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Abstract

Open Set Recognition (OSR) poses significant challenges
in distinguishing known from unknown classes. In OSR,
the overconfidence problem has become a persistent obsta-
cle, where visual recognition models often misclassify un-
known objects as known objects with high confidence. This
issue stems from the fact that visual recognition models of-
ten lack the integration of common-sense knowledge, a fea-
ture that is naturally present in language-based models but
lacking in visual recognition systems. In this paper, we pro-
pose a novel approach to enhance OSR performance by dis-
tilling common-sense knowledge into visual prompts. Uti-
lizing text prompts that embody common-sense knowledge
about known classes, the proposed visual prompt is learned
by extracting semantic common-sense features and aligning
them with image features from visual recognition models.
The unique aspect of this work is the training of individual vi-
sual prompts for each class to encapsulate this common-sense
knowledge. Our methodology is model-agnostic, capable of
enhancing OSR across various visual recognition models, and
computationally light as it focuses solely on training the vi-
sual prompts. This research introduces a method for address-
ing OSR, aiming at a more systematic integration of visual
recognition systems with common-sense knowledge. The ob-
tained results indicate an enhancement in recognition accu-
racy, suggesting the applicability of this approach in practical
settings.

Introduction
Open Set Recognition (OSR) is a critical domain in com-
puter vision that focuses on the ability of a system to clas-
sify known objects while also recognizing and rejecting un-
known ones. This OSR problem reflects real-world scenar-
ios, where the models are expected to encounter objects not
belonging to the known classes in the training dataset. De-
spite the advances in deep learning techniques for closed-set
recognition, OSR remains a challenging problem, particu-
larly due to an overconfidence issue in classifying unknown
objects (Zhou, Ye, and Zhan 2021).

In traditional OSR methods, visual recognition mod-
els often misclassify unknown objects with excessive cer-
tainty, so-called overconfidence. (Nguyen, Yosinski, and
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Figure 1: Depiction of the proposed framework, where a
large language model distills common-sense knowledge into
a visual prompt. This process enables the visual recog-
nition model to adapt and respond effectively when con-
fronted with unfamiliar instances, thereby enhancing its per-
formance in OSR tasks.

Clune 2015), (Hein, Andriushchenko, and Bitterwolf 2019),
(Padhy et al. 2020), (Wang et al. 2021) For instance, a vi-
sual recognition model trained to recognize various breeds
of dogs might confidently misclassify a fox, which it has
never seen before, as a type of dog. This reflects what is re-
ferred to as the overconfidence problem, stemming from the
fact that visual classifiers often lack common-sense knowl-
edge (Zellers et al. 2019), (Park et al. 2020), (Shen et al.
2022). Such knowledge, like understanding that foxes and
dogs are distinct categories despite sharing similar features,
is typically found in language-based models but is missing in
visual recognition systems. In other words, while language
models can reason about these different contexts and rela-
tionships, visual recognition models might encounter limi-
tations, particularly when encountering classes not seen dur-
ing training.

Instead of merely learning a discriminative model for rec-
ognizing known objects, the proposed method enables vi-
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sual recognition models to differentiate objects using the
underlying logic and categorization that humans naturally
apply (i.e., common-sense knowledge). To achieve this, we
introduce a novel approach distilling common-sense knowl-
edge into structured noise patterns, which we refer to as “vi-
sual prompts”. These are specially designed to encapsulate
common-sense knowledge about the known classes of vi-
sual recognition models. As an illustration, Figure 1 shows
a conceptual figure for the proposed method. By integrat-
ing the knowledge—that foxes are wild animals with distinct
behaviors, while dogs are domesticated pets—into these vi-
sual prompts, the model is conditioned to perceive a never-
before-seen fox as separate from the dog category.

This paper presents a pioneering approach to OSR by in-
tegrating text-based common-sense knowledge into visual
prompts, aiming to address the inherent limitations in vi-
sual recognition models. This distillation of common-sense
knowledge serves as a bridge between text-based under-
standing and visual recognition, enabling models to ap-
proach classification challenges with the depth of reason-
ing typically found in human cognition. This distillation of
common-sense knowledge into visual prompts mimics the
human ability to integrate information from various senses
forming a comprehensive understanding that influences our
knowledge and awareness of the world (Iordan et al. 2022).
Individual visual prompts are trained for each class, en-
capsulating a rich understanding of common-sense knowl-
edge. As a result, visual recognition models can harness the
complex reasoning traditionally reserved for language-based
systems, enhancing accuracy for known classifications and
providing a more human-like discernment when encounter-
ing unknown objects.

Critically, this approach stands out for several reasons. It
introduces a unique method of distilling textual common-
sense knowledge into visual prompts, empowering the visual
recognition models to detect contradictions between the pre-
sented images and their inherent knowledge base. Further,
its model-agnostic nature ensures adaptability across a spec-
trum of visual recognition architectures. Additionally, by fo-
cusing on training just the visual prompts, the method saves
on computation, making it faster to adapt and use in differ-
ent situations. These benefits not only improve OSR results
but also mark a new path forward in the OSR field.

The contributions of this work can be summarized:

• By introducing the novel framework of distilling text-
based common-sense knowledge into visual prompts,
this method equips visual recognition models with the
deeper insights often reserved for human cognition. This
unique bridge between textual understanding and vi-
sual recognition is especially vital in OSR: possessing
common-sense knowledge about known classes makes
it markedly easier for the system to spot inconsistencies
when confronted with unknown class samples, thereby
mirroring human-like judgment.

• Our approach focuses on training visual prompts, ensur-
ing compatibility across diverse visual recognition mod-
els. This flexibility means we can improve OSR perfor-
mance without altering the base architecture, offering

both adaptability and wide-ranging utility.
• By focusing on training visual prompts, our method re-

mains computationally efficient. This streamlined ap-
proach speeds up adaptation across various scenarios,
making it easier to integrate OSR into current systems
without demanding extensive resources.

Related Works
Open Set Recognition
Recent advancements in OSR have primarily revolved
around the use of discriminative learning models (Bendale
and Boult 2016), (Ge et al. 2017), (Oza and Patel 2019), to
model decision boundaries between known classes. In par-
ticular, the emergence of Convolutional Neural Networks
(CNNs) has spurred notable progress in the OSR field. Pi-
oneering efforts like OpenMax (Bendale and Boult 2016)
have calibrated the output of CNNs using novel theories,
while other techniques have harnessed generative models
(Chen et al. 2021), (Moon et al. 2022) to synthesize exam-
ples of unseen classes, enhancing the learning of boundaries
between known and unknown classes.

Despite these advancements, a prevalent issue in exist-
ing methods is the overconfidence problem, where models
can misclassify unknown objects with undue certainty. Such
overconfidence often stems from a lack of common-sense
knowledge in visual recognition systems. While many so-
lutions in the literature attempt to address OSR challenges
through model-specific architectures and specialized learn-
ing techniques, these often lead to complicated solutions
demanding considerable customization and computational
power. Conversely, our proposed method seeks to address
the overconfidence issue directly by distilling common-
sense knowledge into visual prompts. Rather than resorting
to extensive modifications or relying on specialized architec-
tures, we propose a universally applicable visual prompting
strategy, potentially providing a more straightforward and
efficient means to improve OSR performance.

Prompt Learning
Prompt-based learning, widely recognized in natural lan-
guage processing (NLP), employs specific text inputs to am-
plify the proficiency of NLP models (Lester, Al-Rfou, and
Constant 2021), (Li and Liang 2021). This concept has been
extended to computer vision as visual prompts, showcasing
promising applications (Kim, Kim, and Ro 2022), (Lin et al.
2023), (Chen et al. 2023). While methods like fine-tuning
pre-trained vision models with visual prompts have demon-
strated competitive results across various tasks with mini-
mal resources (Jia et al. 2022). Rather than simply iterat-
ing on existing methodologies, we introduce a unique visual
prompt learning framework tailored for the OSR task. Our
novel approach endeavors to distill common-sense knowl-
edge into visual prompts, thereby enriching pre-trained vi-
sual recognition models’ performance in OSR.

Large Language Models
Recent advancements in NLP have been driven by the
development of Large Language Models (LLMs) such
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Figure 2: Schematic of the training process for visual prompts. The figure illustrates the extraction of common-sense text
prompts for each known class (e.g., dogs, cats) and their encoding by a large language model. The visual encoder processes
two scenarios: 1) When an image (e.g., a dog) is paired with its corresponding visual prompt (e.g., dog), the training aligns the
image feature with the text feature that includes the common-sense knowledge; 2) When an image (e.g., a dog) is paired with
a non-corresponding visual prompt (e.g., cat), the visual prompt is trained to suppress overconfident classification, promoting
uniform prediction probability across classes. The process results in a set of multiple distinct visual prompts, one for each
known class, fostering improved OSR performance.

as Transformer-based architectures (Vaswani et al. 2017).
These models, encapsulating billions of parameters, have
demonstrated a profound ability to grasp linguistic patterns
and common-sense knowledge (Brown et al. 2020), (Devlin
et al. 2018). Alongside, vision-language alignment models
like CLIP have endeavored to bridge the gap between visual
knowledge space and language semantics, laying a foun-
dational framework for integrated understanding (Radford
et al. 2021), (Li et al. 2023a). A notable extension in this do-
main is BLIP-2, which introduces an efficient pre-training
strategy that bootstraps vision-language pre-training from
off-the-shelf frozen pre-trained image encoders and frozen
large language models (Li et al. 2023a). The true potential of
LLMs in our context lies in their ability to store vast amounts
of textual common-sense knowledge. Our research leverages
these models to distill this knowledge into a visual prompt
format, bridging textual understanding with visual recogni-
tion. This approach of using LLMs for OSR provides a new
perspective to improve system performance for identifying
unseen classes and samples in real-world scenarios.

Proposed Method
Consider an input image x ∈ RH×W×C , where H , W , and
C denote the height, width, and channels of the image, re-
spectively. The associated label for this image is y. To allow
the visual recognition model f(·) to incorporate common-
sense knowledge, we introduce a unique structure: a visual

prompt ϕ that has the same spatial dimensions as the input
image, RH×W×C . However, ϕ is structured as a frame with
a width of P pixels. The central region of ϕ is void, mea-
suring (H − 2P ) × (W − 2P ) × C, ensuring that only the
border of width P carries the information. This design is
crafted to utilize minimal parameters without obscuring or
compromising the critical information within the image, en-
suring an efficient yet effective fusion of the prompt with the
image.

The aim of this visual prompt is to infuse the model f(·)
with common-sense knowledge, particularly aiding in ad-
dressing the OSR problem. By training ϕ and preserving the
parameters of the visual recognition model, we ensure that
the inherent model functionalities remain undisturbed. For
the C known classes in our dataset, we devise C distinct vi-
sual prompts, with each crafted for a specific class. We de-
fine the set of the visual prompts as Φ = {ϕ1, ϕ2, · · · , ϕC}.
This facilitates the model to grasp and apply the unique
common-sense knowledge associated with each class, refin-
ing its ability to act robustly in open set situations.

Textual Common-Sense Data Retrieval
To provide visual recognition models with a richer under-
standing grounded in common-sense knowledge, we lever-
age the expansive knowledge base of ConceptNet 5.5 (Speer,
Chin, and Havasi 2017). Given the C known classes in
our dataset, each class is associated with a specific name
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or label. Using these class names as our starting point, we
query ConceptNet for relevant sentences that encapsulate
the common-sense knowledge associated with each class.

Upon querying, ConceptNet returns sentences or textual
prompts that are intrinsically tied to the essence of the class
names. However, not all returned sentences carry equal rel-
evance or importance. To filter and retain only the most per-
tinent information, we take advantage of a weight threshold
(ω). Sentences in ConceptNet are associated with weights
that signify their relevance and importance to the queried
term. By setting up a minimum weight, we ensure that only
sentences surpassing this threshold are extracted. This en-
sures that our model gets useful and relevant common-sense
knowledge, strengthening its ability to make better decisions
in OSR situations.

Distillation of Common-Sense Knowledge via
Contrastive Learning
The core of our approach lies in effectively bridging the
knowledge from textual data to our visual recognition
model. This is achieved using contrastive learning, ensuring
the visual and textual features are accurately aligned.

For a given known class label yi, where i ∈ {1, 2, ..., C},
the textual common-sense prompt derived from ConceptNet
for that class is represented as tyi

. We first incorporate the
corresponding visual prompt (ϕyi=y∗ ) into each class im-
age. For instance, for the “Dog” class, the visual prompt
tailored for “Dog” is added on the image of a “Dog” in a
pixel-wise manner. Denoting this visual prompt augmented
image as x′ = x + ϕyi=y∗ , it is then fed into the visual
recognition model f(·) to extract its feature, represented as
vyi = f(x′). Simultaneously, each of these textual common-
sense prompts tyi

is processed by an LLM g(·) to extract its
feature, denoted as uyi

= g(tyi
). The objective is to align

features vyi
and uyi

for matching pairs and create a diver-
gence for mismatching pairs. The contrastive learning loss
(Radford et al. 2021) can be defined as:

LAlign = −
C∑
i=1

log

(
exp(sim(vyi

, uyi
)/τ)∑C

j=1 exp(sim(vyi
, uyj

)/τ)

)
,

(1)
where sim(a, b) computes the similarity between vectors a
and b, often using the cosine similarity measure, and τ is a
temperature parameter that scales the logits before applying
the softmax function.

Through this contrastive learning mechanism, matching
pairs’ features are drawn closer in the feature space, while
mismatching pairs are pushed apart, thereby infusing the vi-
sual recognition model with common-sense knowledge from
the textual domain driven by the visual prompt.

Suppressing Overconfident Predictions
A vital component of our methodology is to prevent over-
confidence when visual prompts are mismatched with im-
age classes. For instance, if the “Dog” visual prompt is ap-
plied to a “Cat” image, the prediction should ideally be a
uniform distribution across all classes, reflecting uncertainty
and avoiding biased predictions.

Given an image augmented with a mismatched visual
prompt, x′′ = x + ϕc̃, we first extract features using our
visual recognition model, denoted by f(x′′), where ϕc̃ is
sampled from Φ\{ϕyc=y∗}). These features are then passed
through a classifier h, which produces the final prediction
output h(f(x′′)). Our objective is to make this final predic-
tion resemble a uniform distribution U , where U = 1

C for a
scenario with C classes. To accomplish this, we utilize the
Kullback-Leibler (KL) divergence to measure the disparity
between the predicted distribution and the uniform distribu-
tion. The loss is given by:

LSupp = KL(h(f(x′′))||U), (2)
where KL(a||b) computes the KL divergence between dis-
tributions a and b. This loss mechanism ensures that while
the model remains accurate for standard classification sce-
narios, it exhibits desirable uncertainty when faced with mis-
matched visual prompts.

Strategic Optimization for OSR
Label smoothing is a well-known technique used to prevent
over-fitting in deep learning models. Its significance in OSR
arises from the need to avoid overconfidence in predictions,
which could mislead the model when faced with unfamil-
iar data. To this end, for scenarios where the visual prompt
aligns with the image’s true class, we utilize label smooth-
ing to produce more generalized predictions, thus providing
more adaptable decision boundaries for open set inputs. This
is complemented by the RandAugment technique (Cubuk
et al. 2020), applying a varied augmentation strategy in each
iteration to further enrich our model’s robustness. The com-
bined loss for these matching scenarios can be expressed as:
LLS = (1−ϵ)·CE(h(f(x′)), y)+ϵ·CE(h(f(x′)), U), (3)

where ϵ represents the smoothing parameter and CE(a, b)
denotes the cross-entropy loss between prediction a and true
label b. These techniques collaboratively fine-tune the visual
prompts, enhancing their performance in OSR. In order to
integrate the various components of our strategy, we com-
pute the final loss as a weighted sum of the individual losses:

L = αLAlign + βLLS + γLSupp, (4)
where α, β, and γ are hyperparameters that control the con-
tribution of each loss to the final loss. The procedure of train-
ing visual prompts is described in Algorithm 1.

Visual Prompt Selection for Inference
In the inference phase, the optimal selection of the visual
prompt plays a critical role in harnessing the trained capa-
bilities of the visual recognition model for OSR tasks. While
the model has been trained with diverse prompts tailored to
each class, determining the most suitable prompt for a given
test image is crucial.

The proposed inference procedure unfolds in two sequen-
tial stages: Preliminary Classification stage and Refined Pre-
diction with Visual Prompt stage.

Initially, in the Preliminary Classification stage, the test
image x, without any visual prompt, is first fed into the vi-
sual recognition model f(·). The model generates a prob-
ability distribution over the known classes. We select the
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Algorithm 1: Training for OSR with Visual Prompts Dis-
tilled from Common-Sense Knowledge
Input: Dataset with training images X = {xj}Nj=1 and cor-
responding labels Y = {yc}Cc=1
Parameters: Set of visual prompts Φ = {ϕ1, · · · , ϕC} ,
Pre-trained visual recognition model f(·), Classifier h(·),
Large language model g(·), Smoothing parameter ϵ, Weight
threshold ω, Hyperparameters α, β, γ, Temperature parame-
ter τ
Output: Trained visual prompts Φ

1: Initialize the visual prompts ϕc’s
2: T ← ConceptNet(class names, ω) {Retrieve texts with

weight above ω}
3: for each epoch do
4: for each mini-batch B of images from X do
5: Split B into two halves: Bmatch and Bmis

6: for each class yc do
7: tyc ← Tyc ⊂ T {Extract related text}
8: uyc

← g(tyc
) {Compute textual feature}

9: Append uyc
into a set to form {uyc

}Cc=1
10: end for
11: for each image xj in Bmatch do
12: x′

j ← xj + ϕyc=y∗ {Add matching visual
prompt}

13: vj ← f(x′
j) {Compute visual feature}

14: LAlign ← Eq. (1) {Contrastive loss}
15: LLS ← Eq. (3) {Label-smoothing loss}
16: end for
17: for each image xk in Bmis do
18: Sample random ϕc̃ from Φ \ {ϕyc=y∗}
19: x′′

k ← xk + ϕc̃ {Add mismatching visual
prompt}

20: LSupp ← Eq. (2) {Suppression loss}
21: end for
22: Compute final loss L by Eq. (4)
23: Optimize Φ using L
24: end for
25: end for

visual prompt corresponding to the class with the highest
predicted probability. For instance, if the model predicts the
test image to be a “Dog” with the highest confidence, then
the visual prompt associated with the “Dog” class will be
chosen for the subsequent step.

Following this, in the Refined Prediction with Visual
Prompt stage, having determined the most likely class for
the test image, the corresponding visual prompt is added to
the original image, creating an augmented version x′. This
augmented image is then fed back into the visual recogni-
tion model. The resulting prediction scores, while images
being applied with visual prompts, provide a more refined
and informed classification, optimized by the additional con-
text the visual prompt offers.

This two-stage inference process, starting with a prelim-
inary classification followed by a refined prediction using
the selected visual prompt, ensures that the model not only

Algorithm 2: Inference for OSR with Visual Prompts Dis-
tilled from Common-Sense Knowledge
Input: Dataset with test images Xtest = {xj}Nj=1, Vi-
sual recognition model f(·), Classifier h(·), Trained visual
prompts Φ = {ϕ1, · · · , ϕC}
Output: Prediction for Xtest

1: for each test image xj do
2: yinit ← h(f(xj)) {Preliminary Classification stage}
3: x′ ← xj + ϕyc=yinit {Apply visual prompt}
4: yfinal ← h(f(x′)) {Refined Prediction with Visual

Prompt stage}
5: end for
6: return Prediction for Xtest

recognizes the most probable class but also refines its de-
cision using the tailored knowledge encapsulated in the vi-
sual prompts. We describe the procedure of applying the pro-
posed visual prompt for inference in Algorithm 2.

Experiments
Dataset
• CIFAR10 (C10): Comprising 10 image classes with

50,000 training and 10,000 testing images, six classes
were designated as known for the OSR task, leaving the
remaining four as open set (Krizhevsky, Hinton et al.
2009).

• CIFAR+N (C+N): This setup involves four known
classes from CIFAR10, with a variable number of un-
known classes from CIFAR100, creating a more com-
plex OSR problem as the number of unknown classes
increases.

• TinyImagenet (TI): As the downscaled version of the
ImageNet dataset, it includes 200 classes. In our experi-
ments, 20 were used as known classes, and the remaining
180 were treated as unknown (Le and Yang 2015), (Deng
et al. 2009).

Metrics
• AUC (Area Under the ROC Curve): This metric, rang-

ing from 0 to 100%, assesses the classifier’s ability to
differentiate between known and unknown classes by
quantifying the trade-off between sensitivity and speci-
ficity across different thresholds (Phillips, Grother, and
Micheals 2011).

• F1 Score: As the balance between precision and re-
call, the F1 score expressed as a percentage is espe-
cially valuable in imbalanced datasets, offering insight
into the trade-off between false positives and false nega-
tives (Hand and Christen 2018).

• OSCR (Open Set Classification Rate): Adapted from
the Detection and Identification Rate (DIR) curve, the
OSCR curve plots the Correct Classification Rate (CCR)
versus False Positive Rate (FPR) for known and unknown
classes, providing a nuanced evaluation of accuracy in
open set scenarios (Dhamija, Günther, and Boult 2018).
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Method CIFAR10 (C10) CIFAR+10 (C+10) CIFAR+50 (C+50) TinyImageNet (TI)

Baseline (Softmax) 66.7 / 69.4 / 82.9 81.3 / 77.5 / 91.1 79.8 / 64.7 / 88.3 58.1 / 51.7 / 61.9
OpenMax (Bendale and Boult 2016) 69.5 / 71.4 / - 81.7 / 78.7 / - 79.6 / 67.7 / - 57.6 / 50.7 / -

G-OpenMax (Ge et al. 2017) 67.5 / - / - 82.7 / - / - 81.9 / - / - 58.0 / - / -
OSRCI (Neal et al. 2018) 69.9 / - / - 83.8 / - / - 82.7 / - / - 58.6 / - / -

C2AE (Oza and Patel 2019) 89.5 / - / - 95.5 / - / - 93.7 / - / - 74.8 / - / -
PROSER (Geng, Tao, and Chen 2020) 89.1 / - / - 96.0 / - / - 95.3 / - / - 69.3 / - / -

OpenHybrid (Zhang et al. 2020) 95.0 / - / - 96.2 / - / - 95.5 / - / - 79.3 / - / -
RPL (Chen et al. 2020) 86.1 / - / 85.2 85.6 / - / 91.8 85.0 / - / 89.6 70.2 / - / 53.2

CSSR (Huang et al. 2022) 91.3 / - / - 96.3 / - / - 96.2 / - / - 82.3 / - / -
RCSSR (Huang et al. 2022) 91.5 / - / - 96.0 / - / - 96.3 / - / - 81.9 / - / -

OpenGAN (Kong and Ramanan 2021) - / - / - - / - / - - / - / - - / 58.5 / -
CGDL (Sun et al. 2020) - / 71.0 / - - / 77.9 / - - / 71.0 / - - / - / -

GCM-CF (Yue et al. 2021) - / 72.6 / - - / 79.4 / - - / 74.6 / - - / - / -
GCPL (Yang et al. 2018) - / - / 84.3 - / - / 91.0 - / - / 88.3 - / - / 59.3

AMPF++ (Xia et al. 2023) - / - / 89.0 - / - / 95.1 - / - / 93.3 - / - / 69.0
ARPL+CS (Chen et al. 2021) 91.0 / 75.3 / 87.9 97.1 / 82.7 / 94.7 95.1 / 75.3 / 92.9 78.2 / 67.6 / 65.9

DIAS (Moon et al. 2022) 85.0 / 80.9 / 84.2† 92.0 / 85.9 / 93.1† 91.6 / 82.9 / 91.8† 73.1 / 65.4 / 66.4†

Baseline + Visual Prompt 91.2 / 80.0 / 89.0 94.5 / 85.0 / 95.8 94.9 / 77.7 / 92.3 77.4 / 67.6 / 67.9
(ARPL + CS) + Visual Prompt 95.2 / 83.3 / 89.6 97.9 / 87.5 / 96.6 97.1 / 80.1 / 94.5 83.1 / 70.2 / 68.5

DIAS + Visual Prompt 93.9 / 83.0 / 86.6 95.9 / 86.0 / 94.7 96.3 / 83.6 / 93.1 80.9 / 68.1 / 69.1

Table 1: Comparison of AUC / F1 / OSCR metric results (%) with state-of-the-art OSR methods, using the same baseline
architectures as VGG32. Higher values indicate superior performance for all three metrics. Note that “Visual Prompt” denotes
the proposed visual prompts distilled from common-sense knowledge, and † denotes results reproduced by us.

Experimental Settings
VGG32 architecture, popularly employed as a backbone by
state-of-the-art methods, served as our foundation for vi-
sual recognition tasks. VGG32, denoted as Baseline in the
experimental results, trained initially with a softmax loss
for closed-set classification, was subsequently augmented by
our visual prompt approach. Our experimental setup began
with the reproduction and optimization of two notable OSR
models: ARPL+CS (Chen et al. 2021) and DIAS (Moon
et al. 2022). Once optimized, their weights were frozen, af-
ter which our proposed method was applied. For the extrac-
tion of common-sense knowledge features, we incorporated
the OPT-2.7B model from BLIP2 (Li et al. 2023b). The
threshold for extracting common-sense text prompts from
ConceptNet 5.5 varied per dataset and will be elaborated
upon later in this section. We have utilized a constant visual
prompt size of P set at 30.

Enhancing OSR Performance with the Proposed
Approach
Our experimentation shows that applying our strategy sig-
nificantly enhances the OSR capacities of visual recognition
models across various metrics. This improvement is largely
attributed to the infusion of common-sense knowledge car-
ried by the visual prompt with the visual recognition models.

From Table 1, we observe significant enhancements in
AUC, a metric measuring the model’s ability to distinguish
between in-distribution and out-of-distribution samples. The
Baseline model showcased a robust boost of +24.5% in AUC

LAlign LSupp LLS C10 C+10 C+50 TI

✗ ✗ ✗ 66.7 81.3 79.8 58.1
✓ ✗ ✗ 76.0 87.1 85.5 67.2
✓ ✗ ✓ 77.5 87.6 86.0 68.0
✓ ✓ ✗ 89.0 93.5 94.0 75.6
✓ ✓ ✓ 91.2 94.5 94.9 77.4

Table 2: Effects of loss functions devised for training the
proposed visual prompts on AUC performance (%). The first
row represents the model’s performance without the pro-
posed method (i.e., Baseline (Softmax) in Table. 1).

on the CIFAR10 dataset post the integration of our approach,
indicating significant improvement in recognizing out-of-
distribution samples. Our experiments also presents results
in terms of the F1 score, a metric sensitive to data imbal-
ance, which is inherent in OSR due to the undefined nature
of out-of-distribution samples. For instance, the ARPL+CS
model’s performance on the CIFAR10 dataset saw an in-
crease of +8.0% with our approach, indicating effective han-
dling of data imbalance. The OSCR scores in Table 1 cap-
ture both open-set and closed-set recognition capabilities.
Our method’s consistent enhancement, such as the +1.7%
OSCR improvement for the ARPL+CS model on CIFAR10,
underscores that our approach enhances OSR without com-
promising closed-set task proficiency.

In summary, our method enhances performance across
various metrics by incorporating common-sense knowledge.
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Figure 3: Trade-off between the quality and quantity of
common-sense text prompts for training visual prompts. (a)
depicts AUC of the Baseline model while varying minimum
weight ω to extract common-sense text prompt. (b) illus-
trates the average number of common-sense text prompts per
class used for training the visual prompt for two datasets.

This leads to improvements in OSR, enabling models to ef-
fectively identify out-of-distribution samples, handle data
imbalance, and maintain closed-set classification abilities.

Ablation Study on Training Strategies
In this ablation study, we evaluate the impact of different
Visual Prompt training strategies on the AUC performance
of our model, using the baseline architecture VGG32. The
results are presented in Table 2. We varied the use of ob-
jective functions—LAlign, LSupp, and LLS—to train our
model with Visual Prompts. The first row of Table 2 illus-
trates the performance without any visual prompt applica-
tion. Upon introducing LAlign, designed to distill common-
sense knowledge, we observed a significant increase in
AUC. The LSupp loss, aimed to suppress predictions when
encountering mismatched visual prompts, further enhanced
performance. Notably, the AUC on CIFAR10 increased to
89.0% with both LAlign and LSupp applied. The addition of
LLS led to a modest, but consistent improvement, indicat-
ing its positive effect on stabilizing visual prompt training.
Note that while LLS is not used, we utilize softmax cross
entropy loss instead, where ϵ equals to 0. In summary, our
study shows that each loss function contributes uniquely to
enhancing the performance, confirming the effectiveness of
visual prompts trained with these objective functions.

Trade-Off between Common-Sense Text Quality
and Number of Text Prompts
In this subsection, we analyze a graph depicted in Figure 3,
which explores the trade-off between the quality and quan-
tity of common-sense text prompts, as measured by the
minimum weight set on the edges of ConceptNet, and the
number of such text prompts used for training the visual
prompts. A higher weight in ConceptNet signifies more re-
liable and informative common-sense knowledge, while a
lower weight suggests potential for less recognized or lower-
quality information.

Size of P # of Parameters C10 C+10 C+50 TI

- - 66.7 81.3 79.8 58.1
10 26K 80.4 88.7 87.4 66.2
20 49K 86.3 91.9 91.2 73.4
30 70K 91.2 94.5 94.9 77.4
40 88K 88.3 94.2 94.1 76.2
50 104K 85.4 92.4 92.0 73.8

Table 3: Performance comparison of the model under vary-
ing trainable parameters (Prompt size P ). The table shows
the AUC performance (%) across different datasets. The first
row represents the model’s performance without the pro-
posed visual prompts (i.e., Baseline (Softmax) in Table. 1).

We have conducted experiments on VGG32, which is de-
scribed as the Baseline model in the previous experiments.
For the CIFAR10 dataset, with general classes like ‘dog’
and ‘cat’, a high ConceptNet weight threshold (e.g., 1.0) is
optimal, indicating that fewer but high-quality text prompts
suffice for effective visual prompt training. In contrast, for
TinyImageNet, which includes specific classes like ‘gazelle’
and ‘espresso’, a lower threshold (e.g., 0.5) yields the best
results. This strategy embraces a larger volume of prompts,
potentially of lower quality, proving beneficial for the train-
ing of visual prompts for specific and uncommon classes.

Computational Efficiency of the Proposed Method
One of the contributions of our proposed method is its com-
putational efficiency of the visual prompt. As depicted in
Table 3, we have conducted experiments on VGG32 while
varying the number of trainable parameters of the visual
prompt, which corresponds to the prompt size P . We achieve
optimal OSR performance by setting the visual prompt size
P as 30, which corresponds to approximately 70,000 param-
eters for each class. As observed, the AUC performance im-
proves as the prompt size increases from 10 to 30. Beyond
this point, we notice that the performance exhibits a slight
decline as the prompt size continues to increase towards 50.
Unlike methods that require extensive optimization of the
visual recognition model, our strategy focuses on refining a
relatively lightweight, cost-efficient visual prompt.

Conclusion
In this work, we presented a novel approach to OSR, by in-
tegrating text-based common-sense knowledge into visual
prompts, our methodology equips visual recognition mod-
els with a depth of understanding akin to human cognition.
These prompts, rich in contextual insights, enable models
to discriminate known from unknown objects, addressing
the pervasive overconfidence problem inherent in conven-
tional systems. Notably, the flexibility and model-agnostic
nature of our solution signify its adaptability across various
architectures. By focusing on computational efficiency, our
method makes it easier to use in various applications with-
out using a lot of resources. Basically, this paper shows how
combining language and vision models can help improve
OSR performance.
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