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Abstract

Multi-Task Learning (MTL) is a framework, where multiple
related tasks are learned jointly and benefit from a shared
representation space, or parameter transfer. To provide suf-
ficient learning support, modern MTL uses annotated data
with full, or sufficiently large overlap across tasks, i.e., each
input sample is annotated for all, or most of the tasks. How-
ever, collecting such annotations is prohibitive in many real
applications, and cannot benefit from datasets available for
individual tasks. In this work, we challenge this setup and
show that MTL can be successful with classification tasks
with little, or non-overlapping annotations, or when there is
big discrepancy in the size of labeled data per task. We ex-
plore task-relatedness for co-annotation and co-training, and
propose a novel approach, where knowledge exchange is en-
abled between the tasks via distribution matching. To demon-
strate the general applicability of our method, we conducted
diverse case studies in the domains of affective computing,
face recognition, species recognition, and shopping item clas-
sification using nine datasets. Our large-scale study of af-
fective tasks for basic expression recognition and facial ac-
tion unit detection illustrates that our approach is network
agnostic and brings large performance improvements com-
pared to the state-of-the-art in both tasks and across all stud-
ied databases. In all case studies, we show that co-training via
task-relatedness is advantageous and prevents negative trans-
fer (which occurs when MT model’s performance is worse
than that of at least one single-task model).

Introduction
Holistic frameworks, where several learning tasks are inter-
connected and explicable by the reference to the whole, are
common in computer vision. A diverse set of examples in-
cludes a scene understanding framework that reasons about
3D object detection, semantic segmentation and depth re-
construction (Wang, Fidler, and Urtasun 2015), a face anal-
ysis framework that addresses face detection, landmark lo-
calization, gender recognition, age estimation (Ranjan et al.
2017), a universal network for low-, mid-, high-level vision
(Kokkinos 2017), a large-scale framework of visual tasks for
indoor scenes (Zamir et al. 2018). Most if not all prior works
rely on building a multi-task framework where learning is
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done based on the ground truth annotations with full or par-
tial overlap across tasks. During training, all the tasks are
optimised simultaneously aiming at representation learning
that supports a holistic view of the framework.

What differentiates our work from these holistic ap-
proaches is exploring the idea of task-relatedness as means
for co-training different tasks. In our work, relatedness be-
tween tasks is either provided explicitly in a form of expert
knowledge, or is inferred based on empirical studies. Impor-
tantly, in co-training, the related tasks exchange their predic-
tions and iteratively teach each other so that predictors of all
tasks can excel even if we have limited or no data for some
of them. We propose an effective distribution matching and
co-labeling approach based on distillation (Hinton, Vinyals,
and Dean 2015), where knowledge exchange between tasks
is enabled via distribution matching over their predictions.

Up until now training holistic models has been primar-
ily addressed by combining multiple datasets to solve indi-
vidual tasks (Ranjan et al. 2017), or by collecting the an-
notations in terms of all tasks (Zamir et al. 2018; Kokki-
nos 2017). For example, in affective computing, two most
common tasks are predicting categorical expressions (e.g.,
happy, sad) and activation of action units (Ekman 1997) to
explain the affective state. Collecting annotations of AUs
is particularly costly, as it requires skilled annotators. The
datasets collected so far (Li, Deng, and Du 2017; Benitez-
Quiroz, Srinivasan, and Martinez 2016) have annotations
for only one task and, despite significant effort, there is
no dataset that has complete annotations of both tasks. Co-
training via task relatedness is an effective way of aggre-
gating knowledge across datasets and transferring it across
tasks, especially with little or non-overlapping annotations,
or when not many training data are available, or when there
is a big discrepancy in the size of labeled data per task.

In this work we discuss two strategies to infer task-
relatedness, via domain knowledge and dataset annotation.
For example, the two aforementioned tasks of facial behav-
ior analysis are interconnected with known strengths of re-
latedness in literature. In (Ekman 1997), the facial action
coding system (FACS) was built to indicate for each of the
basic expressions its prototypical AUs. In (Du, Tao, and
Martinez 2014), a dedicated user study has been conducted
to study the relationship between AUs and expressions. In
(Khorrami, Paine, and Huang 2015), the authors show that
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DNNs trained for expression recognition implicitly learn
AUs. In our case study on face recognition, we have a dataset
(CelebA (Liu et al. 2015)), where annotations for both tasks,
identification and attribute prediction, are available. We can
infer task relatedness empirically using its annotations.

One of the important challenges in MTL is how to avoid
negative transfer, defined as when the performance of the
multi-task model is worse than that of at least one single-
task model (Wang et al. 2019; Liu, Liang, and Gitter 2019).
Negative transfer occurs naturally in MTL scenarios when:
i) source data are heterogeneous or less related (since tasks
are diverse to each other, there is no suitable common la-
tent representation and thus MTL produces poor represen-
tations); ii) one task or group of related tasks dominates
the training process (negative transfer may occur simulta-
neously on tasks outside the dominant group).

To overcome negative transfer one can change the lamb-
das in the loss that control the importance of some tasks.
However, it: could severely affect the performance on other
tasks; is a computationally expensive procedure lasting days
for each trial; is an ad-hoc method that is not guaranteed
to work on other tasks or databases. To balance the perfor-
mance across tasks, (Liu, Liang, and Gitter 2019) proposed a
method that uses each task’s training loss to indicate whether
it is well trained, and then decreases the relative weights of
the well trained tasks. The evaluation of performance indica-
tors during each training iteration is costly. Negative trans-
fer may be induced by conflicting gradients among the dif-
ferent tasks (Yu et al. 2020). (Lin et al. 2019) tackled this
through multi-objective optimization, with decomposition of
the problem into a set of constrained sub-problems with dif-
ferent trade-off preferences (among different tasks). How-
ever, this approach is rather complex, providing a finite set
of solutions that do not always satisfy the MTL requirements
and finally needs to perform trade-offs among tasks.

We demonstrate empirically that the proposed distribution
matching and co-labeling approach based on task related-
ness can prevent negative transfer in all our case studies. Via
the proposed approach, knowledge of task relationship is in-
fused in network training, providing it, in a simple manner,
with higher level representation of the relationship between
the tasks; it is not based on performance indicators and it
does not perform any trade-offs between the different tasks.
The main contributions of this paper are as follows:
• We propose a flexible approach that can accommodate dif-

ferent classification tasks by encoding prior knowledge of
tasks relatedness. In our experiments we evaluate two ef-
fective strategies of task relatedness: a) obtained from do-
main knowledge and b) inferred empirically from dataset
annotations (when domain knowledge is not available).

• We propose an effective weakly-supervised learning ap-
proach that couples, via distribution matching and label
co-annotation, tasks with little, or even non-overlapping
annotations, or with big discrepancy in their labeled
data sizes; we consider a plethora of application scenar-
ios, split in two case studies: i) affective computing; ii)
beyond affective computing, including face recognition,
fine-grained species categorization, shoe type classifica-
tion, clothing categories recognition.

• We conduct an extensive experimental study utilizing 9
databases; we show that the proposed method is network
agnostic (i.e., it can be incorporated and used in MTL net-
works) as it brings similar level of performance improve-
ment in all utilized networks, for all tasks and databases.
We also show that our method outperforms the state-of-
the-art in all tasks and databases. Finally we show that our
method successfully prevents negative transfer in MTL.

Related Work
Works exist in literature that use expression labels to com-
plement missing AU labels or increase generalization of AU
classifiers (Yang et al. 2016; Wang, Gan, and Ji 2017). Our
work deviates from such methods (that only target AU detec-
tion), as we target joint learning of both behavior tasks via
a single framework. In face analysis, the use of MTL is lim-
ited. In (Wang et al. 2017), MTL was tackled through a net-
work that performed both facial recognition and attribute de-
tection. A network was firstly trained for attribute detection
and then used to generate predictions on a database with face
identification labels. Then, a MT network was trained on that
database. Network’s loss was the sum of the independent
task losses. In (Deng, Chen, and Shi 2020), a unified model
for joint AU detection, expression recognition, and valence-
arousal estimation was proposed; the utilized database con-
tained images not annotated for all tasks. To tackle this, au-
thors trained a teacher MT model with complete labels, then
used it to generate predictions, which they used to train a stu-
dent MT model; the student model outperformed the teacher
one. The teacher model did not consider that tasks are in-
terconnected - the overall loss was the sum of the indepen-
dent task losses- and thus the student did not learn this re-
latedness. This work utilized only one database. In terms of
MTL, (Sener and Koltun 2018) proposed MGDA-UB that
casts MTL as multi-objective optimization to find a Pareto
optimal solution, and proposed an upper bound for the loss.
(Chen et al. 2018) proposed GradNorm, a gradient optimiza-
tion algorithm that balances training in MTL by dynami-
cally tuning gradient magnitudes. (Sun et al. 2020) proposed
AdaShare, an adaptive sharing approach that decides what to
share across which tasks by using a task-specific policy op-
timized jointly with the network weights. (Strezoski, Noord,
and Worring 2019) proposed TR (Task Routing) that applies
a conditional feature-wise transformation over the conv ac-
tivations and is encapsulated in the conv layers.

The Proposed Approach
Let us consider a set of m classification tasks {Ti}mi=1. In
task Ti, the observations are generated by the underlying dis-
tribution Di over inputs X and their labels Y associated with
the task. For the i-th task Ti, the training set Di consists of
ni data points (xi

j , y
i
j), j = 1, . . . , ni with xi

j ∈ Rd and
its corresponding output yij ∈ {0, 1} if it is a binary clas-
sification task, or yij ∈ {0, 1}k (one-hot encoding) if it is a
(mutually exclusive) k-class classification task.

The goal of MTL is to find m hypothesis: h1, ..., hm over
the hypothesis space H to control the average expected error
over all tasks: 1

m

∑m
i=1 E(x,y)∼Di

L(hi(x), y) with L being
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Cognitive Study (Du, Tao, and Martinez 2014) Empirical Evidence, Aff-Wild2
Expression Proto. AUs Observational AUs (with weights w) AUs (with weights w)
happiness 12, 25 6 (0.51) 12 (0.82), 25 (0.7), 6 (0.57), 7 (0.83), 10 (0.63)
sadness 4, 15 1 (0.6), 6 (0.5), 11 (0.26), 17 (0.67) 4 (0.53), 15 (0.42), 1 (0.31), 7 (0.13)
fear 1, 4, 20, 25 2 (0.57), 5 (0.63), 26 (0.33) 1 (0.52), 4 (0.4), 25 (0.85), 7 (0.57), 10 (0.57)
anger 4, 7, 24 10 (0.26), 17 (0.52), 23 (0.29) 4 (0.65), 7 (0.45), 25 (0.4), 10 (0.33)
surprise 1, 2, 25, 26 5 (0.66) 1 (0.38), 2 (0.37), 25 (0.85), 26 (0.3), 5 (0.5), 7 (0.2)
disgust 9, 10, 17 4 (0.31), 24 (0.26) 10 (0.85), 4 (0.6), 7 (0.75), 25 (0.8)

Table 1: Relatedness of expressions & AUs inferred from (Du, Tao, and Martinez 2014) (the weights denote fraction of annota-
tors that observed the AU activation) or from Aff-Wild2 (the weights denote percentage of images that the AU was activated);
’Proto. AUs’ stand for prototypical AUs

the loss function. We can also define a weight wi ∈ ∆m,
{wi}mi=1 > 0 to govern each task’s contribution. The overall
loss is: LMT = 1

m

∑m
i=1 wi · E(x,y)∼Di

L(hi(x), y).
In the following, we present the proposed framework via

a plethora of case studies, mainly focusing on affective com-
puting. The framework includes inferring the tasks’ relation-
ship and using it for coupling them during MTL. The cou-
pling is achieved via the proposed co-annotation and distri-
bution matching losses, which can be incorporated and used
in any network that performs MTL, regardless of the input
modality (visual, audio, text). The advantages of using these
losses include: i) flexibility: no changes to network structure
are made and no additional burden on inference is placed; ii)
effectiveness: performance of various networks on multiple
databases (small- or large-scale, image or video) is boosted
and negative transfer is alleviated; iii) efficiency: negligible
computational complexity is added during training; iv) easi-
ness: a few lines of code are needed to implement.

Case Study I: Affective Computing
We start with the multi-task formulation of the behavior
model. In this model we have two objectives: (1) learning
7 basic expressions, (2) detecting activations of 17 binary
AUs. We train a multi-task model to jointly perform (1)-(2).
For a given image x ∈ X , we can have label annotations of
either one of 7 basic expressions yexp ∈ {1, 2, . . . , 7}, or M
AU activations yau ∈ {0, 1}M . For simplicity of presenta-
tion, we use the same notation x for all images leaving the
context to be explained by the label notations. We train the
multi-task model by minimizing the following objective:

LMT = LExp + LAU + LDM + LSCA (1)

where: LExp = Ex,yexp

[
− log p(yexp|x)

]
is cross entropy

(CE) loss computed over images with basic expression label;
LAU = Ex,yau

[
− log p(yau|x)

]
is binary CE loss computed

over images with M AU activations, with: log p(yau|x) :=∑M
i=1 δi·[yi

aulog p(yi
au|x)+(1−yi

au)log (1−p(yi
au|x))]∑M

k=1 δk
, δi ∈ {0, 1}

indicates if the image contains AUi annotation; LDM and
LSCA are the proposed distribution matching and soft co-
annotation losses, based on the relatedness of expressions
and AUs; the losses’ derivation is explained in the following.

Task-Relatedness
1) Obtained from Domain Knowledge: In the seminal work
of (Du, Tao, and Martinez 2014), a cognitive and psycholog-
ical study on the relationship between expressions and facial
AU activations is conducted. The summary of the study is a
Table of the relatedness between expressions and their proto-
typical and observational AUs, that we include in Table 1 for
completeness. Prototypical AUs are ones that are labelled as
activated across all annotators’ responses; observational are
AUs that are labelled as activated by a fraction of annotators.
2) Inferred Empirically from Dataset Annotations: If the
above cognitive study is not available, we can infer task
relatedness from external dataset annotations. In particular,
we use the training set of Aff-Wild2 database (Kollias and
Zafeiriou 2019, 2021a,b; Kollias et al. 2017, 2019, 2020b,
2023; Zafeiriou et al. 2017) to infer task relatedness, since
this dataset is the first in-the-wild one that is fully annotated
with basic expressions and AUs; this is shown in Table 1. In
the following, we use as domain knowledge the cognitive
and psychological study, to encode task relatedness and
introduce the proposed approach for coupling the tasks.

Coupling of Basic Expressions and AUs

Via Distribution Matching Here, we propose the distri-
bution matching loss for coupling the expression and AU
tasks. The aim is to align the predictions of expression and
AU tasks during training by making them consistent. From
expression predictions we create new soft AU predictions
and then match these with the network’s actual AU predic-
tions. For instance, if the network predicts happy with prob-
ability 1 and also predicts that AUs 4, 15 and 1 are activated,
this is a mistake as these AUs are associated with the expres-
sion sad according to the prior knowledge. With this loss
we infuse the prior knowledge into the network to guide the
generation of better and consistent predictions.

For each sample x we have the predictions of expressions
p(yexp|x) as the softmax scores over seven basic expressions
and we have the prediction of AUs activations p(yiau|x),
i = 1, . . . ,M as the sigmoid scores over M AUs. We match
the distribution over AU predictions p(yiau|x) with the dis-
tribution q(yiau|x), where the AUs are modeled as a mixture
over the basic expression categories:

q(yiau|x) =
∑

yexp∈{1,...,7}

p(yexp|x) p(yiau|yexp), (2)
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where p(yiau|yexp) is defined deterministically from Table 1
and is 1 for prototypical/observational action units, or 0
otherwise. For example, AU2 is prototypical for expres-
sion surprise and observational for expression fear and thus
q(yAU2|x) = p(ysurprise|x)+p(yfear|x). So with this matching
if, e.g., the network predicts the expression happy with prob-
ability 1, i.e., p(yhappy|x) = 1, then the prototypical and ob-
servational AUs of happy -AUs 12, 25 and 6- need to be acti-
vated in the distribution q: q(yAU12|x) = 1; q(yAU25|x) = 1;
q(yAU6|x) = 1; q(yiau|x) = 0, i ∈ {1, .., 14}.

In spirit of the distillation approach, we match the distri-
butions p(yiau|x) and q(yiau|x) by minimizing the cross en-
tropy with the soft targets loss term, where all available train
samples are used to match the predictions:

LDM = Ex

[
M∑
i=1

[−p(yiau|x)log q(yiau|x)]

]
(3)

Via Soft Co-annotation Here, we propose the soft co-
annotation loss for coupling the expression and AU tasks.
At first we create soft expression labels (that are guided by
AU labels) by infusing prior knowledge of their relationship.
Then we match these labels with the expression predictions.
The new expression labels will help in cases of images with
partial or no annotation overlap, especially if there are not
many training data. We use the AU labels (instead of predic-
tions) as they provide more confidence (the AU predictions
-especially at the beginning of training- will be quite wrong;
if we utilized this loss with the wrong AU predictions, it
would also affect negatively the expression predictions).

Given an image x with ground truth AU annotations, yau,
we first co-annotate it with a soft label in form of the distri-
bution over expressions and then match it with the predic-
tions of expressions p(yexp|x). Thus, at first we compute,
for each basic expression, an indicator score, I(yexp|x) over
its prototypical and observational AUs being present:

I(yexp|x) =
∑

i∈{1,...,M} w
i
au · yiau∑

i∈{1,...,M} w
i
au

, yexp ∈ {1, . . . , 7}

(4)

where: wi
au is 1 if AU i is prototypical for yexp (from Table

1); is w if AU i is observational for yexp; is 0 otherwise.
For example, for expression happy, the indicator score
I(happy|x) = (yAU12 +yAU25 +0.51 ·yAU6)/(1+1+0.51).

Then, we convert the indicator scores to probability
scores over expression categories; this soft expression label,
q(yexp|x), is computed as following:

q(yexp|x) =
eI(yexp|x)∑

y′
exp

eI(y
′
exp|x)

, {yexp, y′exp} ∈ {1, .., 7}

(5)

In this variant, every single image that has ground truth
annotation of AUs will have a soft expression label assigned.
Finally we match the predictions p(yexp|x) and the soft ex-
pression label q(yexp|x) by minimizing the cross entropy
with the soft targets loss term:

LSCA = Ex

[ ∑
yexp∈{1,...,7}

[−p(yexp|x)log q(yexp|x)]

]
(6)

Case Study II: Beyond Affective Computing
Here, we show that our approach can also be used in other
application scenarios: i) face recognition (facial attribute de-
tection and face identification); ii) fine-grained species cate-
gorization (species classification and attribute detection); iii)
shoe type recognition (shoe type classification and attribute
detection); iv) clothing categories recognition (classification
of clothing categories and attributes).

In the model’s multi-task (MT) formulation, we have two
objectives: (1) to detect M binary attributes, (2) to classify
N classes. The aim of a MT model is to jointly perform (1)
and (2). For a given image x ∈ X , we can have labels of one
of N classes ycls ∈ {1, . . . , N}, and M binary attributes
yatt ∈ {0, 1}M . We train the MT model by minimizing the
objective: LMT = LClc + LAtt + LDM + LSCA, where:

LDM = Ex

[
M∑
i=1

[−p(yiatt|x)log
∑
ycls

p(ycls|x)p(yiatt|ycls)]

]

LSCA = Ex

[∑
ycls

[−p(ycls|x)log
eI(ycls|x)∑
y′
cls

eI(y
′
cls|x)

]

]
LCls is the cross entropy loss for the classification task;
Latt is the binary cross entropy loss for the detection task;
LDM is the distribution matching loss for matching the dis-
tributions p(yiatt|x) and the one where the attributes are
modeled as a mixture over the classes;
LSCA is the soft co-annotation loss for matching predictions
p(ycls|x) and soft class labels (i.e., probability of each class
indicator score, I(ycls|x), over its detected attributes);
p(yiatt|ycls) =

total number of images with both yi
att and ycls

total number of images with ycls
, is in-

ferred empirically from dataset annotations.

Experimental Study
Databases: AffectNet (Mollahosseini, Hasani, and Mahoor
2017) with around 350K in-the-wild images annotated for
7 basic expressions (BE); RAF-DB (Li, Deng, and Du
2017) with around 15K in-the-wild images annotated for 7
BE; ABAW4 LSD (Kollias 2022a) -utilized in 4th Affec-
tive Behavior Analysis in-the-wild (ABAW) Competition at
ECCV 2022- with around 280K in-the-wild synthetic im-
ages and 100K in-the-wild real images (which constitute the
test set) annotated for 6 BE; Aff-Wild2 (Kollias 2022b) -
as utilized in 3rd ABAW Competition at CVPR 2022- with
564 in-the-wild videos (A/V) of around 2.8M frames anno-
tated for 7 BE (plus ’other’), 12 AUs and valence-arousal;
EmotioNet (Fabian Benitez-Quiroz, Srinivasan, and Mar-
tinez 2016) with around 50K images manually annotated
for 11 AUs; CelebA with around 205K in-the-wild images
of around 10.2K identities, each with 40 attributes (its split
is subject independent; for our experiments, we generated
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Databases AffectNet - EmotioNet RAF-DB - EmotioNet ABAW4 LSD - EmotioNet Aff-Wild2
Methods EmoAffNet EffNet-B2 PSR VGGFACE MTER-KDTD HSE-NN TMIF-FEA
Metrics Acc - AFA Acc - AFA AA - AFA AA - AFA F1 - AFA F1 - AFA F1 - F1 (AU)

ST 66.4-71.9⋆ 66.3-70.5⋆ 80.8-69.6⋆ 77.5-69.3⋆ 35.9-70.0⋆ 37.2-70.8⋆ 35.9-49.9
NC MT 64.3⋆-75.1⋆ 63.9⋆-73.8⋆ 78.6⋆-72.8⋆ 75.4⋆-72.2⋆ 34.2⋆-72.2⋆ 35.4-73.0⋆ 33.7⋆-52.0⋆

S-T NC MT 64.9⋆-76.1⋆ 64.5⋆-74.9⋆ 79.8⋆-73.2⋆ 76.5⋆-72.6⋆ 35.0⋆-72.9⋆ 36.1-73.7⋆ 33.9⋆-52.2⋆

C MT (DM) 69.4-80.0 68.9-78.5 84.8-78.1 81.4-77.2 38.6 -77.5 39.3-78.3 38.8-55.9
C MT (DB) 69.4-80.0 68.7-78.7 83.8-77.2 80.5-76.0 39.5-78.5 40.3-79.2 39.9-57.8

Table 2: Performance comparison (in %) between various state-of-the-art single-task (ST) methods vs their multi-task coun-
terparts with/without coupling (C MT/NC MT, respectively) under two relatedness scenarios (DB, i.e., Aff-Wild2, or DM, i.e.,
domain knowledge from (Du, Tao, and Martinez 2014)) vs their Student-Teacher (S-T) knowledge distillation counterparts;
’Acc’: Accuracy; ’AA’: Average Accuracy; ’AFA’: average of F1 and mean Accuracy; ⋆ denotes our own implementation.

a new split into 3 subject dependent sets); Caltech-UCSD
Birds-200-2011 (Wah et al. 2011) (CUB) with around 12K
images of 200 bird species and of 312 binary attributes;
Shoes (Wah et al. 2011) (SADD) with around 15K women
shoe images of 10 different types and of 10 attributes (Ko-
vashka, Parikh, and Grauman 2012) (it does not have a pre-
defined split, thus we split it in a training set of 7.4K and test
set of 7.3K images). Clothing Attributes Dataset (Chen,
Gallagher, and Girod 2012) (CAD) with around 2K images
partially annotated for 7 clothing categories, 23 binary and
2 multi-class attributes (due to its very small size and to the
non-predefined split, we perform 6 times 2-fold cross vali-
dation, i.e., we create 6 different 50-50 splits of the data).
Performance Measures: i) average accuracy for RAF-DB;
ii) accuracy for AffectNet; iii) average of F1 and mean accu-
racy for EmotioNet; iv) F1 for ABAW4 LSD and Aff-Wild2;
vii) accuracy and F1 for CelebA, CUB, SADD, CAD.
Pre-Processing & Training Implementation Details: Case
Study I: with RetinaFace (Deng et al. 2020) extract bboxes &
5 landmarks (for alignment), resize images to 112×112×3,
Mixaugment (Psaroudakis and Kollias 2022) for augmenta-
tion. Case Study II: CelebA: use provided aligned images re-
sized to 112×112×3 (batch size = 200); CUB: use cropped
images resized to 280 × 280 × 3, label smoothing (value
= 0.3), affine transformations (batch size = 150); SADD: re-
size images to 280×280×3 (batch size = 100); CAD: resize
images to 280× 280× 3 (batch size = 50). In all databases,
we used Adam, lr = 10−3 and images were normalized to
[−1, 1]. Tesla V100 32GB GPU & Tensorflow were used.

Results on Case Study I: Affective Computing
Effectiveness of Proposed Coupling Losses Across Var-
ious Networks We utilized the state-of-the-art (sota)
in various databases: i) AffectNet: EmoAfftNet(Ryumina,
Dresvyanskiy, and Karpov 2022) and EffNet-B2 (Savchenko
2021); ii) RAF-DB: PSR (Vo et al. 2020) and VGG-
FACE (Kollias et al. 2020a); iii) ABAW4 LSD: HSE-NN
(Savchenko 2022) and MTER-KDTD (Jeong et al. 2022);
iv) Aff-Wild2: TMIF-FEA (Zhang et al. 2022). Let us note
that EffNet-B2, MTER-KDTD and HSE-NN are multi-task
methods.

The result of using each sota in single-task (ST) manner
is shown in the row ’ST’ of Table 2. The result of using each

sota in MTL manner (e.g., EmoAfftNet trained on both Af-
fectNet and EmotioNet; PSR trained on both RAF-DB and
EmotioNet) is shown in row ’NC MT’ (i.e., Multi-Task with
no coupling) of Table 2. It might be argued that since more
data are used for network training (i.e., the additional data
coming from multiple tasks, even if they contain partial or
non-overlapping annotations), the MTL performance will be
better for all tasks. However, as shown and explained next,
this is not the case as negative transfer can occur, or sub-
optimal models can be produced for some, or even all tasks
(Wu, Zhang, and Ré 2019).

It can be seen in Table 2 (rows ’ST’ and ’NC MT’), for
all databases, that the sota, when trained in a MTL man-
ner (without coupling), display a better performance for AU
detection, but an inferior one for expression recognition -
when compared to the corresponding performance of the
single-task sota. This indicates that negative transfer occurs
in the case of basic expressions. This negative transfer effect
was due to the fact that the AU detection task dominated
the training process. In fact, the EmotioNet database has a
larger size than the RAF-DB, AffectNet and ABAW4 LSD.
Negative transfer largely depends on the size of labeled data
per task (Wang et al. 2019), which has a direct effect on the
feasibility and reliability of discovering shared regularities
between the joint distributions of the tasks in MTL.

Finally, we trained each of the sota networks in a MTL
manner with the proposed coupling, under two relatedness
scenarios; when the relatedness between the expressions and
AUs was derived from the cognitive and psychological study
of (Du, Tao, and Martinez 2014), or from dataset annotations
(from Aff-Wild2 database). The former case is shown in row
’C MT (DM))’ of Table 2 and the latter case in row ’C MT
(DB)’. From Table 2 two observations can be made.

Firstly, when the proposed coupling is conducted, in each
sota multi-task network, negative transfer is alleviated; the
performance of all multi-task networks is better than the
corresponding one of the single-task counterparts for both
tasks. This is consistently observed in all utilized databases
and experiments. Secondly, the use of the proposed cou-
pling brings similar levels of performance improvement in
all sota multi-task networks across the databases. In more
detail, when coupling is conducted, networks outperform
their counterparts without coupling by approximately: i) 5%
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on Affectnet and 5% on EmotioNet (both EmoAfftNet and
EffNet-B2); ii) 6% on RAF-DB and 5% on EmotioNet (both
PSR and VGGFACE); iii) 5% on ABAW4 LSD and 6% on
EmotioNet (both MTER-KDTD and HSE-NN); iv) 6% on
Aff-Wild2 (MTER-KDTD).

To sum up, the use of coupling makes the MT networks
greatly outperform their MT (without coupling) and single-
task counterparts. This proves that the proposed coupling
losses are network and modality agnostic as they can be
applied and be effective in different networks and different
modalities (visual, audio, A/V and text; e.g. TMIF-FEA is a
multi-modal approach). This stands no matter which task re-
latedness scenario has been used for coupling the two tasks.

Finally, for comparison purposes we also used the
Student-Teacher (S-T) knowledge distillation approach. We
used one, or multiple teacher networks to create soft-labels
for the databases that contain annotations only for one task,
so that they contain complete, overlapping annotations for
both tasks; we then trained a multi-task network on them.
To illustrate this via an example: we use the single-task
EmoAfftNet trained on AffectNet for expression recogni-
tion and test it on EmotioNet to create soft-expression la-
bels; thus EmotioNet contains its AU labels and soft ex-
pression labels, i.e., the predictions of EmoAfftNet. Then
we use the single-task EmoAfftNet trained on EmotioNet
for AU detection and test it on AffectNet to create soft-
AU labels; thus AffectNet contains its expression labels and
soft AU labels. Then we train EmoAfftNet for MTL using
both databases. We compare its performance to EmoAfftNet
trained for MTL with the proposed coupling losses on both
databases with their original non-overlapping annotations.

The results of the S-T approach are denoted in row ’S-T
NC MT’ (denoting Student-Teacher Multi-Task with no cou-
pling) of Table 2. It can be observed that this approach shows
a slightly better performance in both tasks compared to the
multi-task counterparts that have been trained with the orig-
inal non-overlapping annotations -without coupling-. This
is expected as these networks have been trained with more
annotations for both tasks. Nevertheless, negative transfer
for the basic expressions still occurs. Moreover, our pro-
posed approach greatly outperforms the S-T one. So overall,
our proposed approach alleviates negative transfer and also
brings bigger performance gain than that of S-T approach.

TMIF-FEA Aff-Wild2
F1 (Expr) F1 (AU)

no coupling 33.7 52.0
soft co-annotation (DM) 37.7 54.4

distr-matching (DM) 37.4 54.7
both (DM) 38.8 55.9

soft co-annotation (DB) 38.8 56.1
distr-matching (DB) 38.3 56.5

both (DB) 39.9 57.8

Table 3: Ablation Study on TMIF-FEA with/without cou-
pling, under 2 relatedness scenarios; DM is domain knowl-
edge from (Du, Tao, and Martinez 2014); DB is Aff-Wild2.

Ablation Study Here we perform an ablation study, uti-
lizing the Aff-Wild2, on the effect of each proposed cou-
pling loss on the performance of TMIF-FEA. Table 3 shows
the results when task relatedness was drawn from domain
knowledge, or from the training set of Aff-Wild2. It can be
seen that when TMIF-FEA was trained with either or both
coupling losses under any relatedness scenario, its perfor-
mance was superior to the case when no coupling loss has
been used. Finally, in both relatedness scenarios, best results
have been achieved when TMIF-FEA was trained with both
soft co-annotation and distr-matching losses. Similar results
are yielded when we utilize each of the rest state-of-the-art
on other databases, as explained in the previous subsection.

Results on Case II: Beyond Affective Computing
Effectiveness of Proposed Coupling Losses Across
Broadly Used Networks Here, we utilized VGG-16,
ResNet-50 and DenseNet-121. At first, we trained each of
them for each application scenario for single-task learning
(independent learning of classes and attributes) on CelebA,
CUB, SADD and CAD datasets. In Table 4, these are de-
noted as ’(2 ×) Single-Task’. We further trained these net-
works in MTL setting in two different cases: with coupling
and without coupling during training. The presented results
show the effectiveness of the proposed coupling losses to:
i) avoid strong or mild negative transfer; ii) boost the per-
formance of the multi-task models. The proposed coupling
losses are network agnostic, as they bring similar level of
improvement in all utilized networks, tasks and databases.
Face Recognition & Fine-Grained Species Categorization
Table 4 shows that when the MTL baselines were trained
without coupling, they displayed a better performance than
the two single-task networks; this occurred in all studied
cases, tasks, metrics and baseline models. This shows
that the studied tasks were coherently correlated; training
the multi-task architecture therefore, led to improved
performance and no negative transfer occurred. Table 4
further shows that when the baselines were trained in the
multi-task setting with coupling, they greatly outperformed
its counterpart trained without coupling, in all studied tasks
and metrics and for all baseline models. More precisely,
when training with coupling, performance increased by at
least: 4.3% and 5.9% in Accuracy and F1 Score for identity
classification; 5% and 4.8% in Accuracy and F1 Score for
species categorization; 1.2% and 2.3% in Accuracy and F1
Score for facial attribute detection; and 2% and 10.6% in
Accuracy and F1 Score for species attribute detection.
Shoe Type Recognition Table 4 shows that negative trans-
fer occurs in the case of attribute detection. Each single-
task baseline for attribute detection displayed a better per-
formance than its multi-task counterpart without coupling,
whereas the latter displayed a better performance for shoe
type classification. When the multi-task baseline networks
were trained with coupling, the performance on both tasks
was boosted and outperformed single- and multi-task coun-
terparts, by at least 4.5% and 4.2% for classification and
2.1% and 2.7% for detection in both metrics. The proposed
coupling losses overcame the negative transfer that had oc-
curred.
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Db Setting
2× Single-Task Multi-Task with no Coupling Multi-Task with Coupling

Classes Attributes Classes Attributes Classes Attributes
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

V

CelebA
CUB

SADD
CAD

78.1
78.2
71.9

52±5

70.0
78.4
71.2

38±7

87.6
85.2
91.1

80±2

67.9
27.0
89.2

40±2

80.8
80.0
72.2

41±7

72.0
80.2
72.0

32±9

89.4
85.5
90.4

75±3

68.7
28.6
88.5

33±4

85.9
85.1
76.4

64±3

78.0
85.1
76.5

52±6

90.6
88.0
93.4

85±1

71.0
39.3
91.3

46±1

R

CelebA
CUB

SADD
CAD

80.8
82.8
74.7

55±5

72.9
82.8
74.6

41±7

90.1
89.5
92.6

84±2

71.4
30.8
90.6

44±2

84.0
84.3
75.0

44±7

75.1
84.3
75.1

35±9

92.0
89.9
92.0

79±3

72.3
32.5
90.1

38±4

88.6
89.3
79.3

67±3

81.1
89.5
79.4

55±6

93.3
92.1
94.7

89±1

74.7
43.3
93.2

50± 1

D

CelebA
CUB

SADD
CAD

80.1
80.6
73.3

53±5

72.2
80.7
73.1

39±7

89.9
87.6
91.3

82±2

70.2
29.1
89.6

42±2

82.8
82.0
73.7

42±7

74.1
82.5
73.7

33±9

91.7
88.0
90.7

77±3

71.0
30.9
88.9

36±4

87.1
87.2
78.0

65±3

80.0
87.3
78.0

53±6

93.0
90.0
93.8

87±1

73.3
41.5
92.4

48±1

Table 4: Performance evaluation (in %) on various databases by three widely used baseline networks, VGG-16 (denoted as ’V’),
ResNet-50 (denoted as ’R’) and DenseNet-121 (denoted as ’D’); ’Acc’ denotes accuracy; ’Db’ denotes Database

NTS-ST NTS-NC MT NTS-C MT MGDA-UB GradNorm AdaShare TR
CUB 87.5-92.0 89.6-92.7 94.4-95.2 86.3-90.9 86.0-90.4 86.2-90.6 83.2-76.5

SADD 77.7-93.0 78.0-92.1 82.6-94.9 76.5-93.1 76.1-92.8 76.7-93.4 73.1-78.7
CAD 60±5-86±2 49±6 - 81±4 64±2 - 92±1 52±4 - 83±2 51±4 - 82±3 49±4 - 79±3 61±5 - 74±3

Table 5: Accuracy evaluation (in %; in form Classes-Attributes) on various databases vs state-of-the-art and MTL methods

Clothing Categories Recognition Table 4 presents the out-
comes of the 2-fold cross validation experiments (performed
6 times) in which the results are averaged and their spread
is also shown (in the form: mean ± spread). From Table 4,
it can be seen that the selected tasks are very heterogeneous
and less correlated as all multi-task baselines without cou-
pling performed significantly worse than single-task coun-
terparts in all utilized metrics. Such severe negative trans-
fers occurs as there is a big discrepancy in the size of la-
beled data per task in CAD dataset (the missing values for
each attribute range from 12% to 84%) and its size is very
small (it contains only 1856 images). When the multi-task
baselines were trained with coupling, negative transfer was
prevented and the models significantly outperformed their
single-task counterparts (10-14% difference in Total Accu-
racy and 13-15% in F1 Score for classification; 4-5% in To-
tal Accuracy and 5-7% in F1 Score for attributes). Finally,
a smaller spread of the results can be observed in the case
when the models were trained with coupling.

Effectiveness of Proposed Coupling Losses Across the
State-of-the-Art At first, we show that the proposed cou-
pling losses can also be incorporated in sota networks and
thus we implement NTS-Net (Yang et al. 2018) in single
task setting (denoted NTS-ST), in MTL setting without cou-
pling (NTS-MT NC) and in MTL setting by adding our pro-
posed coupling losses (NTS-MT C). Results are shown on
Table 5 and are in accordance with the previous presented
results (similar performance gain and alleviation of negative
transfer). We then compare our method against MTL ones

-presented in related work section- and thus we implement
(ResNet50): MGDA-UB, GradNorm, AdaShare and TR. Ta-
ble 5 presents their results. Comparing these with ResNet50
C MT of Table 4, it is evident that our method significantly
outperforms all of them. Also, when comparing them to ST
ResNet of Table 4: i) MGDA-UB, GradNorm and AdaShare
cannot alleviate negative transfer in CAD for both tasks; ii)
TR cannot alleviate negative transfer in CUB and CAD for
attribute detection and in SADD for both tasks.

Conclusion & Limitation
We proposed a method for accommodating classification
tasks by encoding prior knowledge of their relatedness. Our
method is important as deep neural networks cannot neces-
sarily capture tasks’ relationship, especially in cases where:
i) there is no or partial annotation overlap between tasks;
ii) not many training data exist; iii) one task dominates the
training process; iv) sub-optimal models for some tasks are
produced; vi) there is big discrepancy in the size of labeled
data per task. We considered a plethora of application sce-
narios and conducted extensive experimental studies. In all
experiments our method helped the MT models greatly im-
prove their performance compared to ST and MT models
without coupling. Our method further helped alleviate mild
or significant negative transfer that occurred when MT mod-
els displayed worse performance in some or all studied tasks
than ST models. Our approach is general and flexible as long
as there is a direct relationship between the studied tasks; the
latter is our method’s requirement and thus its limitation.
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