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Abstract

Panoptic Scene Graph Generation (PSG) parses objects and
predicts their relationships (predicate) to connect human lan-
guage and visual scenes. However, different language pref-
erences of annotators and semantic overlaps between predi-
cates lead to biased predicate annotations in the dataset, i.e.
different predicates for the same object pairs. Biased pred-
icate annotations make PSG models struggle in construct-
ing a clear decision plane among predicates, which greatly
hinders the real application of PSG models. To address the
intrinsic bias above, we propose a novel framework named
ADTrans to adaptively transfer biased predicate annotations
to informative and unified ones. To promise consistency and
accuracy during the transfer process, we propose to observe
the invariance degree of representations in each predicate
class, and learn unbiased prototypes of predicates with dif-
ferent intensities. Meanwhile, we continuously measure the
distribution changes between each presentation and its pro-
totype, and constantly screen potentially biased data. Finally,
with the unbiased predicate-prototype representation embed-
ding space, biased annotations are easily identified. Experi-
ments show that ADTrans significantly improves the perfor-
mance of benchmark models, achieving a new state-of-the-
art performance, and shows great generalization and effec-
tiveness on multiple datasets. Our code is released at https:
//github.com/lili0415/PSG-biased-annotation.

Introduction
Panoptic Scene Graph Generation (PSG) (Yang et al. 2022)
aims to simultaneously detect instances and their relation-
ships within visual scenes (Chang et al. 2023). Instead of
coarse bounding boxes used in Scene Graph Generation
(SGG) (Li et al. 2021b; Xu et al. 2017; Lin et al. 2020; Li
et al. 2021a; Chen et al. 2020b; Yao et al. 2022, 2021), PSG
proposed to construct more comprehensive scene graphs
with panoptic segmentation (Kirillov et al. 2019). PSG
methods have the potential to bridge the gap between vi-
sual scenes and human languages and thus has the ability
to contribute to related vision-language tasks, such as image
retrieval (Johnson et al. 2015; Wang et al. 2022a,b; Lv et al.
2023), image captioning (Chen et al. 2020a; Wei et al. 2022),
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Figure 1: (a) Exemplar panoptic segmentation results of an
input image. (b) present annotation transfer process. Our
proposed method promotes the original dataset (annotations
in red) by identifying biased annotation and potentially posi-
tive samples, and then adaptively and accurately transferring
them to target triplet pairs (annotation in green).

and visual question answering (Teney, Liu, and van den Hen-
gel 2017; Li et al. 2022b; Antol et al. 2015; Xiao et al. 2022;
Fang et al. 2023).

However, PSG methods currently suffer from suboptimal
performance due to biased and noisy information in gener-
ated scene graphs, stemming from the problem of biased an-
notations.

Exploring the inference mechanism of PSG and SGG
models, it is translating visual scenes to linguistic descrip-
tions, i.e., mapping visual instances to subjects/objects, and
their relationships to predicates. We regard the problem
above as the semantic ambiguity between predicates, and
the contradictory mappings from visual to linguistics. There
are a lot of semantic overlaps and hierarchical relationships
among predicates, e.g., the superclass predicate on for its
subclass predicate standing on. Because of the semantic
overlaps and the inconsistent preferences of annotators, con-
tradictory mappings from visual to linguistics unavoidably
exist in the training dataset, and deteriorate the long-tail dis-
tribution problem of the training dataset. As shown in Fig. 1,
with the difficulty of applying a unified standard for anno-
tation, annotators tend to annotate general predicate labels
(e.g., “on” and “beside”) for simplicity instead of informa-
tive ones (e.g., “standing on” and “looking at”). As a result,
models cannot learn a consistent mapping from visual to se-
mantics, instead, they entangle predicate labels and the prior
knowledge of long-tail distribution, leading to serious harm
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for model training stage.
Previous works (Zellers et al. 2018; Yu et al. 2020; Yao

et al. 2022; Xu et al. 2017; Tang et al. 2019, 2020; Lin
et al. 2020) exploit numerous model architectures to alle-
viate the bias problem, but these models trained by biased
datasets achieve relatively limited performances, and cannot
fundamentally solve the problem. Zhang et al. (2022) have
proposed to enhance the training dataset by a data transfer
framework, which transfers head predicate labeled samples
to tail predicate labeled ones. However, their framework in-
accurately transfers a significant number of samples, leading
to imbalanced performance among predicates.

To alleviate the biased annotation problem, we propose
to construct a promised and reasonable dataset, which in-
cludes plentiful samples with consistent predicate annota-
tion. Specifically, there exist two types of predicates that
need to be refined: indistinguishable triplet pairs with se-
mantic ambiguity and potentially positive samples missed
by annotators (Zhang et al. 2022). We transfer these two
kinds of biased annotations to high-quality consistent predi-
cate annotations (Zhang et al. 2023; Lv et al. 2022).

We introduce a new adaptive data transfer framework
named ADTrans for PSG. Our framework emphasizes con-
sistency during the data transfer process, and performs the
data transfer process adaptively and accurately. Besides the
prior knowledge of dataset distribution, we believe textual
information alignment helps in building consistency dur-
ing the data transfer process. A general way is leveraging
language models to extract semantic embeddings, however,
words embedding vectors generated by language models of-
ten have high similarity because of the broad class inter-
section of the open world, leading to the misalignment of
the textual domain and the relationship domain. Thus, we
propose a prototype-based predicate representation learning
method. Unbiased predicate representations are expected to
share invariant features within each predicate class. Thus,
we employ contrastive learning to increase intra-class cohe-
sion and inter-class separation, while focusing more on hard
samples (visually similar predicates). Meanwhile, we ob-
serve the invariance degree of representations in each pred-
icate class, and learn predicate prototypes with dynamic in-
tensities. We continuously measure the distribution changes
between each presentation and its prototype, and constantly
screen potentially biased data. Finally, with the unbiased
predicate representation embedding space, biased annota-
tions are easily identified and transferred.

In summary, the following contributions are made in this
paper:

• A novel, plug-and-play framework named ADTrans is
proposed, which aims at adaptively and accurately per-
forming data transfer to promise a reasonable dataset
with informative and standard-unified labels, and more
solid training samples.

• We propose a new prototype-based predicate representa-
tion learning method, aiming at a reasonable information
alignment process between the textual domain and the
relationship domain, to promise consistency during the
data transfer process.

• Comprehensive experiments demonstrate that the pro-
posed method shows validity on two datasets, and signif-
icantly enhances the performance of benchmark models,
achZieving new state-of-the-art performances.

Related Work
Panoptic Scene Graph Generation. SGG has gained in-
creasing attention from the computer vision community
for its promising future in high-level vision-language tasks
(Teney, Liu, and van den Hengel 2017; Li et al. 2022b; An-
tol et al. 2015; Chen et al. 2020a; Johnson et al. 2015). Early
two-stage methods divide the whole task into objects locat-
ing process and relationships prediction process, and strug-
gle for a better feature extraction network (Xu et al. 2017;
Zellers et al. 2018; Tang et al. 2019; Lin et al. 2020). More
recently, a novel task named Panoptic Scene Graph Genera-
tion (PSG) (Yang et al. 2022), which points out that it will
contain noisy and ambiguous pixels if only coarse bounding
boxes are provided, and aims at constructing more compre-
hensive scene graphs with panoptic segmentation rather than
coarse bounding boxes. In addition, the provided ground
truth panoptic segmentation can also significantly promote
the performance of even the most classic SGG method, IMP
(Xu et al. 2017).
Towards Debiasing Scene Graph Generation. (Zellers
et al. 2018) first introduces the biased prediction problem
in SGG. (Tang et al. 2019) and (Chen et al. 2019) provide a
more reasonable metric (Mean Recall) aiming at calculating
the recall of each predicate label independently. To directly
face the problem, causal inference framework (Tang et al.
2020; Zhang and An 2022) is applied to alleviate data bias
during the inference process, and CogTree (Yu et al. 2020) is
designed to train models with the ability to make informative
predictions on predicate labels. More recently, (Zhang et al.
2022; Li et al. 2023a) argues that performance could be pro-
moted if there is a reasonable and sound dataset. However,
the data transfer method in (Zhang et al. 2022) is efficient but
so rigid and inflexible that a huge number of positive sam-
ples will be wrongly transferred due to its simple and coarse
transfer method, which will lead to a remarkable decline in
recall rate of head predicate labels. In this paper, we provide
a new approach for SGG and PSG datasets debiasing.

Method
In this section, we first introduce the biased annotation iden-
tifying method. Then we introduce relation representation
extraction. After that, we provide the detailed semantics-
prototype learning method. Finally, the data transfer method
and resampling method are introduced.
Target Identifying. Following Zhang et al. (2022), we iden-
tify indistinguishable triplet pairs by checking the inconsis-
tency between the model’s predictions and the ground truth
labels. To be more specific, we use a pre-trained model (e.g.
VCTree(Tang et al. 2019)) to predict predicate labels for ev-
ery pair of ground truth subject and object pairs in the PSG
training dataset and identify possible indistinguishable pred-
icate labels. For potentially positive samples, we also use a
pre-trained model to predict predicate labels for every pair of
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Figure 2: Illustration of the overall pipeline. It learns unbiased semantics-prototypes and the learned prototypes help to promise
the consistency during data transfer process.

ground truth subject and object labels that have not yet been
annotated with predicate labels, also known as NA samples.

Relation Representation Extraction
To make the language model more sensitive to predicate se-
mantics, we fine-tune the language model with contrastive
relation representation training (Li et al. 2022a).
Robust Contrastive Training. We first collect all of the
triplets that appear in the training set. Each triplet will be
converted to a sentence for language model processing. For
example, < person, standing on, snow > will be converted
to The person is standing on the snow.

Formally, given a sentence si with predicate pi in the
batch S = {sk}Ni=k, we can construct its positive set PSi =
{sk|pi = pk}k ̸=i and negative set PN i = {sk|pi ̸= pk}k ̸=i.
With the training data, we use a InfoNCE loss to optimize
the language model:

Llm =

N∑
i=1

− log
fpos

fpos + fneg
, (1)

where:
fpos =

∑
sj∈PSi

esin(hi,hj)/T, (2)

fneg =
∑

sg∈NGi

esin(hi,hg)/T. (3)

T is a temperature hyper-parameter, N is batch size, hi,j,g

are language model generated sentence representations for
si,j,g , and sim (hi, hj) is the cosine similarity.

To further boost the sensitivity to predicate similarity, we
additionally introduce an angular margin m for the posi-
tive pairs. Formally, instead of using the previously defined
esim(hi,hj)/T , we use:

esim(hi,hj)/T → ecos(θi,j+m)/T, (4)

where θi,j is the arc-cosine similarity between i and j. Thus,
fpos becomes:

fpos =
∑

sj∈PSi

ecos(θi,j+m)/T. (5)

Alignment with Visual Domain. There is typically a do-
main gap between the visual domain and the textual domain,
i.e., the textual similar predicates are not visually similar. To
align the language model with the visual domain (Li et al.
2023b; Fang et al. 2022), we try to incorporate some visual
prior knowledge into the language model fine-tuning.

Specifically, we take advantage of the confusion matrix
C ∈ RQ×Q generated by a pre-trained VCTree model,
where Q is the number of predicates in the dataset, and Ci,j

denotes the averaged prediction score for predicate pj on all
examples annotated with pi. When Ci,j is near to 1 (very
high), pi and pj are visually similar and when Ci,j is near to
0 (very low), pi and pj are visually different.

For the language model training, we expect the language
model to be aligned with the visual domain similarity judg-
ment. Thus, the language model should also distinguish the
visually different predicate pairs but avoid the visually simi-
lar predicate pairs from being too distant in the feature space.
The metric 1− Ci,j can satisfy our requirement.

Formally, we add 1− Ci,j as a weight for negative pairs:

ecos(θi,j)/T → (1− Ci,j)× ecos(θi,j)/T. (6)

Then, the fneg becomes:

fneg =
∑

sg∈PNi

(1− Ci,g) e
cos(θi,g)/T. (7)

Invariant Representation Exploration. We propose the in-
variant representation exploration to further promise the un-
biased representation of predicates.

Specifically, we say that an unbiased representation Φ :
X → H elicits an invariant predictor ω across positive set ε
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if there is an optimizer ω : H → Y simultaneously optimal
for all samples from the positive set. The learning objective
can be formulated as:

ω ∈ argminω̄:H→Y O
e(ω,Φ). (8)

Eq. 8 tries to learn a feature representation from Φ(·) that
can induce an optimizer ω(·) which is simultaneously opti-
mal for all e ∈ ε. Thus, we propose the invariant representa-
tion regularization which can be formulated as:

Lirm =
N∑
i=1

λV ar(Li), (9)

where Li = {Llm (j) |pi = pj} denotes the loss values of
samples from the positive set, and λ is a hyper-parameter.
The minimization of variances of loss values encourages un-
biased representation learning for each predicate class (Ar-
jovsky et al. 2020).

Semantics-prototype Learning
The extracted relation representation may be suffered from
possibly biased annotations. Thus, we utilize dynamic pro-
totype learning to maximize the discriminative power be-
tween predicate classes. We measure the invariance within
each predicate class, and discard biased data by stage. This
promise unbiased predicate representation embedding space
for accurate data transfer.
Dynamic Prototype Updating. To build an unbiased em-
bedding space for predicates, we further propose to construct
the prototype space for predicates. Specifically, we specify
the total prototype space Ptype ∈ RL×Q, where L is the
same as the size of semantic embedding. Then we dynami-
cally update the prototype space depending on the degree of
invariance during the robust contrastive training process.

Given a batch S, we can construct multiple positive sets
PS = {ps1, ps2, ..., psP } with different predicates, where
P is the number of different predicates in the batch S.

For every positive set in the PS with predicate pi, we ob-
tain its average predicate representation embedding as fol-
lows:

Hpi
aver =

1

Npi

∑Npi

s=1hi, (10)

where Npi denotes the number of samples with predicate pi
in the batch S, and hi denotes the predicate representation
embedding. We average the summation of all predicate rep-
resentations with the same predicate in the batch to get the
average feature embedding.

With the help of observed invariant representation, we up-
date the prototype space for predicate pi with a moving av-
erage approach:

P pi

type = βP pi

type + (1− β)
1

γV ar(Li)Npi︸ ︷︷ ︸
Approach Speed

(Hpi
aver − P pi

type),

(11)
where β and γ are hyper-parameters.

Figure 3: R@100 for predicates under SGDet task among
plain PSGTR, and PSGTR with ADTrans. ADTrans
achieves more balanced and effective predicate discrimina-
tion among predicates with different frequencies than plain
PSGTR (The horizontal axis, moving from left to right, il-
lustrates predicates arranged in order of high frequency to
low frequency).

Multistage Data Filtration. Biased and noisy samples in
the training dataset are certain to influence the unbiased
predicate representation learning process. Thus, We design
the multistage data filtration to multistage-ly filter out these
bad samples. Specifically, we take advantage of the invariant
representation regularization and the sample-prototype dis-
tribution shift as the measurements for the sample’s quality.

For every training epoch, we collect V ∈ RG from Eq. 9,
which denotes the variance of loss values of every train-
ing sample in the training dataset with G samples. Then we
average the collected variances on predicate labels, getting
Vaver ∈ RQ. For every sample Si with predicate label pi
and variance Vi in the training dataset, we judge whether it
is part of potentially biased and noisy samples, which can be
formulated as:

Pbn =
{
Si|Vi > µV i

aver(H
pi
aver − P pi

type)
}
, (12)

where V i
aver denotes the averaged variance on predicate

label pi, and µ is a hyper-parameter. We further sort Pbn by
the loss value derived from Eq. 1 and drop out the top D%
of training data. If there are fewer than 100 samples in a
predicate class, we do not drop out any more samples from
it.

The multistage data filtration avoids the influence of a
large number of biased annotations (outlier noise). Thus,
the whole unbiased predicate representation learning pro-
cess promises the unbiased representation of predicates.

Data Transfer
As a result, a similarity matrix S ∈ RQ×Q can be generated
by calculating the cosine similarities between all prototypes.

For indistinguishable triplets, we directly use the similar-
ity score as an adaptive transfer ratio.
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Method Scene Graph Generation
R@20 R@50 R@100 mR@20 mR@50 mR@100 PR@20 PR@50 PR@100

Two-Stage

IMP (Xu et al. 2017) 16.5 18.2 18.6 6.52 7.05 7.23 12.9 13.7 13.9
+IETrans (Zhang et al. 2022) 14.5 15.9 16.4 10.2 11.0 11.3 14.5 15.4 15.7
+ADTrans 15.0 16.5 17.0 12.5 13.5 14.0 16.0 17.1 17.5

VCTree (Tang et al. 2019) 20.6 22.1 22.5 9.70 10.2 10.2 16.0 16.8 16.9
+IETrans (Zhang et al. 2022) 17.5 18.9 19.3 17.1 18.0 18.1 19.6 20.5 20.7
+ADTrans 17.9 19.5 19.9 18.0 18.9 19.0 20.2 21.2 21.4

MOTIFS (Zellers et al. 2018) 20.0 21.7 22.0 9.10 9.57 9.69 15.5 16.3 16.5
+IETrans (Zhang et al. 2022) 16.7 18.3 18.8 15.3 16.5 16.7 18.2 19.4 19.7
+ADTrans 17.1 18.6 19.0 17.1 18.0 18.5 19.4 20.4 20.8

GPSnet (Lin et al. 2020) 17.8 19.6 20.1 7.03 7.49 7.67 13.6 14.4 14.7
+IETrans (Zhang et al. 2022) 14.6 16.0 16.7 11.5 12.3 12.4 15.3 16.2 16.5
+ADTrans 17.8 19.2 19.5 16.5 17.5 17.6 19.3 20.3 20.5

One-Stage
PSGTR (Yang et al. 2022) 28.4 34.4 36.3 16.6 20.8 22.1 21.9 26.3 27.6

+IETrans (Zhang et al. 2022) 25.3 28.8 29.2 23.1 27.2 27.5 24.9 28.4 28.7
+ADTrans 26.0 29.6 30.0 26.4 29.7 30.0 27.1 30.2 30.5

Table 1: The results (R@K, mR@K and PR@K) on SGDet task of our method and other baselines on PSG dataset. IETrans
and ADTrans denote models equipped with different dataset-enhancement methods.

For potentially positive samples, we further define an in-
fluence factor, where the intuition is to transfer more data for
the scarce relation triplets with low NA scores.

Formally, the influence factor is:

E(si,pi,oi) =
√
−log (NAscore)× c(si,oi) × cpi

, (13)

where −log(NAscore) is the NA score, c(si, oi) is the
scarcity of triplets with subject si and oi, and cpi

is the
scarcity of triplets with predicate pi.

In practice, we further normalize c(si,oi) with softmax.
To judge whether a NA sample should be transferred, we

rank all potential target triplet pairs according to their influ-
ence factors, and conduct the transfer of top Kg% pairs.

Resampling
Without conflicts, we can directly integrate the transferred
indistinguishable pairs and potentially positive pairs. Fur-
thermore, a special re-sampling method is introduced on the
integrated dataset to enhance it further. We propose a new
repeat factor for the task. For every triplet (si, pi, oi) in each
image, we calculate its repeat factor as:

R = max
(
1, t× c(si,oi) × c(pi)

)
, (14)

where t is a hyper-parameter controlling the possible repeat
times. The maximum value of the repeat factor within each
image is then selected.

Experiment
Dataset and Evaluation Metrics
Dataset. We evaluate our method on Visual Genome (Kr-
ishna et al. 2017) and PSG dataset (Yang et al. 2022).
Evaluation Metric. Following previous works (Tang et al.
2020; Zellers et al. 2018), we take recall@K (R@K) and
mean recall@K (mR@K)(Tang et al. 2019; Chen et al. 2019)

Method Predicate Classification
mR@20 @50 @100 F@20 @50 @100

MOTIFS 11.7 15.2 16.2 19.5 24.5 26.0
+ADTrans 29.0 36.2 38.8 36.1 41.7 43.5

VCTree 14.0 16.3 17.7 22.7 26.0 28.0
+ADTrans 30.0 32.9 35.5 37.2 40.5 42.5

GPSnet 13.2 15.0 16.0 21.7 24.4 25.8
+ADTrans 27.3 32.0 34.7 34.8 40.2 42.1

Table 2: The results (mR@K and F@K) on PREDCLS task
of our method and other baselines on VG dataset.

as evaluation metrics. We also adopt a new evaluation met-
rics named percentile recall (PR), which can be formulated
as PR = 30%R+60%mR+10%PQ, where PQ measures
the quality of a predicted panoptic segmentation relative to
the ground truth (Kirillov et al. 2019). For conventional SGG
tasks on the VG dataset, we also adopt an overall metric
F@K (Zhang et al. 2022), which is the harmonic average
of R@K and mR@K.

Tasks and Implementation Details

Tasks. We evaluate our method on three classic SGG tasks:
Predicate Classification (PREDCLS), Scene Graph Classifi-
cation (SGCLS) and Scene Graph Generation (SGDET).
Implementation Details. For the pre-trained language
model, we use pre-trained BERT-base (Devlin et al. 2019).
The decision margin m is set to 10 degrees, the temperature
hyper-parameter T is set to 0.05, and we use an AdamW
(Loshchilov and Hutter 2017) optimizer with a learning rate
2e-5. The hyper-parameter λ is set to 0.3, β is set to 5e5, and
γ is set to 1.5. The D in multistage data filtration is set to 50.
For NA sample transfer, the value of Kg is set to 0.05, and
for the re-sampling process, the value of t is set to 3e7.
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Figure 4: Visualization of plain PSGTR model and PSGTR equipped with our ADTrans. PSGTR with ADTrans can predict
relationships between instances with greater accuracy and also select predicates that better match the visual scene.

Method Scene Graph Classification
mR@20 @50 @100 F@20 @50 @100

MOTIFS 6.0 8.0 8.5 10.1 13.1 13.8
+ADTrans 14.8 17.0 17.8 20.2 22.5 23.7

VCTree 6.3 7.5 8.0 10.7 12.5 13.3
+ADTrans 16.0 19.0 19.8 20.3 23.7 24.5

GPSnet 10.0 11.8 12.6 15.7 17.9 18.9
+ADTrans 15.5 18.2 18.8 19.9 22.5 23.7

Table 3: The results (mR@K and F@K) on SGCLS task of
our method and other baselines on VG dataset.

Qualitative Analysis
As shown in Figure 4, we can compare results predicted by
plain PSGTR and PSGTR equipped with our ADTrans. Ob-
viously, PSGTR with ADTrans can predict more accurate re-
lationships between instances and also predict predicate that
better fits the scene. We believe our method helps construct
a more comprehensive scene graph.

Comparison with State-of-the-Art Methods
In this section, we report the results for ADTrans on dif-
ferent datasets, tasks, and baseline methods. All models use
ResNet-50 (He et al. 2016) as their backbones.
Effectiveness of ADTrans. From the results, we observe
that our method can effectively improve the performance
of baseline networks in nearly all metrics. Fig. 3 presents
a comparison between our method and plain PSGTR of
the detailed recall@100 of SGDet task on part of predi-
cate classes. ADTrans performs better than plain PSGTR on
almost all the above predicate classes. When compared to
IETrans (Zhang et al. 2022), our method shows significant
improvements in both recall and mean recall on all baseline
models, indicating that our method can enhance the training
dataset more effectively, avoiding noisy or redundant trans-
fer processes. When it comes to PR, which takes into ac-
count both recall and mean recall, our method outperforms
all the original models by significant margins. This suggests
that our method not only improves the recall of the models
but also balances the performance across different predicate

Method Scene Graph Generation
mR@20 @50 @100 F@20 @50 @100

MOTIFS 4.8 6.2 7.1 8.0 10.3 11.8
+ADTrans 10.6 15.5 18.1 13.4 18.9 22.0

VCTree 5.2 6.7 7.9 8.7 11.0 13.0
+ADTrans 9.7 12.5 16.9 12.2 16.3 20.3

GPSnet 5.2 5.9 7.1 8.6 9.9 11.8
+ADTrans 12.3 15.8 19.2 15.1 18.6 21.9

Table 4: The results (mR@K and F@K) on SGDET task of
our method and other baselines on VG dataset.

Module Scene Graph Generation
IT PT RE R/mR@20 R/mR@50 R/mR@100
% % % 28.4 / 16.6 34.4 / 20.8 36.3 / 22.1
" % % 26.2 / 24.9 30.3 / 28.2 30.7 / 29.2
" " % 25.5 / 25.6 29.2 / 29.1 29.7 / 29.6
" " " 26.0 / 26.4 29.6 / 29.7 30.0 / 30.0

Table 5: Ablation study on model components. IT: Indistin-
guishable Triplet Transfer; PT: Potential Positive Transfer;
RE: re-sampling.

labels, resulting in a more comprehensive evaluation of the
models’ performance.
Expansibility of ADTrans. Applied with our ADTrans,
the performances of all baseline models trained on all the
datasets on all the tasks are greatly improved. With the ob-
servation that all the baseline models trained on the VG
dataset have poorer performances compared to the same
baseline models trained on the PSG dataset, VG dataset
is more challenging for our ADTrans due to more biased
annotations. Our method shows great expansibility on VG
dataset, baseline models trained on the dataset achieve com-
petitive performances on all the tasks.

Ablation Studies
Different components in ADTrans framework. We evalu-
ate the importance of each component in our ADTrans. As
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Figure 5: Visualization of the original dataset and a new dataset enhanced by our ADTRans. For the same image, we visualize
its original biased annotations, and new annotations enhanced by our method. The enhanced dataset shows more informative
annotations than the original one. These informative annotations promise the consistent training of models.

Data Processing Method SGDet
mR@20 mR@50 mR@100

Original 16.6 20.8 22.1
Remove 20.0 24.6 25.3

Triplet Transfer 24.9 28.2 29.2

Table 6: Ablation study on data processing methods. Triplet
Transfer: Indistinguishable triplet transfer. Remove: simply
removing all indistinguishable triplet pairs. Original: base-
line method on the original dataset.

shown in Table. 5, we incrementally add one component to
the plain baseline PSGTR (Yang et al. 2022) to validate their
effectiveness. The indistinguishable triplet transfer compo-
nent provides the most promotion on performance. The rea-
son is that, we transfer these inconsistent annotations to in-
formative and consistent ones, so that models can learn a
consistent mapping from visual to predicates. The poten-
tially positive transfer component additionally provides per-
formance promotion. Our ADTrans transfers original NA
samples, which are probably missed by annotators, to in-
formative annotations. This step provides more reasonable
training samples to construct a consistent training dataset.
Different data processing methods during triplet trans-
fer. To prove the effectiveness of our indistinguishable triplet
transfer method and the harm of biased annotation, we de-
sign another simple method to process indistinguishable
triplet pairs. Instead of adaptively transferring them to tar-
get pairs, we simply remove them from the original train-
ing dataset. As shown in Table. 6, when comparing the sim-
ply removing method and the original baseline, the simply
removing method surprisingly greatly overtakes the base-
line model, indicating the serious conflict resulting from bi-
ased annotation within the original dataset. These biased an-
notated samples can not help the model during the train-
ing process, but will make it difficult for the model to dis-
tinguish each predicate label, resulting in a sharp decline
in model performance. When comparing the triplet trans-
fer method and the simply removing method, there are also

Contrastive Learning Method SGDet
mR@20 mR@50 mR@100

Original 16.6 20.8 22.1
InfoNCE 21.0 25.8 26.3

RCT 26.4 29.7 30.0

Table 7: Ablation study on contrastive learning methods. In-
foNCE: the classic contrastive learning method. Original:
the performance of original PSGTR. RCT: the proposed ro-
bust contrastive training method.

great margins between these two methods. With the fact that
our triplet transfer method greatly outperforms the simply
removing method, we observe a promising textual informa-
tion alignment process and the effectiveness of our adaptive
triplet transfer method is proved.
Different contrastive learning methods. As shown in Ta-
ble. 7, though we observe improvement with the help of the
InfoNCE, we can promote the model to a higher level with
our method. An simply InfoNCE method increase the intra-
class cohesion and inter-class separability, but cannot learn
unbiased predicate representations because of biased anno-
tations. As a result, biased annotations are inconspicuous
and hard to be identified in a biased predicate representa-
tion embedding space. Our method utilizes invariant repre-
sentation exploration and multistage data filtration to avoid
the influence of biased annotations, and performs accurate
biased-annotation identification.

Conclusion

We introduce a novel framework named ADTrans to allevi-
ate the biased annotation problem in SGG. ADTrans trans-
fers indistinguishable samples and potentially positive sam-
ples to promise a reasonable training dataset with more in-
formative and standard-unified labels. Experiments demon-
strate that ADTrans greatly enhances the models’ perfor-
mance on two datasets, achieving a new SOTA performance.
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