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Abstract

The field of 4D point cloud understanding is rapidly devel-
oping with the goal of analyzing dynamic 3D point cloud se-
quences. However, it remains a challenging task due to the
sparsity and lack of texture in point clouds. Moreover, the
irregularity of point cloud poses a difficulty in aligning tem-
poral information within video sequences. To address these
issues, we propose a novel cross-modal knowledge transfer
framework, called X4D-SceneFormer. This framework en-
hances 4D-Scene understanding by transferring texture pri-
ors from RGB sequences using a Transformer architecture
with temporal relationship mining. Specifically, the frame-
work is designed with a dual-branch architecture, consisting
of an 4D point cloud transformer and a Gradient-aware Im-
age Transformer (GIT). The GIT combines visual texture and
temporal correlation features to offer rich semantics and dy-
namics for better point cloud representation. During training,
we employ multiple knowledge transfer techniques, includ-
ing temporal consistency losses and masked self-attention, to
strengthen the knowledge transfer between modalities. This
leads to enhanced performance during inference using single-
modal 4D point cloud inputs. Extensive experiments demon-
strate the superior performance of our framework on various
4D point cloud video understanding tasks, including action
recognition, action segmentation and semantic segmentation.
The results achieve 1st places, i.e., 85.3% (+7.9%) accuracy
and 47.3% (+5.0%) mIoU for 4D action segmentation and se-
mantic segmentation, on the HOI4D challenge, outperform-
ing previous state-of-the-art by a large margin. We release
the code at https://github.com/jinglinglingling/X4D.

Introduction
Exploring point cloud sequences in 4D (integrating 3D
space with 1D time) has garnered considerable interest in
recent years (Fan and Kankanhalli 2021; Wen et al. 2022;
Liu et al. 2022) due to their capacity to offer a wealth of dy-
namic information within our 3D environment. Compared to
conventional videos, 4D point clouds deliver direct access to
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Figure 1: 4D Cross-Modal Knowledge Transfer. (a) Previ-
ous 4D point cloud analysis methods take point cloud only
as their input. (b) Although cross-modal approaches enhance
performance, they introduce extra computation overhead in
both training and inference. (c) Our method takes additional
2D images during the training for 4D cross-modal knowl-
edge transfer. During the inference, the point cloud model
can be independently deployed.

geometric information in 3D space, a facet particularly ad-
vantageous for real-world interactions. These attributes are
pivotal for understanding 3D dynamic environments, includ-
ing tasks like action recognition/segmentation (Hoai, Lan,
and De la Torre 2011; Jing et al. 2022), and 4D semantic
segmentation (Xie, Tian, and Zhu 2020).

Previous works in 4D point cloud representation learning
predominantly stem from extending existing 3D point cloud
models (Fan and Kankanhalli 2021; Wen et al. 2022) to 4D,
which involves incorporating additional temporal learning
modules that enable feature interactions across time (Xiao
et al. 2022; Zhong et al. 2022). However, due to the sparsity
and lack of texture in point clouds, these methods are limited
in capturing comprehensive semantic details. Nevertheless,
such semantic information remains crucial, particularly for

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

2670



tasks demanding meticulous reasoning, such as 4D semantic
segmentation and action segmentation. A plausible approach
to address this limitation involves integrating supplemen-
tary texture information from RGB images to enhance the
4D point cloud representation, similar to methods employed
in previous cross-modal studies (Cui et al. 2021; Yan et al.
2022). Nevertheless, as shown in Figure 1(b), the concurrent
processing of data from two modalities unavoidably intro-
duces additional network designs and computational over-
head, posing challenges in online 4D video tasks.

In this paper, we present a solution to address the
aforementioned challenges through cross-modal knowl-
edge transfer. This approach efficiently transfers color and
texture-aware knowledge from 2D images to an arbitrary
point-based model, while avoiding extra computational cost
during the inference phase, as depicted in Figure 1(c). Our
framework stands apart from prior cross-modal approaches
that solely focus on knowledge transfer between static frame
pairs (Crasto et al. 2019). Notably, it places extra empha-
sis on ensuring motion and temporal alignment during the
knowledge transfer.

The proposed framework, X4D-SceneFormer, takes
multi-modal data (i.e., 4D point cloud, RGB sequences) as
input during training, and achieves superior performance
using only point cloud data during inference. Specifically,
there are two branches in our training framework, process-
ing point cloud and RGB sequence independently. For the
point branch, we simply deploy an off-the-shelf 4D point
cloud processor for the sake of simplicity. For the image
branch, we introduce a Gradient-aware Image Transformer
(GIT) to learn strong image semantics. GIT takes into ac-
count the temporal gradient (TG) as an added input from
adjacent image frames to enhance its comprehension of mo-
tion dynamics. Additionally, multi-level consistency losses
are introduced to address both motion-related aspects and
temporal alignment. Subsequently, the semantic and motion
features are integrated into a unified visual representation
through cross-attention. These merged representations are
then combined with the extracted point cloud representa-
tions, forming a stacked input for further processing with a
cross-modal transformer. By employing carefully-designed
attention masks, the cross-modal transformer can be de-
ployed with only point cloud inputs during inference, while
still incorporating multi-modal knowledge. In such a man-
ner, it achieves significant improvements in effectively lever-
aging multi-modal information and ensuring consistent mo-
tion alignment, making it a promising solution for various
4D point cloud tasks.

In summary, the contributions of this work are:

• Generality: We propose X4D-SceneFormer, the first
cross-modal knowledge transfer architecture for 4D point
cloud understanding, where arbitrary point-based models
can be easily integrated into this framework for cross-
modal knowledge transfer.

• Flexibility: We propose Gradient-aware Image Trans-
former (GIT) to provide temporal-aware and texture-
aware features guidance. We also propose multi-level
consistency metrics, employing a cross-modal trans-

former, to enhance knowledge transfer for the point cloud
model. Notably, these techniques are only applied during
training, ensuring that the point cloud model can be in-
dependently deployed during inference.

• Effectiveness: Extensive experiments on three tasks
show that our method outperforms previous state-of-the-
art methods by a large margin. This highlights the supe-
riority of our approach in 4D point cloud understanding.

Related Works
Image-based Video Analysis
Previous image-based video analysis approaches (Crasto
et al. 2019) extract the global feature via RNN or 1D
CNN (Lea et al. 2017). After that, the following works
enhance the performance through using two-stream net-
work (Ju et al. 2023), pooling techniques (Fernando et al.
2016) and extracting averaged features from stridden sam-
pled frames (Wang et al. 2016). In contrast, 3D CNNs (Fer-
nando et al. 2016) or sparse 3D convolution (Graham, En-
gelcke, and Van Der Maaten 2018) jointly learn spatial-
temporal features by organizing 2D frames into 3D struc-
tures to learn temporal relations implicitly. Recently, Vision
Transformer (ViT) (Dosovitskiy et al. 2020) proposes a pure
transformer architecture replacing all convolutions with self-
attention, and achieved excellent results. Built on the ViT ar-
chitecture, Timesformer and ViViT (Arnab et al. 2021) ex-
tend 2D spatial self-attention to the 3D spatial-temporal vol-
ume.

4D Point Cloud Processing
There are two mainstreams for 4D Point cloud video model-
ing: (1) voxel-based and (2) points-based approaches. Voxel-
based methods first convert 4D point cloud into 2D voxel
sequences, subsequently leveraging 3D convolutions to ex-
tract sequential features. For instance, MinkowskiNet (Choy,
Gwak, and Savarese 2019) harnesses 4D sparse convolu-
tion, effectively mining features from valid voxel grids.
3DV (Wang et al. 2020) employs temporal rank pooling to
fuse point motion within voxel sets, thereafter employing
PointNet++ (Qi et al. 2017) to extrapolate point representa-
tions. On the other hand, traditional points-based methods
take raw point cloud as input, and exploits RNN (Fan and
Yang 2019), appending a temporal features (Liu, Yan, and
Bohg 2019) and point spatial-temporal convolutions (Fan
et al. 2022) to encode temporal features. Nevertheless, the
above methods only focus on static scene representations.
Recently, P4Transformer (Fan and Kankanhalli 2021) in-
troduces 4D point coevolution and then learns the tempo-
ral features in a Transformer architecture. Building on this,
PPTr (Wen et al. 2022) further boosts the performance by
incorporating primitive planes as prior knowledge, thereby
enhancing the capture of enduring spatial-temporal context
in 4D point cloud videos. PST-Transformer (Fan, Yang,
and Kankanhalli 2022) encodes spatio-temporal structure by
utilizing video-level self-attention to search related points
adaptively. Notwithstanding these advancements, the exist-
ing methods typically cater to sparse and texture-limited
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Figure 2: The architecture of X4D-SceneFormer and GIT. (a) During the training phase, X4D-SceneFormer takes both image
sequence and 4D point cloud as input, where the dual branches independently extract representations and are supervised by
ground truths. A cross-modal Transformer process is applied between two representations. (b) The Gradient-aware Image
Transformer (GIT) employs a sliding window strategy to establish temporal relationships and acquires a correlation feature
through the cross-attention. Moreover, GIT applies two temporal-aware criteria in its processes.

point cloud inputs, ignoring rich texture and motion infor-
mation in 2D images.

Cross-Modality Learning and Knowledge Transfer
Given that point cloud and images are capable of captur-
ing distinct and complementary information pertaining to a
scene, significant endeavors (Yan et al. 2022; Afham et al.
2022) have been undertaken to integrate multi-modal fea-
tures in order to enhance perception. However, the inte-
gration of multi-modal methods inevitably introduces ad-
ditional computational burden and requires additional net-
work design. As a result, recent works have focused on de-
veloping stronger single-modal models through the cross-
modal knowledge transfer. Typically, knowledge transfer
(KD) was originally proposed to compress integrated clas-
sifiers (teacher) into smaller networks (student) without sig-
nificant performance loss (Hinton, Vinyals, and Dean 2015).
Recently, KD has been extended to 3D perception tasks
for transferring knowledge across different modalities. Sev-
eral approaches have been proposed for 3D object detec-
tion (Wang et al. 2020), 3D semantic segmentation (Hou
et al. 2022), and other tasks (Yang et al. 2021). Moreover,
there are some previous approaches utilize contrastive crite-
rion (Zhang et al. 2023) to enhance the knowledge transfer
during the training phrase. Inspired by these works, we first
time investigate cross-modal knowledge transfer in the task
of 4D point cloud analysis. In contrast with previous meth-
ods that solely focus on distilling static spatial information,
our architecture integrate motion and temporal alignment
during the knowledge transfer.

Methods
In this paper, we introduce a novel cross-modality knowl-
edge transfer approach that employs texture and motion pri-
ors to assist 4D point cloud analysis. As shown in Figure 2,

our architecture consists of two branches, where the upper
branch takes the normal 4D point cloud analysis model as
the backbone while the other exploits extra RGB sequence
to extract the prior knowledge. After that, we utilize a cross-
modal Transformer to transform the cross-modal knowledge
with masked attention. Besides, several knowledge transfer
constraints are applied between the two modalities.

Problem Formulation
The task of 4D point cloud analysis takes a point cloud video
consisting of T frames with N points as input, which can be
denoted as P ∈ RT×N×3. Typically, there are three main
tasks in the 4D point cloud analysis: 4D semantic segmen-
tation, action segmentation and action recognition. The de-
scription of the above tasks can be formulated as

SemSeg : RT×N×3 7→ RT×N , (1)

ActionSeg : RT×N×3 7→ RT , (2)

ActionRecog : RT×N×3 7→ R1, (3)

where the former two segmentation tasks perform classifica-
tion on point and frame levels respectively, and the recogni-
tion task identify single action for the whole video.

To assist the single-modal model during the training stage,
we introduced RGB sequence as an additional input, denoted
as I ∈ RT×H×W×3 with the size of H × W . Taking 4D
semantic segmentation as an example, the above task will
be modified during the training:

SemSeg : RT×N×3 × RT×H×W×3 7→ RT×N . (4)

During the inference, the 4D point cloud model can be inde-
pendently deployed and the formulation keeps the same as
Eqn. (1).
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Figure 3: Masked attention in the cross-modal transformer.
The attention mask prevents point representation FP

h from
attending on image representation FI

h in training (top three
rows of the mask), avoiding performance drop in inference
when FI

h is not available.

4D Point Cloud Architecture
The architecture of the 4D point cloud model (Point Back-
bone) is illustrated in the left section of Figure 2. Follow-
ing the previous works (Fan and Kankanhalli 2021), We
adopt point 4D convolution (P4Conv) as the encoder, gen-
erating the 4D point features with the shape of FP

l ∈
RT×M×D, where M and D are a number of subsampled
points and channels, respectively. After that, several self-
attention layers are applied to extract the sequential infor-
mation across the sequence dimension. The outcome is a
D-dimensional high-level feature representation, denoted as
FP

h = {f1, · · · , ft}Tt=1.

Gradient-aware Image Transformer (GIT)
As described in the right part of Figure 2, Gradient-aware
Image Transformer (GIT) is proposed to extract texture and
gradient-aware features from the RGB sequence. It takes a
set of images as input, independently encodes texture and
gradient features and finally generates a high-level image
feature representation FI

h with a cross-attention module.
Temporal-aware consistency and contrastive learning are ap-
plied during the training to enhance performance.
Gradient-aware feature encoding. Inspired by previous
work (Xiao et al. 2022) exploiting temporal gradient (TG)
to encode the sequential features, we first generate TGs as
an extra input for the GIT. The formulation of TG can be de-
picted as gt = It − It+n, where t denotes the frame index,
n is a predefined interval number, and I is a section of RGB
video. Given the input RGB video I and generated temporal
gradient G = {gt}Tt=1, two encoders adopt the same 2D-
CNN architecture to extract low-level frame-based features
FI ,FG ∈ RT×D.
Fusion by sliding window. Since TG is a weak signal that
cannot fully represent motion information, we further pro-
pose a sliding window mechanism to generate a fused corre-
lation feature by mining the temporal relationship within FI

and FG. Given the RGB and TG feature FI = {f I
t }Tt=1 and

FG = {fG
t }Tt=1, the sliding window at the t-th time-step can

be described as:

f̂ I
t = αt−n ∗ f I

t−n + ...+ αf I
t + ...+ αt+n ∗ f I

t+n, (5)

f̂G
t = βt−n ∗ fG

t−1 + ...+ βfG
t + ...+ βt+n ∗ fG

t+1, (6)

where α and β represent learnable parameters that assign
weight to the motion trajectory at the boundary of actions.
n is the window size. Subsequently, we merge the outputs
of the sliding window and employ an MLP to generate a
gradient-aware correlation feature Fcor:

Fcor = MLP([F̂I ; F̂G]), (7)

where [·; ·] is a concatenation operation.
Temporal-aware contrastive. To improve the differentia-
tion between various actions within a single sequence and
address over-segmentation challenges in action segmenta-
tion tasks, we exploit a temporal-aware supervised con-
trastive loss on the aforementioned correlation feature Fcor.
Given a set of point cloud/label pairs with a temporal length
of T frames, denoted as {Pi,Yi}i=1,...,T , a sequence of
point cloud with various data augmentations can be repre-
sented as P̂ , and the correlation features generated by P̂ are
denoted as F̂cor. Subsequently, we concatenate the afore-
mentioned two predictions along the temporal dimension
and denote it as F cor. The temporal-aware contrastive loss
is formulated as follows:

l(k, u) = − log
exp (F cor

k · F cor
u /τ)∑

j∈A(k) exp
(
F cor

k · F cor
j /τ

) , (8)

Ltcont =
∑
k∈M

1

|G(k)|
∑

u∈G(k)

l(k, u). (9)

Here, M = [1, 2T ] is defined by the length of the
concatenated sequence and A(k) = M\{k}. G(k) =
{u ∈ A(k) : Yu = Yk} denotes the set of positive pair and τ
is a coefficient temperature. By employing this approach, the
aforementioned loss function not only guarantees the prox-
imity of features belonging to the same category within a
given sequence but also facilitates the convergence of fea-
tures from the same frame that has been augmented using
distinct data augmentation.
Temporal-aware consistency. To effectively utilize differ-
ent temporal cues within a single sequence, we draw in-
spiration from the concept of asymmetric contrastive learn-
ing(Zhang et al. 2023). In this regard, we employ a temporal-
aware consistency loss to align temporal information be-
tween FI and FG. This further enhances the generated
feature and facilitates the prediction of motion trajectory
by capitalizing on the geometric consistency of adjacent
frames. Given the image and gradient feature FI and FG,
the temporal-aware consistency loss aligns the temporal fea-
ture in a time-misaligned manner, i.e., advance and lag. It
can be described as follows:
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Method Reference Test Validation
Acc Edit F1@{10, 25, 50} Acc Edit F1@{10, 25, 50}

P4Transformer CVPR 2021 71.2 73,1 73.8 69.2 58.2 63.2 65.4 65.9 59.9 45.9
PPTr+C2P CVPR 2023 81.1 84.0 85.4 82.5 74.1 - - - - -
Multi-Conv-Res2 HOI4D 84.3 86.6 88.9 86.9 80.7 - - - - -
DPMix1 HOI4D 85.2 87.8 89.8 88.3 82.9 - - - - -
PPTr (Baseline) ECCV 2022 77.4 80.1 81.7 78.5 69.5 72.3 75.6 74.8 70.3 58.4
X4D-SceneFormer3 HOI4D 84.1 91.1 92.5 90.8 84.8 78.9 89.4 88.2 85.1 75.1
X4D-SceneFormer Ours 85.3 91.5 92.6 91.1 85.5 82.6 92.4 91.8 89.4 81.2
Improvement - +7.9 +11.4 +10.9 +12.6 +16.0 +10.3 +16.8 +17.0 +19.1 +22.8

Table 1: The performance of action segmentation on HOI4D validation set and benchmark (CVPR2023-W) challenge. 11st
solution on HOI4D challenge. 2Runner-up solution in the challenge. 3 We achieve 3rd place without using GIT module.

Figure 4: Visualization of GT generation for segmentation.
Since the 2D segmentation ground truths are not available in
HOI4D dataset, we gain the the 2D labels through projecting
the point cloud labels onto the image.

Ladv = −
N∑
i=2

log
exp

(
fG
i−1 · f I

i /τ
)∑N

i=2 exp
(
fG
i−1 · f I

i /τ
) , (10)

Llag = −
N−1∑
i=1

log
exp

(
fG
i+1 · f I

i /τ
)∑N−1

i=1 exp
(
fG
i+1 · f I

i /τ
) . (11)

Finally, the temporal-aware consistency Ltac
GI is a linear

combination between the above two losses: Ltac
GI = (Ladv +

Llag)/2. In such a manner, we introduce a temporal consis-
tency constraint between differen features.
Gradient-aware feature generation. The GIT involves the
utilization of cross-attention blocks to merge the original
spatial image feature FI with the correlation feature Fcor,
thereby incorporating both spatial and temporal features.
Specifically, the query is generated from Fcor, while the key
and value are obtained from FI during this process. We de-
scribe the obtained high-level image representation as FI

h .

Cross-modal Transformer
To transfer the texture and gradient-aware knowledge from
GIT to the 4D point cloud model, we design a cross-
modal Transformer to fuse the knowledge from two modal-
ities. First, to ensure temporal consistency between the two
modalities, we conduct temporal-aware consistency between
FI

h and FP
h , following a similar approach to Eqn. (10)

and (11). This temporal consistency is denoted as Ltac
PI . We

then employ a cross-modal transformer mechanism to merge

Method Frames Test
mIoU

Val
mIoU

P4Transformer 3 40.1 28.1
PPTr+C2P 10 42.3 -
PPTr (Baseline) 3 41.4 29.3
X4D-SceneFormer 3 47.3 35.8

Table 2: 4D semantic segmentation on HOI4D dataset.

their feature representations. Specifically, we adopt a stack
of transformer layers to jointly encode the two input modal-
ities FI

h and FP
h . To avoid performance drop in inference

when RGB sequence is not available, we design an attention
mask inspired by (Yang et al. 2021). As shown in Figure 3,
FP

h does not directly attend to FI
h (the top three rows of the

mask). Meanwhile, the introduced attention mask allows the
model to reference both FI

h and FP
h when generating the fi-

nal output of the image branch (the bottom three rows of the
mask). Finally, the output feature is utilized in several 4D
task heads for downstream tasks, such as 4D action segmen-
tation.
Total loss functions. We denote LP and LI as the task su-
pervision on the point cloud and image heads. The final loss
can be described as:

L = LP + LI + ω ∗ Ltcont + (1− ω) ∗ Ltac, (12)

where ω denotes a hyper-parameter, and Ltac = Ltac
GI+Ltac

PI .

Experiments
Experiments Setup
Datasets. We evaluate our proposed method on two bench-
mark datasets, namely HOI4D (Liu et al. 2022) and MSR-
Action3D (Li, Zhang, and Liu 2010). The above datasets in-
clude three tasks: 4D action segmentation, 4D action recog-
nition and 4D semantic segmentation.

The first dataset, HOI4D, contains 2,971 training videos
and 892 test videos for action segmentation. Each video se-
quence has 150 frames with each frame containing 2048
points. The dataset contains a total of 579K frames. All
frames are annotated with 19 fine-grained action classes
in the interactive scene. Moreover, the 4D semantic seg-
mentation task contains the same training and testing split
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Method Frames Video Acc@1
PointNet++ 1 61.61

P4Transformer
8 83.17

16 89.56
24 90.94

PPTr
8 84.02

16 90.31
24 92.33

PPTr+C2P
8 87.16

16 91.89
24 94.76

PPTr⋆ (Baseline)
8 81.41

16 90.87
24 90.56

X4D-SceneFormer
8 86.47

16 92.56
24 93.90

Table 3: Action recognition results on MSR-Action3D
dataset. ⋆We reproduce PPTr without using primitive fitting.

with action segmentation. Each video sequence includes 300
frames of point clouds, with each frame consisting of 8192
points. Annotations involve 43 indoor semantic categories.
The dataset contains a total of 1.2M frames. Due to the non-
public accessibility of the HOI4D test set, we randomly se-
lect 25% of the training data as a validation set.

The second dataset, MSR-Action3D, consists of 567 hu-
man point cloud videos with 20 action categories. Each
frame is sampled by 2,048 points. We maintain the same
training/testing split as previous works (Wen et al. 2022;
Zhang et al. 2023).
Evaluation metrics. For the task of action segmentation,
we exploit the metric of frame-wise accuracy (Acc), seg-
ment edit distance (Edit), and segment F1 score with over-
lapping threshold k% (F1@k) during the evaluation. Al-
though frame-wise accuracy is commonly used as a met-
ric for action segmentation, this measure is not sensitive to
over-segmentation errors. The segmental edit score is pre-
sented in (Lea et al. 2017) and used to evaluate the case
of over-segmentation, and the segmental F1 scores measure
the quality of the prediction. For the task of 4D semantic
segmentation, we rely on the mean Intersection over Union
(mIoU) as our evaluation metric. Finally, the top-1 accuracy
is employed as the evaluation metric in the task of 3D action
recognition.

Comparison with State-of-the-arts
HOI4D action segmentation. Table 1 demonstrates the re-
sults on HOI4D dataset for the task of action segmentation,
where we compare our method with previously published
methods (Fan and Kankanhalli 2021; Wen et al. 2022; Zhang
et al. 2023) and other two unpublished methods on leader-
board (Multi-Conv-Res and DPMix). X4D-SceneFormer
outperforms all comparative methods across evaluation met-

Iputs Acc Edit F1@{10,25,50}Point RGB TG
✓ 72.3 75.6 74.8 70.3 58.4
✓ ✓ 77.5 76.4 75.7 71.4 59.5
✓ ✓ 72.8 76.1 75.2 70.6 58.9
✓ ✓ ✓ 76.8 74.2 73.6 69.6 57.5

Table 4: Ablation study for different inputs. All experiments
conducts without using GIT module.

Ground 
Truth

PPTr
(Baseline)

X4D-
SceneFormer

Figure 5: Visualization of action segmentation. PPTr has a
serious over-segmentation problem.

rics, on both test and validation sets. The test set results are
sourced from the HOI4D online leaderboard. Its superior-
ity is particularly evident in the metrics of edit distance and
segment F1 score. Notably, P4Transformer and PPTr consti-
tute the state-of-the-art backbones upon which other meth-
ods have further built. In particular, X4D-SceneFormer ex-
hibits improvements of at least 7.8%, 11.4%, and 10.9%
in terms of accuracy, edit distance, and F1@10 score re-
spectively. The superior performance in edit and F1 scores
demonstrates the effectiveness of our approach in over-
segmentation issues, validating the effectiveness of our pro-
posed temporal consistency metrics.
HOI4D semantic segmentation. Table 2 provides the re-
sults, showing a mIoU of 47.3% on the test set and 35.8%
on the validation set. The performance enhancement in the
4D semantic segmentation task highlights the efficacy of our
approach in capturing fine-grained features. When compared
to previous methods, our approach achieves superior results,
which is attributed to the temporal alignment representation
and robust generalization capabilities facilitated by cross-
modal knowledge transfer and temporal consistency metrics.
MSR-Action3D. The detailed results are presented in Ta-
ble 3. We reproduce the results of the PPTr without the prim-
itive fitting as our baseline. Considering the MSR-Action3D
dataset lacks RGB data, we project the point clouds to the
depth map as the input of the image branch. Our approach
demonstrates significant performance improvements across
various sequence lengths. While our results are slightly be-
low C2P (Zhang et al. 2023), this is primarily due to em-
ploying a weaker baseline and using projected depth as the
input of image branch. Still, we improve the performance
upon baseline model by 5%. This observation underscores
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Method Acc Edit F1@{10,25,50}
(a) X4D-SceneFormer 76.8 74.2 73.6 69.6 57.5
(b) + Correlation 81.2 82.5 80.8 78.9 69.8
(c) + Sliding Window 81.9 84.5 82.3 81.1 72.6
(d) + Ltcont 82.2 87.9 86.4 85.2 76.3
(e) + Ltac 82.6 92.4 91.8 89.4 81.2

Table 5: Ablations study for GIT module.

P4Transformer PPTr
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Figure 6: Results using different 4D backbones.

that X4D-SceneFormer is not only well-suited to 4D tasks
but also effectively addresses traditional video analysis.

Comprehensive Analysis
All ablation experiments are conducted on HOI4D valida-
tion set with the task of action segmentation.
The effect of different inputs. To validate the effective-
ness of different input, we conducted ablation studies using
various inputs through replacing GIT module with sim-
ple concatenation. As demonstrated in Table 4, using extra
RGB sequence as input with the cross-modal transformer
substantially improves performance, confirming the effec-
tiveness of the cross-modal strategies. However, naively in-
creasing additional temporal gradient (TG) based on this
foundation results in performance degradation. We primar-
ily attribute this to the temporal inconsistency between the
two modalities. We name this model as X4D-SceneFormer-
Vanilla. Subsequently, we provide an explanation through
follow-up experiments to illustrate the reasons behind the
exceptional performance of our GIT method.
Design analysis of GIT. Table 5 illustrates the effectiveness
of each component in gradient-aware image Transformer
(GIT). To improve the X4D-SceneFormer-Vanilla (-V) dis-
cussed before , we generate the correlation feature through
merging RGB sequence and TG with cross-attention. The
results demonstrate that the correlation feature significantly
improves the performance, and the introduction of a sliding
window further increase the result, especially for the edit
distance with 2% improvement. Moreover, the introduced
temporal consistency criterion lead to a substantial improve-
ment in both edit distance (+8%) and F1 scores (+9%). The
outcomes demonstrate that the integration of cross-modal
knowledge transfer and temporal consistency design effec-
tively addresses the inherent over-segmentation challenge in
4D point cloud video tasks.

Fusion Acc Edit F1@{10,25,50}
concat 79.7 87.8 86.8 84.6 77.8
sum. 79.5 87.6 86.5 84.3 77.5
self-attention 81.5 89.9 88.7 86.6 79.8
cross-attention 82.6 92.4 91.8 89.4 81.2

Table 6: Ablation study for fusion mechanism in GIT.

Distillation Acc Edit F1@{10,25,50}
(a) Transfer 53.4 56.2 59.3 53.4 40.8
(b) L2 distance 61.2 61.1 63.5 58.2 45.6
(c) KL divergence 71.6 74.8 74.3 69.3 57.1
(d) Cosine Sim 73.8 79.2 78.1 73.5 62.0
(e) Ours 82.6 92.4 91.8 89.4 81.2

Table 7: Ablation study on various distillation baselines.

Table 6 further illustrates the fusion strategy in GIT. It
shows that cross-attention is the most effective manner of
bridging RGB and TG features. As illustrated in Figure 5,
our framework, incorporating GIT, demonstrates a superior
capacity on HOI4D Action Segmentation dataset, especially
for over-segmentation problem.
Different point backbones. Figure 6 demonstrates the re-
sults via using different point backbone. Our model respec-
tively boosts the performance of P4Transformer and PPTr
by 12% and 10%, which further verifies the generality of
our proposed model.
Comparison of knowledge transfer. To further demon-
strate the effectiveness of our cross-modal knowledge trans-
fer framework, we conduct a series of experiments involving
various classic distillation approaches. As depicted in Ta-
ble 7, the application of transfer learning methods (a) (Zhen
et al. 2020) between the point branch and the image branch
yields unsatisfactory results. Furthermore, considering the
widespread use of the teacher-student framework, we ex-
plored multiple experiments employing different distance
functions between the modalities (b-d (Hinton, Vinyals, and
Dean 2015)). However, despite the relatively improved per-
formance of the cosine similarity loss, it still falls short of
our proposed framework. The primary factor is the temporal
inconsistency inherent in two modalities.

Conclusion
In this paper, we present X4D-SceneFormer, a novel 4D
cross-modal knowledge transfer framework that leverages
texture priors from RGB sequences to enhance 4D point
cloud analysis. Our framework consists of a 4D point
cloud transformer and a Gradient-aware Image Transformer,
which are trained with several knowledge transfer criteria to
ensure temporal alignment and consistency between modal-
ities. We show that our framework can achieve state-of-the-
art results on various 4D point cloud video understanding
tasks, such as action recognition and semantic segmentation,
using only single-modal 3D point cloud inputs. Our work
opens up new possibilities for 4D point cloud analysis that
uses extra image priors to enhance performance.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

2676



Acknowledgments
This work is partially supported by Shenzhen General
Program No. JCYJ20220530143600001, by the Basic Re-
search Project No. HZQB-KCZYZ-2021067 of Hetao Shen-
zhen HK S&T Cooperation Zone, by Shenzhen-Hong Kong
Joint Funding No. SGDX20211123112401002, by NSFC
with Grant No. 62293482, by Shenzhen Outstanding Tal-
ents Training Fund, by Guangdong Research Project No.
2017ZT07X152 and No. 2019CX01X104, by the Guang-
dong Provincial Key Laboratory of Future Networks of In-
telligence (Grant No. 2022B1212010001), by the Guang-
dong Provincial Key Laboratory of Big Data Comput-
ing, The Chinese University of Hong Kong, Shenzhen,
by the NSFC 61931024&81922046, by the Shenzhen
Key Laboratory of Big Data and Artificial Intelligence
(Grant No. ZDSYS201707251409055), and the Key Area
R&D Program of Guangdong Province with grant No.
2018B030338001, by zelixir biotechnology company Fund,
by Tencent Open Fund. This work is partially supported by
the Shanghai AI Laboratory, National Key R&D Program
of China (2022ZD0160100), the National Natural Science
Foundation of China (62376222), and Young Elite Scientists
Sponsorship Program by CAST (2023QNRC001).

References
Afham, M.; Dissanayake, I.; Dissanayake, D.; Dharmasiri,
A.; Thilakarathna, K.; and Rodrigo, R. 2022. Crosspoint:
Self-supervised cross-modal contrastive learning for 3d
point cloud understanding. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
9902–9912.
Arnab, A.; Dehghani, M.; Heigold, G.; Sun, C.; Lučić, M.;
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