ϵs are transformed to linear causal represen-
tations zl through zl = AT zl + ϵs ⇒ zl = (I −AT )−1ϵs,
and to nonlinear causal representations zs through neural
networks f . Thus, qE,F (z|x, u) can be obtained by:

qE,F (z|x, u) = (f((I −AT )−1ϵs), ϵr), ϵ ∼ N(0, I) (3)

where I is an identity matrix, ϵr is other information in the
image and A is the causal effect matrix we need to learn
through Lcausal. Then, pλ(z|u) represents the Gaussian dis-
tribution of causal representations zs conditioning on anno-
tations u, given by (Yang et al. 2021):

pλ(z|u) = (Πn
i pλ(zsi |ui), ϵr),

pλ(zsi |ui) = N (λ1(ui), λ
2
2(ui))

(4)

where λ1 and λ2 are functions of zs conditioning on u,
λ1(u) = u and λ2(u) = 1 in this paper, and pλ(z|u) is
denoted by sufficient statistics T (z) = (µ(z), σ(z)).

Note that linear causal representations zl are transformed
to nonlinear causal representations zs through neural net-
works f . Since neural networks are black-box and indeter-
minate, we need to make causal effects in zs respect to coun-
terparts in zl. Like (Yang et al. 2021), we optimize f with
loss function:

Lf = ∥zs − f(AT zs; η)− ϵs∥
2 ≤ κ (5)

where η are parameters of f(·) and κ is the small positive
constant value.

Therefore, the overall loss of CFI-VAE is as follows:

Ltotal = Lrec + Lkl + aLcausal + bLf (6)

where a and b denote regularization hyper-parameters and
(a, b) = (1, 1) in this paper.

Causal Graph
To systematically study how inductive bias influences learn-
ing causal effect, we construct a causal graph G (Pearl 2022)
as Figure 1 (c.1). G consists of four variables: image x,
causal annotation variable ui, result annotation variable uj
and other variables e (affect result variable while not in im-
age), where x and e are inductive biases. And the causal
links in G show how inductive biases, causal and result vari-
ables interacting with each other. In a link x → ui → uj ,

x is the parent variable of ui, and uj is the child variable of
ui. This link represents there is a causal effect from parent
variable to child variable. x → (ui, uj) indicates annota-
tions are influenced by the image. In causal inference the-
ory (Pearl 2009b), variable x is a confounder which influ-
ences estimating causal effect of variable ui on uj , because
x simultaneously affects ui and uj (Chen et al. 2021). The
link e → uj indicates variable uj is influenced by e besides
x and ui. For example, when estimating causal effect of age
on bald, the causal effect observed by models deviated from
the actual value, because it is mixed by effects from image,
age and other factors (gene, habits and jobs) together.

Learning Unbiased Causal Effects
Since causal effect observed by models is direct causal effect
from causal variable to result variable, mixing with effect
from inductive biases. Inspired by causal inference meth-
ods (Pearl 2009a, 2022), we employ counterfactual inter-
vention to separate direct causal effect from effect of induc-
tive biases. Concretely, counterfactual intervention wipes
out causal variable through operation do(·), while induc-
tive biases are not affected and maintain the original values.
In this case, causal effect observed by models is just effect
given by inductive biases. Through calculating the subtrac-
tion between two causal effects before and after counterfac-
tual intervention, we elegantly separate direct causal effect
from effect of inductive biases, as shown in Figure 1 (c).

Current methods estimate causal effects through a classi-
fier (Chen et al. 2021; Tang et al. 2020; Reddy, Balasubra-
manian et al. 2022). Concretely, to learn causal effect from
annotation ui to annotation uj , given image x and annota-
tions including ui except uj as inputs, we train a classifier to
predict uj . In this case, prediction results of classifier should
respect to the class of uj . Then, we wipe out ui from inputs
by setting it to zero, prediction results should deviate from
the class of uj , since ui is a cause of uj . Therefore, we opti-
mize the classifier by loss function:

Lcausal = CE[C(ui,Ω), uj ]− γCE[C(ui0 ,Ω), uj ],
(7)

where CE is Cross-Entropy loss, C is classifier, ui is the
original value, ui0 denotes that wiping out ui by setting it to
zero, Ω are other inputs of classifier and γ denotes a dynamic
parameter.

In this way, we define causal effect observed by models
as prediction logits Y for class of uj (Tang, Huang, and
Zhang 2020). Then, in the field of causal inference, the di-
rect causal effect from ui to uj is calculated as Total Direct
Effect (TDE) (VanderWeele 2013; Pearl 2022):

TDE(ui → uj) = Yui
(Ω)− Yui0

(Ω) (8)

Now we remove the influence of inductive bias on learn-
ing causal effect. However, dataset bias also harms learning
causal effect. Concretely, the momentum in Adam optimizer
(Kingma and Ba 2014) or SGD optimizer (Qian 1999), is in-
fluenced by unbalanced class distribution of datasets (Tang,
Huang, and Zhang 2020). Before analyzing how dataset
bias influences learning causal effects with classifiers, we
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take a brief review on the Adam optimizer with momen-
tum (Kingma and Ba 2014):

mt = β1 ·mt−1 + (1− β1) · gt,
m̂t = mt/(1− βt

1),
θt = θt−1 − α · m̂t/(

√
v̂t + ϵ)

(9)

where in the t-th iteration: model parameters θt, gradient gt,
momentum mt, momentum decay ratio β1, stepsize α and
second raw moment estimate v̂t.

Theorem 1 Let m is momentum in Adam optimizer, and it
depends on the gradient over all classes. For a balanced
dataset, m is equally contributed by every class. When class
distribution becomes unbalanced, m will be dominated by
head classes. In this way, classifier trained under unbal-
anced m would generate inappropriate prediction logits
(causal effects).

Based on Theorem 1, we adopt a reweighted loss func-
tion (Cui et al. 2019) to remove influence from dataset bias.
Concretely, we convert Lcausal as:

Lcausal =
1−r
1−rk

(CE[C(ui,Ω), uj ]− γCE[C(ui0 ,Ω), uj ]),
(10)

where r is a hyper-parameter and k is sample number of the
class of uj and r = 0.5 in this paper.

In this way, we remove influences of inductive and dataset
biases and obtain unbiased causal effect matrix A to guide
causal representation learning.

Identifiability Analysis
In this section, we show that our model is identifiable. The
core of the problem is that the true parameters θ and the
learned parameters θ̃ by hypothetical functions should be
equivalent (Yang et al. 2021). Therefore, we define our
causally disentangling model (CDM) firstly:

Definition 1 (Causally disentangling model (CDM)) A
causally disentangling model Mθ = ⟨E,S,D, T, λ⟩ consists
of

• an encoder E: image X → exogenous variables ϵ,
• a nonlinear SCM S, which faithfully respects to its causal

graph,
• a decoder D: latent representations Z → image X ,
• sufficient statistics T , and
• conditioning functions λ.

With Definition 1, we define the true causally disentan-
gling model as Mθ = ⟨E,S,D, T, λ⟩ and the learned
causally disentangling model as M̃θ̃ = ⟨Ẽ, S̃, D̃, T̃ , λ̃⟩.
Then, the problem of equivalence between θ and θ̃ is trans-
formed to equivalence between CDMs Mθ and M̃θ̃. Similar
to (Brehmer et al. 2022), we define two CDMs are equivalent
as:

Definition 2 (CDM equivalence) Let Mθ and M̃θ̃ be two
CDMs with identical observation space. A mapping between
them is defined as ψ for exogenous variables and latent rep-
resentations that tells us how to reparameterize them, such
that encoder, nonlinear SCM, decoder, sufficient statistics

and conditioning function of M̃θ̃ are compatible with corre-
sponding elements of Mθ reparameterized through the map-
ping ψ. Mθ and M̃θ̃ are equivalent, Mθ ∼ M̃θ̃, if and only
if there is a CDM mapping ψ between them.

Reviewing the causally disentangling process, we can
summarize the true causally disentangling process and the
learned causally disentangling process as follows:

x ∼ X , ϵ = E(x), z = (S(ϵs), ϵr), x = D(z),

x ∼ X , ϵ̃ = Ẽ(x), z̃ = (S̃(ϵ̃s), ϵ̃r), x = D̃(z̃).
(11)

Based on Equation 11, then we could define a mapping:

ψ :

{
T (E(x)) = L1T̃ (Ẽ(x)) + l1 : ϵ→ ϵ̃

T (D−1(x)) = L2T̃ (D̃
−1(x)) + l2 : Z → Z̃

(12)
where decoder function D is differentiable and the Jacobian
matrix of D is of full rank, the sufficient statistics T ̸= 0
almost everywhere for z, L1 is an invertible matrix, L2 is an
invertible diagonal matrix with diagonal elements associated
to u and l1, l2 are vectors.

Through this, we can show that ψ is a mapping that proves
CDM equivalence Mθ ∼ M̃θ̃ and makes learned parame-
ters θ are compatible with the true ones. The detailed proof
is available in Appendices.

Experiments
Experimental Setups
Datasets. we conduct experiments on real-world CelebA
dataset (Liu et al. 2015) and synthetic datasets. 1) CelebA
dataset contains face images with 40 attributes annotations.
Following previous causally disentangling methods (Yang
et al. 2021; Shen et al. 2022), we select images with different
attributes subsets as Age dataset and Smile dataset respec-
tively. For causal graph, age and gender influence bald and
beard in Age dataset, and gender, smile and mouth influence
eye in Smile dataset. In CelebA dataset, image, gene, habit
and job are inductive biases and unbalanced class distribu-
tion is dataset bias. For both Age and Smile datasets, we ran-
domly select 30,000 images for training and 7,500 images
for test. 2) For synthetic datasets, we build Pendulum (Pend)
dataset and Flow dataset like (Yang et al. 2021). For causal
graph, pendulum angle and light position influence shadow
length and shadow position in Pend dataset. And ball size
influences water height, and water height and hole position
influence water flow in Flow dataset. In synthetic datasets,
the original states of physical concepts are inductive biases
and no dataset bias because of balanced class distribution.
For both Pend and Flow, we build 5,000 images for train-
ing and 1,000 images for test. Due to pages limitations, we
visualize causal graphs of all datasets in Appendices.

Baselines. We compare our model with three state-of-the-
art methods on causal representation learning under supervi-
sion of annotations: CausalVAE (Yang et al. 2021), Causal-
GAN (Kocaoglu et al. 2017), and DEAR (Shen et al. 2022).
Among these models, causal graphs are given correctly in
CausalGAN and DEAR, while with spurious relationships
in CausalVAE. To compare fairly, we remove spurious rela-
tionships in CausalVAE as CausalVAE-D.
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Figure 3: Intervention results of CFI-VAE, CausalVAE-D, CausalGAN and DEAR on Age dataset, where the intervention
factors are age, gender, bald and beard respectively from up to bottom.

MIC↑ TIC↑ ISR(%)↑ CERD(%)↑ SCR(%)↓
Method Age Smile Pend Flow Age Smile Pend Flow Age Smile Pend Flow Age Smile Pend Flow Age Smile Pend Flow
CausalVAE 0.609 0.800 0.937 0.721 6.238 8.873 10.553 8.192 100 100 100 100 50 100 100 67 63 25 38 55
CausalVAE-D 0.608 0.802 0.951 0.773 6.427 8.973 10.845 7.452 100 100 100 75 75 75 100 67 38 25 38 11
CausalGAN 0.244 0.308 - - 1.466 2.018 - - 75 100 - - 50 50 - - 25 13 - -
DEAR 0.554 0.660 0.373 0.406 4.884 5.921 1.868 1.968 75 75 75 75 25 75 100 67 13 25 0 100
CFI-VAE 0.626 0.873 0.997 0.992 7.495 10.429 11.534 11.291 100 100 100 100 100 100 100 100 0 0 0 0

Table 1: Comparison with the state-of-the-arts on Age, Smile, Pend and Flow datasets. MIC is a normalized metric and TIC is
based on 64 batch size. Best performances are bold. Note that CausalGAN model setup is based on binary classification datasets
and cannot be used for multiclass classification datasets (Pend and Flow).

Evaluation Metrics. Similar to (Yang et al. 2021), we
adopt Maximal Information Coefficient (MIC) and Total
Information Coefficient (TIC) (Kinney and Atwal 2014),
which estimates disentanglement ability that how much
physical meaning that latent representations possess. How-
ever, MIC and TIC cannot reflect whether model learned
causality among representations. Therefore, we propose
Causal Effect Realization Degree (CERD) and Spurious
Correlation Rate (SCR) for evaluating causality. CERD
measures the ratio of the number of learned causal relation-
ships to the number of causal relationships set in advance,
and SCR measures the ratio of the number of learning spu-
rious relationships to the number of all spurious relation-
ships. Besides, we propose Intervention Success Rate (ISR),
which measures the ratio of intervening representations suc-
cessfully, as an auxiliary verification for MIC and TIC. In
the experiments, CERD, SCR and ISR are evaluated through
randomly sampling a set of images where representations
are intervened respectively.

Implementation Details. We train and evaluate our
model on both real-world and synthetic datasets. Similar
to CausalVAE (Yang et al. 2021), the real-world CelebA
dataset are resized at 128 × 128 resolution while the
synthetic dataset are built at 96 × 96 resolution. During
training, batch size is set as 64. For optimizing, we uti-
lize Adam (Kingma and Ba 2014) with Cosine Anneal-
ing (Loshchilov and Hutter 2016). More details are given
in Appendices.

Quantitative Studies
To verify the effectiveness of our method, we compare the
performance of CFI-VAE with baseline methods as in Table
1. Our model can consistently outperform different baselines
on both real-world datasets and synthetic datasets, justifying
the effectiveness of our framework in causal representation

learning. Concretely, for disentanglement, CFI-VAE raises
MIC to 0.872 on average and TIC to 10.187 on average.
In contrast, the representations learned by those compared
methods do not correspond to the causal concepts of interest
well. These results illustrates that CFI-VAE possesses better
disentanglement ability than baseline methods. For causal-
ity, which is evaluated using CERD and SCR, and the results
in Table 1 demonstrate that our model captures all causalities
according to causal graph set in advance when implement-
ing intervention on latent representations. In contrast, CERD
and SCR of baseline methods illustrate that they cannot learn
all causalities and capture spurious relationships. These re-
sults suggest that our model endows latent representations
with better causality than baselines.

Qualitative Studies
To qualitatively analyze how our method realizes better
causally disentangling than baselines, we obtain intervened
images through performing interventions on latent represen-
tations and observe the validity of intervened images cor-
responding to the causal graph set in advance. Taking Age
dataset as an example, Figure 3 shows intervention images
of CFI-VAE, CausalVAE-D, CausalGAN and DEAR respec-
tively. For CFI-VAE, we can observe that when age is in-
tervened, i.e. old turns young, bald and beard change, and
that when gender is intervened, i.e. female turns male, bald
and beard change. And when bald is intervened, i.e. one
turns balder, age, gender and beard are unaffected, and when
beard is intervened, i.e. beard disappears, age, gender and
bald are unaffected. These observation results strictly con-
form to the causal graph of Age dataset set in advance as
shown in Figure 1 (b.2). For CausalVAE-D, we can observe
that intervention on age changes gender, that intervention
on bald changes gender and beard, and that intervention on
beard changes gender. For CausalGAN, intervention on age
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MIC↑ TIC↑ ISR(%)↑ CERD(%)↑ SCR(%)↓
Method Age Smile Pend Flow Age Smile Pend Flow Age Smile Pend Flow Age Smile Pend Flow Age Smile Pend Flow
CFI-VAE w/db 0.619 0.860 - - 7.223 10.240 - - 50 100 - - 25 25 - - 0 0 - -
CFI-VAE w/ib 0.615 0.851 0.785 0.973 6.466 9.125 8.091 10.751 100 50 100 100 25 75 100 33 0 0 13 11
CFI-VAE 0.626 0.873 0.997 0.992 7.495 10.429 11.534 11.291 100 100 100 100 100 100 100 100 0 0 0 0

Table 2: Ablation analysis for removing biases process of our method on Age, Smile, Pend and Flow datasets. db refers to
dataset bias and ib refers to inductive bias. Best performances are bold. Note that Pend and Flow datasets do not have dataset
bias because of obeying uniform distribution.

MIC↑ TIC↑ ISR(%)↑ CERD(%)↑ SCR(%)↓
Method Age Smile Pend Flow Age Smile Pend Flow Age Smile Pend Flow Age Smile Pend Flow Age Smile Pend Flow
CausalVAE 0.380 0.520 0.801 0.600 3.202 4.529 8.602 4.933 100 75 100 75 25 50 100 67 38 63 50 33
CausalVAE-D 0.397 0.539 0.764 0.643 3.340 4.779 8.024 6.184 100 100 100 75 50 100 100 67 38 63 50 33
CausalGAN 0.198 0.258 - - 0.931 1.008 - - 75 100 - - 25 25 - - 13 13 - -
DEAR 0.248 0.325 0.245 0.241 1.377 1.884 1.624 1.653 50 50 75 50 25 25 100 100 25 63 75 44
CFI-VAE 0.461 0.664 0.921 0.953 5.391 6.319 9.807 10.260 100 100 100 100 75 100 100 100 13 13 25 11

Table 3: Comparison with the state-of-the-arts on Age, Smile, Pend and Flow datasets under proportion of labeled samples as
10%. Best performances are bold.

cannot change beard, and beard is not intervened success-
fully. For DEAR, intervention on age cannot change bald,
bald is not intervened successfully and intervention on beard
changes age. All these spurious results of baselines violate
the causal graph set in advance. Due to pages limitations,
we present qualitative results on other datasets that Smile of
CelebA dataset and synthetic datasets in Appendices.

Ablation Studies
For all of our ablation studies, we conduct experiments on
Age, Smile of CelebA datasets and Pend and Flow of syn-
thetic datasets.

Ablation study for removing biases process. To demon-
strate the effectiveness of removing inductive bias and
dataset bias in learning causal effects to causally disentan-
gling, we maintain two kinds of bias respectively, and other
components are kept unchanged. The ablation analysis re-
sults are shown in Table 2. With inductive bias, MIC and
TIC are 0.806 and 8.608 on average, which are obviously
less than the full model. And CERD and SCR results are
also weakened. These results illustrate that the model cannot
realize both disentangled representation and causality well
with inductive bias in learning causal effects. With dataset
bias, though MIC, TIC and ISR are comparative to the full
model, CERD is weakened. These results illustrate that the
model could not realize endowing disentangled representa-
tion with causality well with dataset bias in learning causal
effects.

Ablation study for proportion of supervision annota-
tions. Since DEAR (Shen et al. 2022) expands causally
disentangling task under semi-supervision besides full-
supervision. To demonstrate full proportion supervision are
needed for causally disentangling, we reduce the propor-
tion of supervision annotations according to DEAR’s set-
ting that supervision proportion of 10%, 1% and 0.1%, and
other components are kept unchanged. Due to pages limita-
tions, we only present the results under supervision propor-

tion of 10% in Table 3, and results under other supervision
proportions are in Appendices. MIC and TIC are 0.749 and
7.944 on average for supervision proportion of 10% for CFI-
VAE. For all methods, the decline of MIC and TIC illus-
trates that the performance of disentangling representation
is greatly weakened as supervision proportion reduces. And
this directly leads that model cannot intervene latent repre-
sentations successfully in intervention experiments, which
is shown as the decline of ISR. Besides, the drop of super-
vision proportion also leads that model fails to endow latent
representations causality according to causal graph set in ad-
vance, which is shown by CERD and SCR. Moreover, we
can observe that CFI-VAE outperforms different baselines in
causally disentangling on different supervision proportions.
In summary, the ablation analysis illustrates that full propor-
tion of supervision is still needed for causally disentangling
task strictly conforming to causal graph set in advance.

Conclusion

In this paper, we propose a novel causally disentangling
framework called CFI-VAE, aiming to remove inductive and
dataset biases for learning unbiased causal effects in the la-
tent space. Counterfactual intervention is applied by replac-
ing the factual annotations of images with the counterfac-
tual ones, and get factual causal effect and counterfactual
causal effect through the classifier. By calculating the sub-
traction of two causal effects, the inductive bias is removed.
For removing dataset bias, loss function optimizing coun-
terfactual intervention module is reweighted to re-balance
class distribution. Through removing inductive and dataset
biases, our method can learn unbiased causal effects for im-
proving performance of causally disentangling. In the ex-
periment, we evaluate our method on real-world and syn-
thetic datasets. The improvement in performance over vari-
ous baselines demonstrates the effectiveness of our method.
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