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Abstract

Deep neural networks (DNNs) have achieved remarkable suc-
cess in various fields, and two powerful techniques, feature nor-
malization and attention mechanisms, have been widely used
to enhance model performance. However, they are usually con-
sidered as two separate approaches or combined in a simplistic
manner. In this paper, we investigate the intrinsic relationship
between feature normalization and attention mechanisms and
propose an Efficient Attention module guided by Normaliza-
tion, dubbed EAN. Instead of using costly fully-connected
layers for attention learning, EAN leverages the strengths of
feature normalization and incorporates an Attention Gener-
ation (AG) unit to re-calibrate features. The proposed AG
unit exploits the normalization component as a measure of
the importance of distinct features and generates an attention
mask using GroupNorm, L2 Norm, and Adaptation operations.
By employing a grouping, AG unit and aggregation strategy,
EAN is established, offering a unified module that harnesses
the advantages of both normalization and attention, while
maintaining minimal computational overhead. Furthermore,
EAN serves as a plug-and-play module that can be seamlessly
integrated with classic backbone architectures. Extensive quan-
titative evaluations on various visual tasks demonstrate that
EAN achieves highly competitive performance compared to
the current state-of-the-art attention methods while sustaining
lower model complexity.

Introduction
Due to the powerful ability of feature extraction, Convolu-
tional Neural Networks have proven to be critical and robust
in many computer vision tasks, such as image classification
(Wang et al. 2023), object detection (Woo et al. 2023) and se-
mantic segmentation (Li et al. 2023). Within this context, two
techniques, namely feature normalization and attention mech-
anisms, play a pivotal role in boosting model performance
due to their simplicity and effectiveness. Both techniques
have gained considerable interest and are extensively em-
ployed in vision models, as they share a common goal of
improving the feature extraction process.

Normalization techniques (Huang et al. 2023) have been
widely studied for their crucial role in training deep neural
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networks, ensuring stability during training and faster con-
vergence. The process of normalization consists of two com-
ponents: feature standardization and affine transformation.
For feature standardization, different methods are proposed
for computing the mean and standard deviation to model the
general data distribution. Batch Normalization (BN) (Ioffe
and Szegedy 2015) is one of the early proposed and widely
used normalization methods. It normalizes the feature map
with the mean and standard deviation calculated along with
the mini-batch, height, and width dimensions of a feature
map. Based on BN, many normalization variants, such as
Layer Normalization (LN) (Ba, Kiros, and Hinton 2016), In-
stance Normalization (IN) (Ulyanov, Vedaldi, and Lempitsky
2016), Group Normalization (GN) (Wu and He 2018), and
Representative Batch Normalization (RBN) (Gao et al. 2021)
have successively been proposed. These methods differ in
their statistical computations. For instance, LN, IN, and GN
normalize the features using statistics from the channel, sam-
ple, and channel group dimensions. For affine transformation,
the standardized data is scaled and shifted independently for
each channel to modulate feature distribution. This step helps
to ensure that the standardized data aligns with the desired
range and distribution required for a given task. Different
strategies for learning the affine transformation parameters
have been introduced, such as Switchable Normalization (SN)
(Luo et al. 2018) and Exemplar Normalization (EN) (Zhang
et al. 2020). For example, SN aims to learn a set of scaling
parameters to adaptively choose the type of normalization
that is most effective for the given input, while EN addresses
a dynamic learning-to-normalize problem by adapting and
learning data-dependent normalizations for different inputs.
After standardization and affine transformation, these normal-
ization techniques significantly enhance the training stability,
optimization efficiency, and generalization ability of DNNs.

At the same time, the attention mechanism has emerged as
a widely adopted approach to augment the feature representa-
tion ability of networks by focusing on regions with essential
semantic features while suppressing irrelevant ones. Various
types of attention methods tailored to different feature dimen-
sions have been explored, including spatial attention, channel
attention, and self-attention. Among these, channel attention
has gained widespread popularity, as it learns importance
weights for different channels using fully-connected layers.
To ensure computational efficiency, Global Average Pooling
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Figure 1: An overview of the proposed EAN module. It comprises three steps: Grouping, AG unit, and Aggregation. The
Attention Generation (AG) unit works in parallel to process the sub-features of each feature group.

(GAP) has become a common choice due to its simplicity.
However, the simplicity of GAP limits its ability to capture
complex information in diverse inputs. To address this lim-
itation, some researches like CBAM (Woo et al. 2018) and
SRM (Lee, Kim, and Nam 2019) further use global max
pooling and global standard deviation pooling to enhance the
performance of GAP. FcaNet (Qin et al. 2021) introduces an
idea that GAP is a special case of 2D DCT and proposes a
multi-spectral channel attention framework that integrates
frequency domain analysis and attention mechanisms. SA-
Net (Zhang and Yang 2021) adopts Shuffle Units to capture
feature dependencies in both spatial and channel dimensions.
Moreover, SE-Net (Hu, Shen, and Sun 2018) employs two
fully connected (FC) layers to capture intricate channel-wise
dependencies, while ECA-Net (Wang et al. 2020) simpli-
fies channel weight computations using a 1D convolution to
reduce the redundancy of FC layers. Coordinate Attention
(CA) (Hou, Zhou, and Feng 2021) incorporates positional
information into channel attention by employing two 1D
feature encoding processes along two spatial directions, al-
lowing it to capture long-range dependencies. However, it
is essential to note that these methods generally suffer from
either converging difficulty or heavy model complexity and
computation burdens, which hinder their practical usability.

Rather than treating feature normalization and attention
as separate entities, certain studies have made an attempt to
combine them. For example, Attentive Normalization (AN)
(Li, Sun, and Wu 2020) learns a combination of affine trans-
formations and generates a final transformation guided by
attention. Meanwhile, NA (Ma et al. 2020) computes the sim-
ilarity between query position and global context and applies
the normalization method to design self-attention modules.
However, these approaches merely employ a simplistic com-
bination of normalization and attention techniques, without
fully exploring their intrinsic connections. Without a doubt,
this is not the most effective way to integrate them. A ques-
tion has been raised, can we integrate feature normalization
and attention in a more efficient manner?

To address this query, our investigation delves into the
inner components of feature normalization and attention and
finds a commonality in their internal parameters. Specifi-
cally, we observe that the affine transformation parameters
in feature normalization (Eqn. 2) serve a similar role as the
channel-wise scaling parameters in attention (Eqn. 3) during
the re-calibration of input features, establishing a fundamen-

tal connection for their effective integration (Eqn. 4), thereby
avoiding the demand for costly external fully-connected lay-
ers. Building upon the abovementioned observations, this
paper proposes an Efficient Attention module guided by Nor-
malization, dubbed EAN, which elegantly integrates normal-
ization and attention with minimum computational overhead.
EAN consists of three steps: Grouping, AG unit, and Aggre-
gation. Firstly, a grouping strategy is introduced to partition
the input features into multiple sub-features. Subsequently,
an AG unit is proposed to generate an attention mask and per-
form parallel re-calibration of these sub-features (as depicted
in Figure 1). Finally, the re-calibrated features are aggregated
to obtain the enhanced output features. In contrast to existing
attention modules that heavily rely on fully-connected layers
for attention mask generation, our proposed AG unit lever-
ages the affine transformation parameters derived from the
internal statistics of features during the normalization process
to determine the attention parameters, making the integration
seamless and efficient.

Our main contributions can be summarized as follows:
• We propose an AG unit, an efficient attention generation

module that ingeniously leverages the affine parameters
during normalization to derive channel-wise attention pa-
rameters through GroupNorm, L2 Norm and Adaptation
operations. This enables the network to re-calibrate fea-
tures based on their internal statistical characteristics.

• We propose EAN, a lightweight plug-and-play module,
that can be seamlessly inserted into existing architectures
without any minor adjustments, enhancing feature repre-
sentations and accelerating training and convergence.

• Extensive experimental results on ImageNet, CIFAR, and
MS COCO datasets validate the superiority of the EAN
module over state-of-the-art attention methods in terms
of accuracy and convergence speed, with almost no extra
parameters and computational overhead.

Methodology
In this section, we elaborate on the details of the proposed
Efficient Attention module guided by Normalization (EAN),
which takes intermediate feature tensor χ as input and obtains
enhanced feature maps χ̂ of the same size to χ.

Overview of the EAN
The EAN module consists of three steps, as depicted in Fig-
ure 1: Grouping, AG unit, and Aggregation.
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Figure 2: The detailed structure of the Attention Generation (AG) unit in the EAN module. Given the grouped features, AG
generates attention weights by performing GroupNorm, L2 Norm, and Adaptation operations.

Grouping. To obtain high-quality semantic feature infor-
mation, EAN employs a grouping strategy to divide in-
put features into channel-wise sub-features. For a given in-
termediate feature map χ ∈ RC×H×W , where C is the
channel axis, H and W are the spatial height and width
axes, EAN initially splits the intermediate features χ into G
groups along the channel dimension, which can be expressed
as χ = [X1, . . . , Xk, . . . , XG], where each feature group
Xk ∈ RC/G×H×W contains C/G number of feature chan-
nels. Recent research (Li, Li, and Yang 2022) reported that
the grouped features can effectively capture various discrimi-
native semantic information throughout the network learning
process. With this insight, we adopt a grouping scheme, as
shown in Figure 1, to create distinct feature groups Xk that
effectively capture specific classes of semantic responses
during training. The EAN’s grouping step ensures that each
feature group Xk contributes to the network’s specific infor-
mative semantic representations while avoiding interference
between them. Be aware that the grouping number G has
impacts on the performance of our module, and this will be
thoroughly discussed in the experimental section.

However, due to the presence of inherent noise and redun-
dant patterns, achieving well-distributed feature responses
can be a challenging task. To address this, the EAN mod-
ule incorporates an attention generation (AG) unit, which
computes an attention mask for each feature group Xk. The
AG unit is designed to re-calibrate the semantic information
within each feature group, thereby enhancing its representa-
tion capability.

Attention Generation (AG) Unit. After the grouping step,
each feature group Xk is obtained. In contrast to the con-
ventional approach, which involves using fully-connected
layers on Xk, introducing excessive parameters and computa-
tions, we delve into the potential advantages of leveraging the
normalization technique widely applied in DNNs. In the fol-
lowing, we initially revisit the intrinsic connection between
normalization and attention and then provide a detailed ex-

planation of how the AG unit efficiently integrates them.

Revisit Normalization and Attention To delve deeper into
the relationship between normalization and attention, we
first review their standard operation. Given an input tensor
Xk ∈ RC/G×H×W .

A typical feature normalization (Norm) includes two parts:
standardization and affine transformation, which can be writ-
ten as follows:

Standardization : X̄k =
Xk − µ√
σ2 + ϵ

Affine : X̂k = γ ∗ X̄k + β

(1)

where µ and σ denote the mean and standard deviation cal-
culated within Xk, ϵ is a small positive constant added for
the sake of division stability, and γ and β are learned scaling
and bias factors for affine transformation. Then, Eqn. 1 can
be rewritten as:

X̂k = Norm(Xk) = f(Xk; γ, β) (2)

where Norm(·) is the normalization operation, consists of a
function f(·) that normalizes the input features Xk with the
learnable parameters γ and β.

For widely adopted attention mechanisms (Attn) that learn
attention masks to re-calibrate features. The general process
can be formulated as:

X̂k = Attn(Xk) = A(Xk; θ) (3)

where Attn(·) is the attention operation, comprises a function
A(·) that reweights the Xk using learnable parameters θ.

We observe that the learned scaling parameters γ in the
normalization function (Eqn. 2) and the learnable re-scaling
parameters θ in the attention function (Eqn. 3) play an equal
role in learning to re-calibrate features. Thus, we can directly
leverage the learned scaling factors γ from normalization to
acquire the re-scaling parameters θγ for attention. Further, we
propose a novel Attention Generation (AG) unit that intrin-
sically combines normalization and attention into a unified
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module instead of using a two-module setup like Norm+Attn.
The AG unit can be summarized as:

X̂k = AG(Xk) = A(Xk; θγ) (4)

where θγ represents the re-scaling parameters derived from
the learned scaling factors γ in normalization.

Details of AG Unit As illustrated in Figure 2, the AG
unit is composed of three essential components: Group-
Norm, L2 Norm, and Adaptation. For each feature group
Xk ∈ RC/G×H×W , the global contextual information con-
tained in each feature channel space < H,W > contributes
differently to the entire feature group semantic response.
Therefore, GroupNorm (GN ) is adopted as our method of
feature normalization, allowing us to learn instance-specific
channel-wise affine transformations. The scaling factor γ in
affine transformation plays a crucial role in adjusting the
features to enhance their representational capability.

Taking this into account, we first standardize feature Xi
k ∈

RC/G×H×W in its i-th channel space < H,W > as shown
in the GN part of Figure 2, i is a feature channel index. This
involves subtracting the mean value µm and dividing it by
the standard deviation σm as follows :

X̂i
k = GN(Xk) = γi ∗

Xi
k − µm√
σ2
m + ϵ

+ βi (5)

where µm and σm are the mean and standard deviation cal-
culated along the spatial dimension m = H ×W , ϵ is used
to avoid zero variance, γi and βi are learned scaling and bias
factors in i-th feature channel for affine transformation.

It’s worth noting that we leverage the learned scaling fac-
tors γ ∈ RC/G, obtained from the affine transformation in
GN layers to assess the variance of the global contextual
information of each channel, as shown in the branch of Fig-
ure 2. This assessment enables us to evaluate the amount of
global contextual information spatially across various feature
channels. Specifically, a larger value of γ indicates richer
spatial contextual information, reflecting greater variation
in spatial pixels. Conversely, a smaller value of γ reveals
the feature map dominated by noise or containing redundant
contextual information. In a word, the learned scaling factors
γ contribute differently to the feature semantic response and
serve as an indicator of the importance of distinct features.

Next, to further strengthen the magnitude of the learned
scaling factors across channels, we employ L2 Normaliza-
tion (L2 Norm) for cross-channel operations. Let Wγ =
[ω1, . . . , ωi, . . . , ωC/G], the normalized correlation weights
Wγ ∈ RC/G are obtained by Eqn. 6, indicating the relative
importance of different features.

ωi =
γi

∥γi∥2
=

γi

[
(∑C/G

i=1 γ2
i

)
+ ε]

1
2

, i = 1, 2, · · · , C/G

(6)
where ∥•∥2 is the L2 normalization, ε is a small constant, γi
and wi are the learned scaling factor and weight coefficient
at the position of the ith feature channel.

The obtained attention weights Wγ are the re-scaling pa-
rameters in Eqn. 4, which is derived from the scaling factors

γ in GN (Eqn. 5). Then Wγ are individually assigned to each
feature map on a channel-wise basis as follows:

X̃k = Wγ (GN (Xk)) (7)

Subsequently, we utilize an adaptation scheme where a
pair of learnable parameters, α, δ ∈ RC/G, are introduced to
adapt X̃k, enhancing its representation capability, as shown
in Figure 2. These parameters have a negligible impact on
computational costs compared to overall model parameters.
Then an attention mask Ak is generated as Eqn. 8, providing
guidance to re-calibrate the semantic response of the feature
group. This whole process is achieved by a simple adapta-
tion scheme with the Sigmoid activation. Finally, the output
feature group Yk is re-calibrated as Eqn. 9:

Ak = Sigmoid
(
αX̃k + δ

)
(8)

Yk = Ak ⊗Xk (9)

where ⊗ denotes element-wise multiplication.
In brief, the AG unit utilizes the strengths of GroupNorm,

L2 Norm and Adaptation, efficiently guiding the feature
group Xk to extract valuable semantic details while simulta-
neously reducing irrelevant contextual information.

Aggregation. Following the AG unit, the re-calibrated fea-
ture groups Yk are aggregated to form the output feature
X̂ = [Y1, . . . , Yk, . . . , YG]. Throughout the continuous train-
ing iterations of the network, these output features gradually
capture significant semantic responses while effectively sup-
pressing redundant contextual information, such as noise.

In summary, the EAN module is established through the
following three steps: Grouping, AG unit, and Aggregation.
The grouping strategy is employed to obtain distinct feature
groups. The AG unit is proposed to re-calibrate the seman-
tic response within these feature groups. The aggregation
scheme is used to combine the re-calibrated feature groups.

Integration Strategy
Our approach is implemented as a plug-and-play module,
allowing it to be seamlessly inserted into any existing frame-
work. However, like other attention methods, the specific
placement of our module within the model is critical. There-
fore, we incorporate the EAN module into four representative
architectures with diverse building blocks.

For CNNs without skip connections, such as VGG, we di-
rectly embed the EAN into the convolutional layer. For CNNs
with skip connections, such as ResNet and ResNeXt (with
basic block or bottleneck design), we integrate the EAN mod-
ule into the last layer of the residual block. In architectures
utilizing the inverted residual block, such as the MobileNet
series, the EAN module is incorporated during the expansion
stage to ensure attention focuses on the largest representa-
tion. In MobileNeXt’s sandglass block, the EAN module is
plugged into the last convolutional layer of each block. The
performance of these integrations will be evaluated in subse-
quent experiments, and it is worth noting that the associated
parameter and computational costs are negligible.
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Experiments
To evaluate the effectiveness of the proposed EAN module,
we have conducted comprehensive experiments on a number
of tasks and datasets. Specifically, we conduct experiments
on image classification benchmarks, including ImageNet-
1K (Russakovsky et al. 2015), CIFAR-100 and CIFAR-10
(Krizhevsky, Hinton et al. 2009), to validate the improvement
brought by the EAN module in base CNN models. Addi-
tionally, we compare it with other state-of-the-art attention
modules. Furthermore, we conduct experiments on object
detection benchmarks, including MS COCO (Lin et al. 2014)
and PASCAL VOC (Everingham et al. 2010) to examine the
effectiveness and generality of the EAN module.

Datasets and Experimental Settings
Datasets. ImageNet-1K dataset is a large-scale image clas-
sification dataset, containing 1.28 million training images
and 50k validation images from 1k classes. CIFAR dataset,
including CIFAR-10 and CIFAR-100, consists of 50k train-
ing images and 10k validation images, which are divided
into 10 and 100 classes, respectively. PASCAL VOC dataset,
which has 20 classes, contains more than 22k images for
training and 5k images for validation. MS COCO dataset,
which is divided into 80 classes, has more than 118k images
for training and 5k images for validation.

Implementation Details. For ImageNet-1K and CIFAR
datasets, we follow a similar training scheme in (He et al.
2016), performing standard practices and data augmentation.
Networks are trained for 200 epochs on CIFAR with SGD
optimizer with a weight decay of 5× e−4 and a momentum
of 0.9. The initial learning rate is initialized to 0.05 and is
decayed by 0.1 at 100 and 150 of the epochs. For lightweight
networks, we adopt the cosine learning schedule and set the
weight decay to 4× e−5. For other networks, the batch size
is 256 with an initial learning rate of 0.1. The weight decay
is set to 1× e−4. For MS COCO and PASCAL VOC, we use
SGD optimizer and set batch size to 16 and 32 respectively.
The learning rate is set to 0.01 and 0.001 with a 500 iterations
warmup. We train 200k iterations and reduce the learning rate
by a factor of 10 at 120k and 180k iterations. The adaption
parameters α and δ in the EAN module are initialized to
0. For fair comparisons, all models in each experiment are
trained from scratch on NVIDIA Tesla V100 GPU with the
default training strategy and no other tricks are used.

Ablation Studies
In this section, we report the ablation experiments on the
CIFAR dataset, to thoroughly investigate the components of
the EAN for a better understanding of its characteristics.

The Grouping Number G. The EAN module uses the
number of groups G to control the diversity of semantic sub-
features. Setting G to be too high or too low can result in
inadequate feature representation. Thus, it is crucial to ex-
plore a moderate value of G. Figure 3 showcases the results
of the optimal G with ResNet-50 and MobileNeXt on the
CIFAR-100 dataset. As is observed, both models’ perfor-
mance exhibits an increasing trend initially and then declines

Figure 3: Results of our EAN with various group numbers of
G using ResNet-50 and MobileNeXt as backbone models.
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Architecture Params/FLOPs C10(%) C100(%)
MobileNetV2
+SE
+CBAM
+ECA
+SA
+SGE
+CA
+EAN(Ours)

2.35M/6.79M
2.92M/7.42M
2.92M/8.03M
2.35M/6.88M
2.35M/6.81M
2.35M/6.86M
3.21M/8.69M
2.35M/6.79M

83.56
84.93
84.89
85.10
85.45
85.56
85.89
86.74

53.31
54.52
54.93
55.12
55.61
55.59
55.85
56.20

MobileNeXt
+SE
+CBAM
+ECA
+SA
+SGE
+CA
+EAN(Ours)

2.38M/6.92M
3.10M/7.87M
3.03M/8.47M
2.38M/7.18M
2.38M/7.14M
2.38M/7.16M
3.46M/8.95M
2.38M/6.92M

85.71
86.04
86.52
86.61
86.78
86.94
87.12
88.00

54.77
57.12
57.53
57.74
58.03
58.36
58.58
60.88

ShuffleNet
+SE
+CBAM
+EAN(Ours)

1.36M/45.75M
1.53M/46.39M
1.62M/48.29M
1.36M/45.75M

91.06
91.63
91.89
92.25

69.20
69.64
70.23
70.86

DenseNet-121
+SE
+CBAM
+EAN(Ours)

7.05M/898.23M
7.33M/898.88M
7.19M/899.07M
7.05M/898.23M

95.47
95.63
95.77
96.12

79.20
79.73
79.97
80.61

EfficientNetB0
+SE
+CBAM
+EAN(Ours)

4.66M/8.79M
6.18M/10.36M
6.18M/11.89M
4.66M/8.79M

90.36
91.34
91.66
92.14

66.80
67.78
68.55
69.35

Table 1: Image classification results for common lightweight
networks on CIFAR-10 and CIFAR-100 dataset.
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Architecture Params(M) FLOPs(G) Top-1 Acc(%)
ResNet50
+SE
+CBAM
+SA
+CA
+EAN(Ours)

23.71
28.75
28.74
23.71
27.51
23.71

1.30
1.31
1.32
1.31
1.34
1.30

77.60
78.54
78.65
78.88
78.95
79.45

ResNet101
+SE
+CBAM
+SA
+CA
+EAN(Ours)

42.70
52.22
52.18
42.70
49.90
42.70

2.52
2.53
2.54
2.52
2.59
2.52

77.78
78.96
78.55
79.44
79.05
80.05

ResNet56
+SE
+CBAM
+SA
+CA
+EAN(Ours)

0.86
0.88
0.88
0.86
0.89
0.86

0.127
0.127
0.128
0.127
0.128
0.127

71.50
72.24
72.65
73.10
73.25
73.79

WRN-28(w=10)
+SE
+CBAM
+CA
+EAN(Ours)

36.55
37.09
37.09
37.36
36.55

5.96
5.96
5.96
5.97
5.96

78.65
79.42
79.05
79.35
79.86

ResNeXt-29
+SE
+CBAM
+CA
+EAN(Ours)

25.14
26.18
26.17
26.70
25.14

4.05
4.05
4.05
4.07
4.05

81.10
81.99
81.82
82.10
82.68

Table 2: Comparison of SOTA attention methods across a
range of ResNets and its variants on CIFAR-100 dataset.

as G increases. The MobileNeXt is a lightweight model and
the maximum G is 16. Thus, we recommend setting the G to
8 for lightweight models and 64 for larger models, as this con-
figuration strikes the balance between semantic diversity and
effective representation for optimal network performance.

Image Classification
In order to evaluate the effect of the proposed EAN, in this
section, we conduct several experiments on two widely-used
image classification datasets: CIFAR and ImageNet-1k.

Results on CIFAR We first conduct experiments using clas-
sical lightweight networks, including MobileNetV2 (Sandler
et al. 2018), MobileNeXt (Zhou et al. 2020), ShuffleNetV2
(Ma et al. 2018), DenseNet-121 (Huang et al. 2017), and
EfficientNetB0 (Tan and Le 2021), on CIFAR-10 and CIFAR-
100 datasets. We compare the performance of EAN against
SOTA attention methods such as ECA (Wang et al. 2020), SA
(Zhang and Yang 2021), and SGE (Li, Li, and Yang 2022).
The results in Table 1 demonstrate that, on lightweight back-
bones, EAN outperforms all competing attention modules in
terms of accuracy with no additional computational overhead.

Furthermore, we expand our experiments to a range
of ResNet architecture and its variants, such as ResNet-
50, ResNet-101, ResNet-56, WideResNet-28 (WRN-28)
(Zagoruyko and Komodakis 2016), and ResNeXt-29 (Xie
et al. 2017). The results are summarized in Table 2, which
show EAN surpasses SOTA methods with almost no ex-
tra parameters and computations. Specifically, when using
ResNeXt-29 as a backbone, the EAN shares almost the same
model complexity with the original network, but achieves

Architecture Params FLOPs Inference Top-1(%)
MobileNeXt(MX)

SE-MX
CBAM-MX

SGE-MX
PdfAM-MX

CA-MX
EAN-MX(Ours)

3.54M
4.19M
4.19M
3.54M
3.54M
4.39M
3.54M

343.66M
345.95M
347.49M
345.30M
343.66M
356.50M
343.66M

115FPS
80FPS
62FPS
67FPS
64FPS
55FPS
78FPS

72.45
73.51
73.67
73.58
73.60
73.89
74.21

MobileNetV2(MV2)
SE-MV2

CBAM-MV2
SGE-MV2

PdfAM-MV2
CA-MV2

EAN-MV2(Ours)

3.50M
4.08M
4.07M
3.50M
3.50M
4.37M
3.50M

327.49M
331.40M
332.37M
330.83M
327.49M
346.59M
327.49M

138FPS
92FPS
70FPS
84FPS
78FPS
64FPS
79FPS

71.53
72.32
72.35
72.45
72.38
72.55
72.80

ResNet50(R50)
SE-R50

CBAM-R50
SGE-R50

PdfAM-R50
CA-R50

EAN-R50(Ours)

25.56M
28.09M
28.07M
25.56M
25.56M
28.08M
25.56M

4.11G
4.12G
4.13G
4.12G
4.11G
4.16G
4.11G

114FPS
78FPS
58FPS
73FPS
62FPS
62FPS
78FPS

76.45
77.31
77.42
77.23
77.33
77.40
77.87

Table 3: Comparison of different attention methods on
ImageNet-1K dataset.

1.95% gains in Top-1 accuracy, which demonstrates the EAN
is lighter and more efficient.

Results on ImageNet-1K We further explore whether the
superior performance of the EAN module could be general-
ized to other datasets. Comparative experiments are carried
out using a wide range of attention mechanisms on ImageNet-
1K, including SE (Hu, Shen, and Sun 2018), CBAM (Woo
et al. 2018), SGE (Li, Li, and Yang 2022), PdfAM (Xie and
Zhang 2023), and CA (Hou, Zhou, and Feng 2021). The base-
line backbones are MobileNeXt, MobileNetV2, and ResNet-
50. All results, as shown in Table 3, indicate that the EAN
module consistently outperforms other attention methods
while introducing almost no additional parameters. Specif-
ically, our EAN-embedded models exhibit superior perfor-
mance, surpassing the original MobileNeXt, MobileNetV2,
and ResNet-50 by 2.42%, 1.78%, and 1.86% respectively.
Moreover, EAN-R50 shares comparable model complexity
with the PdfAM module while achieving a 0.67% advantage
over Top-1 accuracy. Table 3 also compares the inference
speed. Our EAN obtains a similar inference FPS compared to
SE and proves to be more efficient than other attentions (i.e.,
CA), as in MobileNeXt comparisons (78FPS vs. 55FPS). Ad-
ditionally, Figure 4 shows the training and validation curves
of ResNet-50 with EAN, which constantly demonstrates im-
proved and accelerated training and convergence, underscor-
ing the effectiveness and stability of our method.

Object Detection
To verify the generalization performance of EAN, we fur-
ther conduct experiments on object detection, including MS
COCO (Lin et al. 2014) and PASCAL VOC (Everingham
et al. 2010) datasets. We adopt SSDLite (Liu et al. 2016)
and Faster-RCNN (Ren et al. 2015) framework as our detec-
tion method, using ImageNet pre-trained MobileNeXt and
ResNet-50 as our baseline networks.
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Figure 5: Visualization of class activation mapping using MobileNeXt and ResNet50 as backbone networks.

Backbone Detector Params(M) mAP(%)
MobileNeXt

SE-MobileNeXt
CA-MobileNeXt

EAN-MobileNeXt

SSDLite320
SSDLite320
SSDLite320
SSDLite320

4.4
4.8
4.9
4.4

72.3
72.4
72.9
73.4

Table 4: Object detection results of different methods on
PASCAL VOC 2012 val set.

Results on PASCAL VOC In Table 4, we can observe that
when the same SSDLite320 detector is adopted, MobileNeXt
with our EAN embedded achieves superior gain (1.52%) over
the original network while performing better than SE and CA
block with fewer model complexity.

Results on MS COCO We further explore the EAN mod-
ule using Faster RCNN and SSDLite320 on the COCO 2017
validation set, reporting the results in terms of mAP, AP@.5,
and AP@.75. Table 5 shows that our method achieves the
best performance in both detection frameworks compared to
its corresponding attention variants. Specifically, our EAN
outperforms the original ResNet50 and MobileNeXt by 5.5%
and 5.4%, respectively, and surpasses CA by 1.1% and 2.3%
with almost no extra parameters. These results highlight the
efficiency and lightweight nature of the EAN, showing its
superior transferable capabilities across various vision tasks.

Visualization
To provide a more intuitive demonstration of the effectiveness
of the EAN module, we sample 5 images from ImageNet-
1K validation dataset and utilize GradCAM (Selvaraju et al.
2017) to visualize the class activation mapping. For compara-
tive analysis, we also generate heat maps for SE and CA em-
bedded models. The visualizations are presented in Figure 5,
where Figure 5(a) and Figure 5(b) correspond to MobileNeXt
and ResNet50 respectively, both trained on ImageNet-1K. In

Backbone Params(M) AP@.5 AP@.75 mAP
MobileNeXt

SE-MobileNeXt
CA-MobileNeXt

EAN-MobileNeXt

4.3
4.7
4.8
4.3

37.4
39.3
39.8
40.2

22.7
23.4
24.1
24.6

22.3
22.6
23.0
23.5

ResNet50
SE-ResNet50
CA-ResNet50

EAN-ResNet50

41.7
44.3
44.7
41.7

58.4
60.1
60.8
60.8

39.1
40.9
41.7
42.2

36.4
37.7
38.0
38.4

Table 5: Object detection results on MS COCO 2017 val set.

Figure 5(a), a comparison between EAN, SE, and CA reveals
that the EAN activation mapping encompasses a larger re-
gion of the relevant objects, such as the ”ballplayer” and the
”parachute”. Figure 5(b) displays attention heat maps from
four different layers, illustrating EAN’s impact in reducing
background noise and refining attention. As a result, the ac-
tivation map becomes more precise, capturing critical and
accurate locations for semantic representations.

Conclusion
In this paper, we explore the intrinsic relationship between
two widely used techniques for enhancing models: feature
normalization and attention. Further, we propose an Efficient
Attention module guided by Normalization, named EAN.
EAN incorporates an AG unit to derive attention weights us-
ing parameter-efficient normalization and guide the network
to capture relevant semantic responses while suppressing
irrelevant ones. The AG unit harnesses the strengths of nor-
malization and attention and combines them into a unified
module to enhance feature representation. EAN is also a
plug-and-play module. Extensive experiments on multiple
benchmark datasets validate the superior accuracy and con-
vergence of our EAN compared to state-of-the-art methods.
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