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Abstract

Zero-Shot Object Counting (ZSOC) aims to count referred in-
stances of arbitrary classes in a query image without human-
annotated exemplars. To deal with ZSOC, preceding studies
proposed a two-stage pipeline: discovering exemplars and
counting. However, there remains a challenge of vulnerabil-
ity to error propagation of the sequentially designed two-
stage process. In this work, we propose an one-stage base-
line, Visual-Language Baseline (VLBase), exploring the im-
plicit association of the semantic-patch embeddings of CLIP.
Subsequently, we extend the VLBase to Visual-language
Counter (VLCounter) by incorporating three modules de-
vised to tailor VLBase for object counting. First, we intro-
duce Semantic-conditioned Prompt Tuning (SPT) within the
image encoder to acquire target-highlighted representations.
Second, Learnable Affine Transformation (LAT) is employed
to translate the semantic-patch similarity map to be appro-
priate for the counting task. Lastly, we transfer the layer-
wisely encoded features to the decoder through Segment-
aware Skip Connection (SaSC) to keep the generalization ca-
pability for unseen classes. Through extensive experiments
on FSC147, CARPK, and PUCPR+, we demonstrate the ben-
efits of our end-to-end framework, VLCounter. Code is avail-
able at https://github.com/seunggu0305/VLCounter

1 Introduction
Object counting, which was initially studied for specific tar-
gets, e.g., crowds (Zhang et al. 2016), cells (Xie, Noble, and
Zisserman 2018), animals (Arteta, Lempitsky, and Zisser-
man 2016), and cars (Mundhenk et al. 2016), has shown that
the number of objects can be counted even within a dense
image. Furthermore, recent works have shown significant
advances in inferring the number of arbitrary objects with
several human-annotated exemplar patches. However, such a
strong prerequisite that every cumbersome guidance must be
equipped is undoubtedly the main challenge to overcome to
grant applicability to object counting methods. In this con-
text, Zero-Shot Object Counting (ZSOC) was proposed to
mitigate the need for human labor.

Current ZSOC approaches commonly adopt a two-stage
pipeline as illustrated in Fig. 1. These works primarily focus
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Figure 1: Comparison between two-stage pipeline and
one-stage pipeline (ours). The two-stage pipeline re-
quires training the exemplar discoverer (orange) before the
counter (blue), along with the need for an extra training
dataset to optimize the discoverer. In contrast, our one-stage
pipeline is designed to be simpler and does not necessitate
any additional data or training stage.

on identifying exemplar patches within the image and sub-
sequently adopt the counting framework from the literature
of few-shot object counting (Shi et al. 2022; Ranjan et al.
2021). To identify the exemplar patches, RepRPN (Ranjan
and Nguyen 2022) considered the repetition score to de-
tect object patches that frequently appear within the image.
Requirement for counting the desired classes over frequent
ones, ZSC (Xu et al. 2023) utilized the class names to enable
the class specification. They localize exemplars by identify-
ing the k-nearest neighbors of the class name embeddings
among randomly cropped patches. Despite their progress,
the potential localization error propagation in the two-stage
training pipeline (Nag et al. 2022) is an untapped problem in
ZSOC frameworks. Indeed, they utilized additional datasets
to train decent exemplar discovery networks.

This paper pursues a simplified zero-shot object count-
ing framework. We instantiate an end-to-end ZSOC counter
namely Visual-Language Baseline (VLBase), which con-
sists of a CLIP (Radford et al. 2021) encoder and count-
ing decoder. By leveraging the embedding space of CLIP
which enables the implicit association of the semantic and
patch embeddings to localize the target object (Zhou, Loy,
and Dai 2022; Li et al. 2023), VLBase eliminates the need
for an exemplar discovery process.

Additionally, we introduce VLCounter which is built
upon VLBase by incorporating three modules devised to tai-
lor VLBase for object counting. First, we propose Semantic-
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conditioned Prompt Tuning (SPT) which extends the visual
prompt tuning (VPT) to efficiently finetune CLIP for the
counting task. Instead of utilizing naı̈ve learnable prompts,
SPT employs conditioning via semantic embedding to gen-
erate patch embeddings that emphasize the region of inter-
est. Subsequently, based on our observation that the similar-
ity maps between patch embeddings obtained using SPT and
semantic embeddings already provide a decent approxima-
tion of object locations, we employ simple Learnable Affine
Transformation (LAT) to adjust only the finer details. Fi-
nally, to equip the decoder with the generalization capabil-
ity and provide rich clues, we exploit intermediate features
across different encoding layers of CLIP through Segment-
aware Skip Connections (SaSC). With all components com-
bined, our simple end-to-end one-stage framework records
new state-of-the-art results on the FSC147 (Ranjan et al.
2021) dataset validating its superiority over the previous
ZSOC methods. Moreover, we provide additional evidence
of cross-dataset generalization by evaluating performance
on the car counting dataset CARPK and PUCPR+ (Hsieh,
Lin, and Hsu 2017).

Our contributions are three-fold:

• We instantiate an end-to-end baseline for ZSOC, VL-
Base, by exploiting the vision-language association ca-
pability of CLIP.

• We propose a VLCounter consisting of SPT, LAT, and
SaSC that allows the model to utilize the generalization
capability of CLIP in a counting-specific manner.

• Our experiments on FSC147 and cross-dataset validation
verify the effectiveness of VLCounter.

2 Related Works
2.1 Object Counting
Class-specific Object Counting focuses on quantifying
specific class samples, e.g., crowds (Abousamra et al. 2021;
Idrees et al. 2018; Lian et al. 2019; Sindagi, Yasarla, and Pa-
tel 2019), cars (Mundhenk et al. 2016; Hsieh, Lin, and Hsu
2017), animals (Arteta, Lempitsky, and Zisserman 2016),
and cells (Xie, Noble, and Zisserman 2018). Most works fall
into two main categories each employing detection (Chat-
topadhyay et al. 2017; Hsieh, Lin, and Hsu 2017; Laradji
et al. 2018) or regression (Chan, Liang, and Vasconcelos
2008; Cholakkal et al. 2019; Liu, Salzmann, and Fua 2019;
Wang et al. 2020) mechanism to measure the number of in-
stances. The former predicts the bounding box for every in-
stance using an object detector, whereas the latter predicts
the density distribution of the image instead, thereby be-
ing recognized as a more robust stream against partially oc-
cluded objects (Lu, Xie, and Zisserman 2019).

Few-shot Object Counting To overcome the lack of gen-
erality of being constrained to a specific class, Generic
Matching Network (GMN) (Lu, Xie, and Zisserman 2019)
first formalized class-agnostic object counting to count the
desired objects provided by the human-annotated exemplar
patches. They introduced a two-stream architecture to en-
code each image and exemplar to handle the difference in
their resolution. Following them, CFOCNet (Yang et al.

2021) and BMNet (Shi et al. 2022) also adopted and en-
hanced the two-stream approach by adding a layer-wise
matching procedure and bilinear similarity metric. Other
works adhere to single-stream architecture. To be specific,
FamNet (Ranjan et al. 2021) and RCAC (Gong et al. 2022)
use ROI pooling after feature extraction to obtain exem-
plar prototypes. However, the aforementioned studies suf-
fer from the limitation that every inference requires human-
annotated exemplars.

Zero-shot Object Counting has been proposed by
RepRPN (Ranjan and Nguyen 2022) to discard the duty
of annotating target exemplars for counting. To be specific,
they trained the region proposal network (RPN) to capture
the patches containing the most frequently appeared ob-
jects to replace human-annotated exemplars. Then, to further
grant more applicability to exemplar-free object counter,
ZSC (Xu et al. 2023) presented a method that takes guid-
ance from semantic information. By matching semantic in-
formation to randomly generated patches, they sampled the
most semantically relevant patches to obtain target exem-
plars. Our work shares the goal with ZSC in that we aim to
train the counter that can count user-specified classes with
only class names. Yet, as the mentioned methods adopt a
two-stage pipeline that is prone to error propagation, we fo-
cus on mitigating such issues by proposing an end-to-end
framework that localizes and counts at once.

2.2 Prompt Tuning
Prompt tuning is a popular strategy to adapt pre-trained large
models for downstream tasks due to its efficiency compared
to conventional fine-tuning methods (Wang et al. 2022; Gu
et al. 2021; Brown et al. 2020; Jia et al. 2022). Whereas
fine-tuning updates all parameters, prompt tuning freezes the
pre-trained large models and introduces only a small set of
learnable prompts to optimize (Li and Liang 2021; Jia et al.
2022). Following these works, we utilize prompt tuning to
efficiently exploit the quality of the visual-language under-
standing capability of pre-trained CLIP. Yet, our work dif-
fers in using semantic information from the semantic em-
beddings to condition the prompts in the visual encoder to
concentrate more on specification-relevant information.

3 Preliminaries
3.1 Problem Formulation: ZSOC
ZSOC aims to predict the density map D ∈ RH×W×1

for image I ∈ RH×W×3 that belongs to unseen classes
Cu (f : (I, Cu) 7→ D) without any visual exemplar clues.
In the training stage, the model is trained with Dtrain =
{(Ii, Cs

i , Di)}i=N
i=1 where Cs

i denotes the seen class names
during training. Then in the testing stage, the model is to
yield a density map for Dtest = {(Ii, Cu

i , Di)}i=M
i=N+1, where

Cs ∩ Cu = ∅.

3.2 Overview of CLIP
This section introduces the underlying motivation behind
our proposed method. CLIP is composed of two encoders:
an image encoder ϕV (·) and a text encoder ϕT (·). The text
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Figure 2: Overview of VLBase and VLCounter: each without and with colored components. The end-to-end baseline, VLBase,
employs CLIP encoders to extract both image and text embeddings. Then, the decoder processes the image-text similarity map
along with visual embeddings to count the number of specified objects. With three colored modules, VLCounter leverages the
generalization capability of VLBase to be tailored for object counting.

encoder takes prompted class name t e.g., A photo of [kiwi]
and produces a semantic embedding T ∈ R1×d where d rep-
resents an embedding dimension. The image encoder takes
a learnable class token [cls] along with embedded patch se-
quences V as inputs and encodes global and local semantics
in the class token [cls] and patch tokens V respectively. Note
that V = [v1, v2, ..., vN ] ∈ RN×(P 2·d) where N is the num-
ber of embedded patches, and (P · P ) is the resolution of
each patch. Formally, this process can be expressed as fol-
lows:

T = ϕT (t); [ [cls],V ] = ϕV ([ [cls], V ]). (1)

These encoders are trained collaboratively to map T and
[cls] into a shared representation space.

Recently, there exist studies suggesting the implicit local-
ization capability of CLIP, where each patch embedding pre-
serves local image semantics (Zhou, Loy, and Dai 2022; Li
et al. 2023). This property, coupled with the powerful image-
text joint embedding space of CLIP, has provided a clear
motivation for utilizing CLIP as a robust tool for zero-shot
segmentation (localization). (Li et al. 2022; Rao et al. 2022;
Lüddecke and Ecker 2022). Taking similar inspiration yet
focused on object counting, we aim to leverage the implicit
localization capability of CLIP to achieve precise and effi-
cient object counting in an end-to-end manner.

4 Visual-Language Counter: End-to-End
Framework for Zero-Shot Object Counting

This section presents Visual-Language Counter (VL-
Counter), an efficient end-to-end ZSOC framework. We first
establish a baseline model referred to as Vision-Language
Baseline (VLBase), which exploits the visual-language lo-
calization capacity of CLIP in Sec. 4.1. Then, we bring
three improvements on top of VLBase to introduce VL-
Counter. Specifically, we emphasize the regions of inter-
ests (Sec. 4.2), learn task-specific visual-language similar-
ity (Sec. 4.3), and exploit semantic-relevant information
across the multi-level representations (Sec. 4.4). The over-
all architectures of the two models are illustrated in Fig. 2.

4.1 Visual-Language Baseline
VLBase is a standalone baseline, eliminating the need
for few-shot counting techniques that previous ZSOC ap-
proaches heavily rely on. Given input query image I and
class name C, VLBase obtains patch embedding V and se-
mantic embedding T using CLIP encoders ϕV (·) and ϕT (·),
respectively. By calculating the cosine similarity between T
and V , the similarity map S ∈ RH×W is yielded:

Sij(V, T ) =
vijT T

||vij ||||T ||
, (2)

where Sij corresponds to the value at position (i, j) in ma-
trix S and vij represents the embedding at position (i, j) of
2D-reshaped V .

As mentioned in prior studies (Zhou, Loy, and Dai 2022;
Li et al. 2023), we observed that the similarity map between
CLIP-encoded semantic and patch embeddings provides an
adequate indication of the degree of semantic similarity be-
tween the patch and semantic embedding. We find that this
similarity map is a decent clue for a decoder to localize the
target objects. Consequently, the CNN-based counting de-
coder predicts the density map Dpred by utilizing features of
V and S:

Dpred = ϕdecoder([V, S]), (3)

where [·, ·] denotes channel-wise concatenation. Finally, the
object count prediction is derived by summing all values in
Dpred.

Counting Loss For training, we adopt a conventional
MSE loss:

Lcount = ||Dpred −Dgt||22, (4)

where Dgt denotes the ground truth density map.

4.2 Semantic-conditioned Prompt Tuning (SPT)
To grant task-specificity to the CLIP image encoder without
sacrificing its generalization capability, a straightforward ap-
proach is to employ visual prompt tuning (VPT) (Jia et al.
2022). However, the naı̈ve VPT, which simply concatenates
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Figure 3: Illustration for Semantic-conditioned Prompt Tun-
ing (SPT). In addition to learnable visual prompts (orange)
in the image encoder, text features (yellow) are integrated to
specify the desired semantics.

a few learnable tokens to the input sequence of each encod-
ing layer does not take the semantic information into ac-
count. Hence, we introduce Semantic-conditioned Prompt
Tuning (SPT), which utilizes semantic information along
with the learnable tokens to assist the image encoder in ex-
tracting target-semantic-highlighted visual features.

Specifically, as illustrated in Fig. 3, SPT has new learn-
able tokens for each encoding layer. Learnable tokens for lth
layer are defined as P l = [pl1, p

l
2, ..., p

l
M ] where the number

of learnable tokens is denoted as M . These tokens are then,
supplemented with the linearly projected semantic embed-
ding T̂ to generate semantic-conditioned prompts P̂ . The
semantic-conditioned prompts for the lth layer are defined
as follows:

P̂ l = [pl1 + T̂ , pl2 + T̂ , plM + T̂ ], (5)

where T̂ = ϕc(T ) and ϕc denotes the parameters of the pro-
jection layer. Consequently, with the conditioned prompts
P̂ , the patch embedding process in lth layer of the image
encoder can be expressed as:

[ [cls], , V l+1 ] = Layerlenc([ [cls], P̂ l, V l ]), (6)

where initial input V1 = [v11 , v
1
2 , · · · , v1N ] is a sequence of

embedded patches through the patch embedding layer prior
to the encoder. Be aware that we follow VPT (Jia et al. 2022)
to discard output tokens of P̂ (represented as ) and do not
propagate to the subsequent layer.

4.3 Learnable Affine Transformation (LAT)
Through the adoption of the SPT, we obtain visual repre-
sentations in which the corresponding regions of the target
class are highlighted. Nevertheless, due to the nature of ob-
ject counting, discovering the central points of the objects
rather than encompassing the entire object area, a discrep-
ancy might arise between the information contained in the
similarity map S and the loss that needs to be backpropa-
gated during training.

In light of this, we propose learnable affine transforma-
tion matrix (LAT) to facilitate the conversion of similarity

Figure 4: The flow of Semantic-aware Skip Connec-
tion (SaSC) and architecture of feature projection block. In-
termediate visual features are projected and filtered with an
object-aware counting map Ŝ to produce object-relevant en-
coder features. Consequently, these are integrated into its
counterpart in the decoder.

map S to counting map Ŝ and establish a more task-specific
visual-semantic linkage centered around individual objects
as follows:

Ŝ = W ⊗ S +B, (7)

where W,B ∈ RH×W are learnable matrices for affine
transformation and ⊗ indicates element-wise multiplication.
In addition, we directly optimize the counting map Ŝ with
the rank-aware contrastive loss to learn the proper degree
of activation for object counting. Details of rank-aware con-
trastive loss are elaborated in Sec. 4.5. With LAT, the input to
the decoder [V, S] in Eq. 3 of VLBase is replaced by [V, Ŝ].

4.4 Segment-aware Skip Connection (SaSC)
For ZSOC, where the model encounters unseen classes dur-
ing inference, it is important to train a decoder that is tai-
lored for object counting while maintaining a generalization
ability. Sharing the motivation with VLBase in Sec. 4.1 that
CLIP features inherently preserve local semantics, we adopt
skip connections that incorporate intermediate features of
the encoder to its counterpart in the decoder.

As shown in Fig. 4, the lth encoder patch features are spa-
tially concatenated and projected to yield decoder-assistive
representations. Then, we multiply the affine transformed
similarity map Ŝ to emphasize the object-relevant patches.
Finally, these patch features are added to the corresponding
kth layer features of the decoder. Formally, the kth decoding
layer with SaSC, receiving lth encoder features, operates as
follows:

Fk = Layerkdec(Fk−1 + ϕk
proj(V l)⊗ Ŝ), (8)

where ϕk
proj(·), Fk, and ⊗ stand for the parameter of feature

projection block, the output of the k-th decoding layer, and
Hadamard products per channel, respectively.
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Methods Stage Class Train Dataset Val set Test set Inference
Name MAE ↓ RMSE ↓ MAE ↓ RMSE ↓ speed (s) ↓

few-shot
GMN (Lu, Xie, and Zisserman 2019) 1 × FSC147 29.66 89.81 26.52 124.57 -
FamNet (Ranjan et al. 2021) 1 × FSC147 24.32 70.94 22.56 101.54 0.82
BMNet (Shi et al. 2022) 1 × FSC147 19.06 67.95 16.71 103.31 0.86
BMNet+ (Shi et al. 2022) 1 × FSC147 15.74 58.53 14.62 91.83 1.59
zero-shot
RepRPN-Counter (Ranjan and Nguyen 2022) 2 × FSC147 + MS COCO 31.69 100.31 28.32 128.76 -
ZSC (Xu et al. 2023) 2 ✓ FSC147 + MS COCO 26.93 88.63 22.09 115.17 0.86+α
VLBase (Ours) 1 ✓ FSC147 31.82 98.89 32.20 130.51 0.81
VLCounter (Ours) 1 ✓ FSC147 18.06 65.13 17.05 106.16 0.82

Table 1: Quantitative comparison to state-of-the-art approaches on the FSC147 dataset. α in the rightmost column indicates an
additional cost necessary for the exemplar discovery process in the context of the two-stage pipeline.

4.5 Training Objectives

In addition to the counting loss described in Eq. 4,
VLCounter additionally employs rank-aware contrastive
loss (Hoffmann et al. 2022; Moon et al. 2023). Whereas
the Lcount trains the whole model to learn the counting ob-
jective, our focus in SPT and LAT is learning to yield the
counting-tailored similarity map in the encoder. In this re-
gard, we adopt rank-aware contrastive loss in the counting
map Ŝ to assign higher activations on the patches that are
nearby the object centers. To design the hierarchical guid-
ance for a rank-aware contrastive loss, we first normalize
the ground truth density map Dgt to be mapped between 0
and 1. Then, we iterate the batch for K times with different
thresholds to prepare positive and negative sets; patches are
gathered as positive if the corresponding patch in Dgt has a
higher value than the threshold, and if not, as negative. For-
mally, the rank contrastive loss with the positive set Ŝpos

r and
the negative set Ŝneg

r is formulated as follows:

Lrank = −
K∑

k=1

log

∑
Ŝi∈Ŝpos

r
exp(Ŝi/τ)∑

Ŝj∈(Ŝpos
r ∪Ŝneg

r ) exp(Ŝj/τ)
, (9)

where τ is a temperature scaling parameter.
With the objectives in Eq. 4 and Eq. 9 combined, VL-

Counter’s final objective is as follows:

Ltotal = Lcount + λ · Lrank, (10)

where λ is a hyperparameter to balance between the losses.

5 Experiments
In this section, we provide a comprehensive explanation of
experimental details. First, we delve into the implementation
details, datasets, and evaluation metrics in Sec. 5.1, followed
by a comparison of our model with existing state-of-the-art
methods in Sec. 5.2. Then, we conduct an in-depth explo-
ration of each component in Sec. 5.3 and qualitative analysis
in Sec. 5.4.

Methods CARPK PUCPR+
MAE RMSE MAE RMSE

few-shot
FamNet 28.84 44.47 87.54 117.68
BMNet 14.61 24.60 103.18 112.42
BMNet+ 10.44 13.77 62.42 81.74
zero-shot
VLBase 20.47 24.33 90.82 104.01
VLCounter 6.46 8.68 48.94 69.08

Table 2: Cross-dataset validation performance on the
CARPK and PUCPR+ dataset.

5.1 Experimental Details
Implementation Details. For all experiments, we em-
ployed CLIP ViT-B/16 as our encoders followed by a de-
coder consisting of 4 repeated units. Each of these units con-
sists of one feature projection block in Fig. 4 and one addi-
tional convolutional layer. Regarding the image input, each
image is resized to 384 × 384, and augmentations such as
Gaussian noise, Gaussian blur, affine transformation, hori-
zontal flip, and color jittering were applied. We trained the
model using AdamW (Loshchilov and Hutter 2017) opti-
mizer with a learning rate of 1e−4 and weight decay of 1e−2

for 200 epochs with a batch size of 16 on a single NVIDIA
RTX A6000. For temperature scaling and loss-balancing hy-
perparameter λ and τ , we used 1e−6 and 1.

Datasets. To explore the counting capability of models,
we use FSC147 (Ranjan et al. 2021), the first large-scale
dataset for class-agnostic counting. It includes 6135 im-
ages from 147 categories mainly composed of foods, ani-
mals, kitchen utensils, and vehicles. We also utilize CARPK
and PUCPR+ (Hsieh, Lin, and Hsu 2017) datasets. These
datasets exhibit different properties from the images in
FSC147, so we use them for cross-dataset validation which
is to test the model’s generality. To be specific, CARPK con-
sists of 1,448 parking lot images with nearly 90,000 cars
taken in a drone view at 40 meters height on average. On
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No. SPT LAT SaSC Val set Test set
MAE RMSE MAE RMSE

M1 × × × 31.82 98.89 32.20 130.51
M2 ✓ × × 20.61 75.36 17.58 112.89
M3 × ✓ × 29.97 96.59 28.26 127.44
M4 × × ✓ 24.88 81.28 24.16 113.01
M5 ✓ ✓ ✓ 18.06 65.13 17.05 106.16

Table 3: Ablation study on each component of VLCounter.

the other hand, PUCPR+ contains nearly 16,456 cars in total
which have 10th-floor-view images.

5.2 Comparison with State-of-the-art Methods
We compare VLBase and VLCounter against previous class-
agnostic counting methods in Tab. 1. Despite its simple de-
sign, the performances of VLBase are comparable to the
two-stage methods that even utilize additional training data.
On the other hand, VLcounter clearly surpasses other ZSOC
baselines. Particularly, when compared to ZSC, VLCounter
achieves a relative improvement of 32.94% and 22.81% in
terms of validation MAE and test MAE, respectively. More-
over, we remark on the comparable results to the state-of-
the-art few-shot counting method: BMNet. This is an espe-
cially notable milestone for ZSOC since few-shot methods
are generally seen as the upper bound of two-stage ZSOC
methods; the counting framework in two-stage works is usu-
ally adopted from few-shot methods.

On the rightmost columns, we provide the inference speed
per image. As our one-stage approaches (VLBase and VL-
Counter) only require the time to count the objects, it is
shown that their inference speeds are much faster than a two-
stage method (ZSC) which needs extra time to discover ex-
emplars (denoted as α since the implementation is not fully
publicized). In addition to the inference time, VLBase and
VLCounter have much fewer parameters to learn, having
their strength in shorter training time (Training time for VL-
Counter is approximately 2× faster than BMNet+).

Following previous class-agnostic counting meth-
ods (Ranjan et al. 2021; Shi et al. 2022), we verify the
generalization capability of VLBase and VLCounter by
conducting a cross-dataset evaluation on CARPK and
PUCPR+ datasets in Tab. 2, and VLBase and VLCounter
demonstrate their benefits in generalization. Whereas the
performance gaps between few-shot methods and VLBase
is reduced, we observe the superiority of VLCounter to
other methods by boosting MAE up to 38.12% and 27.54%
in CARPK and PUCPR+ datasets compared to BMNet+.
In particular, we emphasize the single-digit results of
VLCounter in terms of both MAE and RMSE are derived
without any fine-tuning (The average number of cars in
each image of CARPK is 62). We attribute such success
in cross-dataset validation to adapting the generality of
CLIP to counting-specific and incorporating multi-level
features to provide rich semantics into the prediction, each
approximately taking 54% and 46% portions in the increase
in CARPK MAE.

Condition Val set Test set
MAE RMSE MAE RMSE

VLCounter 18.06 65.13 17.05 106.16
SPT w/o T ′ 19.07 65.72 17.19 107.54
SaSC w/o Ŝ 20.28 65.54 19.38 105.69

Table 4: Analysis of semantic-conditioning techniques in
SPT and SaSC.

Text prompts Val set Test set
MAE RMSE MAE RMSE

Singular 20.08 67.92 19.18 105.04
Plural 18.06 65.13 17.05 106.16

Table 5: Analysis of pluralized context to prompt the class
names.

5.3 Ablation Studies on VLCounter

Component Analysis. To validate the effectiveness of in-
dividual components, we conducted an ablation study as pre-
sented in Tab. 3. Starting with VLBase (M1), we add SPT,
LAT, and SaSC in M2, M3, and M4, respectively. Among
the individual components, the effectiveness of SPT demon-
strated in M2 is the most pronounced. This significant im-
provement demonstrates the importance of fine-tuning in-
corporated with the semantic condition. LAT in M3 is an-
other important component. While it can be seen as not in-
curring a dramatic increase in performance, the counting
map Ŝ derived from LAT is also an essential element in
SaSC. Lastly, M4 shows that SaSC not only boosts gener-
alization capability but also task-specific predictions. This is
because layer-wise intermediate representations in CLIP en-
coder are also semantically meaningful (Li et al. 2023) and
SaSC aggregates them to aid counting prediction.

Effect of conditioning semantic information. We further
conduct ablation studies on semantic conditioning. In Tab. 4,
we compare conventional VPT with SPT and test the seman-
tic conditioning in SaSC. Along with the benefits of VPT
of granting task-specificity, utilizing semantic conditions in
VPT allows the prompts to be more semantically specific. In
addition, using semantic conditions in filtering the knowl-
edge that is passed to the decoder with residual paths clearly
benefits SaSC. We think that the semantic conditioning with
the counting map Ŝ suppresses the object-irrelevant infor-
mation, thereby contributing to the improvements.

Effect of plural text prompts. We followed CLIP (Rad-
ford et al. 2021) to use different context prompts to en-
code the semantic embeddings. Yet, since the counting task
mainly assumes the existence of multiple instances in ev-
ery image, we modified text prompts to be in plural form. In
Tab. 5, we compare the results between using singular and
plural forms of text prompts, and text prompts in plural form
have the advantage in the counting task.
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Figure 5: Qualitative comparison of VLBase and VLCounter on the FSC-147 (Top 4 rows) and CARPK (Bottom 2 rows). Class
names and counting values are shown at the right top of the query image (I) and the predicted density map, respectively.

5.4 Qualitative Results

Along with the quantitative results, we study how the com-
ponents of VLCounter affect class-specificity. In Fig. 5, we
compare both the similarity map and the density map of VL-
Base and VLCounter. By delivering the semantic condition
and fine-tuning the similarity map, we find the similarity
map to retain more compact salient regions; the activations
in the background are suppressed (1st, 2nd rows) and object
regions are clearly localized (2nd, 3rd rows). Then, by ag-
gregating multi-level representations of rich semantics with
these similarity maps in the decoder, we observe the clear
discrepancy between the predicted density maps from VL-
Base and VLCounter, especially for densely populated im-
ages (4th row).

Furthermore, we provide the cross-dataset results in the
last two rows in Fig. 5. Similar to what we discussed with
predictions for FSC147, we verify that VLCounter is a
counting-tailored and generalizable model across new cat-
egories, shapes, and densities of objects. These results ver-

ify the advantage of employing a pretrained vision-language
model for capturing the semantics of newly seen objects, i.e.,
cars. Refer to the appendix for more visualizations.

6 Conclusion

In this work, we present a simple end-to-end framework
VLBase and VLCounter for zero-shot object counting that
eliminates the need for the process of discovering exem-
plars. Simply put, VLBase is built upon the pre-trained
vision-language CLIP model. Then, VLCounter introduces
three key components that bring task-specificity and object-
specificity. Whereas the semantic-conditioned prompt tun-
ing and learnable affine transformation fine-tune the encod-
ing process to obtain counting-tailored representations, the
segment-aware skip connection is designed to learn the gen-
eralizable decoder with the knowledge. Our thorough exper-
iments on FSC147 and cross-dataset benchmarks validate
the effectiveness and efficiency of VLCounter.
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