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Abstract

To tackle the challenge of recognizing images of un-
seen attribute-object compositions, Compositional Zero-Shot
Learning (CZSL) methods have been previously addressed.
However, test images in realistic scenarios may also incor-
porate other forms of unknown factors, such as novel se-
mantic concepts or novel image styles. As previous CZSL
works have overlooked this critical issue, in this research, we
first propose the Realistic Compositional Zero-Shot Learn-
ing (RCZSL) task which considers the various types of un-
known factors in an unified experimental setting. To achieve
this, we firstly conduct re-labelling on MIT-States and use
the pre-trained generative models to obtain images of vari-
ous domains. Then the entire dataset is split into a training
set and a test set, with the latter containing images of unseen
concepts, unseen compositions, unseen domains as well as
their combinations. Following this, we show that the visual-
semantic relationship changes on unseen images, leading us
to construct two dynamic modulators to adapt the visual fea-
tures and composition prototypes in accordance with the in-
put image. We believe that such a dynamic learning method
could effectively alleviate the domain shift problem caused
by various types of unknown factors. We conduct extensive
experiments on benchmark datasets for both the conventional
CZSL setting and the proposed RCZSL setting. The effec-
tiveness of our method has been proven by empirical results,
which significantly outperformed both our baseline method
and state-of-the-art approaches.

Introduction
Current computer vision algorithms generally learn to rec-
ognize the object category of an given image. However, a
single object may be coupled with multiple attributes, mak-
ing it difficult for computer vision systems to generalize
their object recognition capabilities to unseen images. For
instance, training dataset might include images of ”peeled
apple” and ”ripe apple”, while we may require to identify
”sliced apple” during test. Since gathering supervisions for
all available attributes is infeasible, researchers are commit-
ted to studying Compositional Zero-shot Learning (CZSL)
task which aims at recognizing novel compositions of seen
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Realistic Scenario: ZSL+CZSL+DG

Zero-Shot Learning
Train: Valley Hill Test: Ice shelf

Domain Generalization
Train: Sketch dog  Cartoon dog  Test: Photo dog

Compositional Zero-Shot Learning
Train: Colorful car  Old building Test: Colorful building Train: Cartoon of yellow building

Test: Art of wood chair

Train: Photo of gray keyboard

Figure 1: Zero-Shot Learning (ZSL), Compositional Zero-
Shot Learning (CZSL) and Domain Generalization (DG)
tasks require to recognize unseen semantic categories, un-
seen compositional categories and unseen image styles re-
spectively. In contrast, the goal of Realistic Compositional
Zero-Shot Learning (RCZSL) task is to identify images that
concurrently contain all the aforementioned types of un-
known factors.

attibute and object concepts. Furthermore, previous stud-
ies have proposed the transductive CZSL setting (Xu, Ko-
rdjamshidi, and Chai 2021) and partial supervision CZSL
setting (Karthik, Mancini, and Akata 2022). These settings
consider a special circumstance of CZSL, when the unla-
belled test images could be obtained or partial labels are ab-
sent during training. Actually, we assert that during training,
labels are typically intact and test data is unavailable, thus
restricting the practical applications of these settings.

While prior CZSL researches have made great progress,
we propose that a crucial issue has been overlooked. In pre-
vious CZSL settings, the unseen compositions are consid-
ered to be composed of seen attributes and seen objects. We
demonstrate that this is not often the case in real-world situ-
ations. The requirement for human annotations restricts the
capacity of training datasets, therefore test images may also
contain previously unseen attribute and object concepts or
unseen styles. To address this, Zero-Shot Learning (ZSL)
and Domain Generalization (DG) approaches have been pro-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

2265



posed. Nevertheless, such issue has not yet been raised in the
CZSL tasks.

We illustrate the distinction between ZSL, CZSL and DG
tasks in Figure 1. As can be observed, ZSL and CZSL tasks
aim at recognizing unknown object concepts or unknown
attribute-object compositions where the test images follow
the same style pattern as training images. While in DG tasks,
the test images have the same object concept as the training
images but with a distinct style. Consequently, there are se-
mantic concepts, attribute-object compositions, and the im-
age styles that make up the complete list of unknown factors.

To this end, we first propose the Realistic Compositional
Zero-Shot Learning (RCZSL) setting in which the test im-
ages contain all three types of unknown factors as well
as their combinations. Additionally, we adopt the general-
ized setting following prior ZSL and CZSL works as both
seen and unseen categories could be present during the test
phase (Chao et al. 2016; Purushwalkam et al. 2019). There-
fore the test set can be separated into six distinct groups
based on the type of unknown factors contained. Specif-
ically, there are test images with seen styles and unseen
styles, both including seen compositions, unseen composi-
tions with seen concepts, and unseen compositions with un-
seen concepts, respectively. The three types of unknown fac-
tors are simultaneously present in a single test image which
are comprised of unseen attributes, unseen objects and un-
seen styles, as an extreme circumstance in Figure 1. We
demonstrate that our proposed RCZSL setting provides a
more comprehensive evaluation, and is more applicable in
realistic scenarios.

The main challenge in RCZSL tasks lies in that there
lacks available datasets and evaluation metrics. To address
this, we first conduct re-labelling for MIT-States (Isola, Lim,
and Adelson 2015) as former researches have pointed out
that most images were mistakenly labelled (Atzmon et al.
2020). We fix the incorrect label annotations to create a
more reasonable benchmark. Besides, we leverage the pre-
trained Generative Adversarial Network (GAN) models to
transform images in MIT-States into various domains. More-
over, we divide the the entire dataset of images into the train-
ing, validation and test set, where the latter two sets are fur-
ther divided into the aforementioned six distinct groups. We
also construct the evaluation metric by computing the har-
monic mean of the recognition accuracy in various test im-
age groups.

We contend that in the RCZSL setting, the three types of
unknown factors would lead to the domain shift problem. In
particular, a certain attribute or object concept might have
different visual representations, while the visual appear-
ances of attributes and objects also depend on each other.
Moreover, the image styles could also induce the visual ap-
pearance variation. Such a domain shift problem would in-
duce bias to the visual-semantic relationship on test images,
thus decreasing the recognition accuracy.

In this work, we propose a dynamic learning method to
address the domain shift issue. At the visual feature level,
we firstly combine the style and semantic components of an
image to obtain the visual embedding, via stacking the low-
level convolutional feature statistics, and conducting Global

Average Pooling (GAP) on the high-level feature respec-
tively. The coefficient prediction module is subsequently
created to produce the weight of fixed convolution kernels.
Finally the dynamic convolution module adaptively gener-
ates convolution kernels according to the predicted coeffi-
cients, thus adjusting the model to novel domains and com-
positions.

Moreover, we offer two optional approaches to generate
the semantic prototypes of compositions, either by leverag-
ing the text encoder of CLIP model (Yun et al. 2022) or us-
ing the Object Conditioned Network (OCN) (Saini, Pham,
and Shrivastava 2022) to combine the Glove (Pennington,
Socher, and Manning 2014) word vector of attributes and
objects. Then the low-level visual features that have been
scaled to the same size are stacked before inputting into
the semantic modulator. The original composition proto-
types are updated dynamically by localizing related regions
w.r.t. the input image. Combining the aforementioned tech-
niques, our method may bridge the domain shift brought on
by unknown factors by modulating the visual features and
composition prototypes dynamically. Experimental results
show that on the conventional CZSL setting and the pro-
posed RCZSL setting, our method significantly outperforms
the baseline and state-of-the-art methods.

In summary, this work presents the following contribu-
tions:
• A Realistic Compositional Zero-Shot Learning Set-

ting: We propose a more realistic setting that integrates
the unseen concept categories and unseen image styles
into the conventional CZSL setting. By developing the
benchmark dataset and evaluation metrics, we hope this
setting could encourage future works to perform better in
practical applications.

• A Dynamic Learning Method for RCZSL: We further
develop a dynamic learning method that incorporates the
visual and semantic modulators. The domain shift issue
could thus be alleviated by altering the visual features
and the composition prototypes in accordance with the
input image.

• State-of-the-art results on benchmark datasets: We
evaluate our model on both CZSL and RCZSL tasks. Ex-
tensive experiments back up the effectiveness of our dy-
namic learning method by illustrating that it outperforms
both baseline and state-of-the-art methods.

Related Work
Compositional Zero-Shot Learning
Previous CZSL methods can be divided into the disentan-
gled recognition methods and the composed recognition
methods. The former approaches, on the one hand, train
distinct recognition models for attributes and objects, and
then integrate their predictions during the test stage. Among
them, VisProd (Karthik, Mancini, and Akata 2021) builds
independent, fully-connected classification networks for at-
tributes and objects, and indicates that this simple baseline
could produce results that are on par with or even better
than those produced by SOTA CZSL techniques. Attop (Na-
garajan and Grauman 2018) proposes modeling attributes as
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transformation operators, which could change the appear-
ance of the object embedding. Moreover, SymNet (Li et al.
2020) enforces the symmetry regularization of the object
representations given transformations described by the at-
tributes, drawing inspiration from group axioms. SCEN (Li
et al. 2022) employs a STM module to generate virtual sam-
ples as well as a contrastive learning mechanism to capture
attribute and object prototypes. Recently, to simulate the in-
teractions between different primitives, DRANet (Li et al.
2023b) employs the reverse-and-distill approach that disen-
tangles the attribute and object embeddings.

On the other hand, the composed recognition approaches
commonly use the word embedding of primitive concepts
to build the classifier for attribute-object compositions, with
a joint compatibility function conditioned on the image, at-
tribute, and object. A transformation network is used by La-
belEmbed (Misra, Gupta, and Hebert 2017) to predict the
composition classifier’s input parameters. An analogous ap-
proach is used by TMN (Purushwalkam et al. 2019), which
develops a modular network whose output compatibility
score is dependent on the input image. To generate virtual
features given the semantic representation of an input sam-
ple, several works also construct the GAN (Wei et al. 2019)
or Variational Auto-Encoder (VAE) (Anwaar, Pan, and Kle-
insteuber 2022) models. Also, CGE (Naeem et al. 2021)
makes use of Graph Neural Network (GNN) to depict the
interdependence of attributes and objects. More recently,
CANet (Wang et al. 2023b) utilizes a hyper learner and a
base learner to learn attributes conditioned on the recognized
object. Note that there are also methods that combine disen-
tangled recognition and composed recognition in an unified
framework (Hu and Wang 2023).

Zero-Shot Learning

ZSL methods can be divided into embedding-based or
generation-based approaches, where the embedding-based
ZSL works mainly consider to use different embedding
space (Zhang, Xiang, and Gong 2017), embedding func-
tion (Akata et al. 2015), and regularization term (Kodirov,
Xiang, and Gong 2017) to perform knowledge transfer. Re-
cently, the potential of local representations in embedding-
based ZSL methods has been investigated. AREN (Xie et al.
2019) uses the second-order pooling to create the discrimi-
native features and the attention layer to localize various re-
gions. In order to improve the discrimination of image repre-
sentations, APN (Xu et al. 2020) employs a prototype learn-
ing branch to promote image features to incorporate more
local information. PSVMA (Liu et al. 2023) utilizes the dual
semantic-visual transformer module to achieve semantic-
visual mutual adaptation for semantic disambiguation. On
the other hand, the generation-based methods are to convert
ZSL into a fully supervised classification problem by gen-
erating samples of target classes. GAN models (Xian et al.
2018; Su et al. 2022), VAE models (Schonfeld et al. 2019;
Wang et al. 2023c), and generative flows (Shen et al. 2020)
have shown good capability to generate virtual image fea-
tures for unseen classes.

Domain Generalization
Aiming at recognizing unseen domains, prior domain gen-
eralization methods construct domain-invariant features via
adversarial learning (Kim, Li, and Hospedales 2023) or meta
learning (Qin, Song, and Jiang 2023) mechanisms. In or-
der to further enhance the generalization capability of the
model, the recent methods also introduce a causality regu-
larizer (Chen et al. 2023), gradient matching network (Wang
et al. 2023a), or trajectory sampling (Wang, Grigsby, and Qi
2023) into the baseline meta-learning framework. Further-
more, researchers adopt data augmentation methods to cre-
ate samples similar to target domains. For example, GAN
models are used by L2A-OT (Zhou et al. 2020) to create
new images that are distributed differently from the original
domain but semantically consistent. CycleMAE (Yang et al.
2023) uses a Masked Auto-Encoder (MAE) model to create
a cycle image reconstruction task that results in more realis-
tic and unique image pairs. Other typical domain generaliza-
tion methods generally include model ensemble (Zhou et al.
2021; Qu et al. 2022), feature normalization (Zhu et al. 2022;
Meng et al. 2022) or contrastive learning techniques (Yao
et al. 2022; Li et al. 2023a).

Our Approach
In this work, we either use the CLIP-free or the CLIP-
based method, where the former makes use of ResNet18 and
Glove as the visual feature and semantic prototype extrac-
tors, while the latter utilizes pre-trained ViT-L/14 as both
visual and semantic backbone. Note that the CLIP-based
method only includes the semantic modulator since it is un-
able to conduct dynamic convolution on the 1-d visual fea-
tures generated by ViT backbone networks. We illustrate the
architecture of the CLIP-free method in Figure 2 as an exam-
ple. In the following section, we first present the CZSL and
RCZSL task formulation, and then elaborate on the the base-
line framework, visual modulator, and the semantic mod-
ulator module respectively. Note that our method follows
the same training and inference paradigm as the baseline
method under both CZSL and RCZSL setting.

Task Formulation
In this work, we are given the attribute set A, the object
set O and the domain set D. Suppose that xi denotes the
ith image sample and yia, yio, yid represents its attribute, ob-
ject and domain label, while yi = (yia, y

i
o, y

i
d) represents

its intact label. Thus the label annotation set is decided by
Y = A×O×D = {(ya, yo, yd) | ya ∈ A, yo ∈ O, yd ∈ D}.
Overall, the full dataset is typically split into the training set
Dtr, the validation set Dvl and the test set Dte.

We consider both the CZSL as well as the RCZSL set-
tings. For the CZSL setting, all images have the same yid,
while all the yia and yio from the validation and test sets are
also present in the training set. That is to say, all the ya and
yo should be included in Dtr. For the RCZSL setting, the
yia, yio and yid labels on the validation and test sets could be
either seen or unseen during training. In this setting, the test
images are referred to as unseen compositions with unseen
concepts when they contain unseen yia or unseen yio, whereas
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Figure 2: Illustration of our approach. (1) The feature map f i is first extracted by the backbone network, and then sent to
visual encoder. (2) The OCN module combines the word vectors of attributes and objects, obtaining the semantic prototypes
for compositions. (3) The two modulators adjust the visual features and semantic prototypes respectively. Best viewed in color.

unseen compositions with seen concepts occur when both yia
and yio are seen in the training phase, but are combined in a
different manner.

Baseline Framework
Given the input image xi, its visual feature f i is extracted
by the ResNet18 (He et al. 2016) backbone network, then
f i is sent into the visual encoder to obtain its visual embed-
ding eiv . Such visual encoder is composed of convolution
layer, Batch Normalization (BN) and the GAP. In addition,
the Glove word vectors of attributes va and objects vo are
combined by the OCN module to generate the composition
prototypes ec for both seen and unseen compositions. Here
we derive the predictions by calculating the dot product sim-
ilarity between eiv and ec, and choose the available compo-
sition which yields the highest prediction score:

ŷic = arg max
(ya,yo)

eiv · ec, (1)

where · represents the dot product operation. (ya, yo) ∈ Dtr

during training while (ya, yo) ∈ Dtr∪Dvl∪Dte during test.
Finally we use the cross entropy loss to optimize the visual
and semantic encoders:

Lcls = −log
exp(eiv · eic)∑

ec∈Ec
exp(eiv · ec)

, (2)

where eic represents the composition prototype composed of
yia and yio, Ec = {e1, ..., e|C|} represents the prototype set
of all compositions with |C| representing the number of pos-
sible compositions.

Dynamic Visual Modulator
In this section, we present how to dynamically adjust the
visual encoder thus the domain shift problem could be al-

leviated at the visual feature level. In light of the fact that
the unknown factors can be split into semantic-related (un-
seen concepts and unseen compositions) and style-related
(unseen domains) ones, we leverage the semantic and style
embedding to perform dynamic convolution. Specifically the
semantic embedding xi

sem is obtained by conducting GAP
directly on f i, whereas the style embedding xi

sty is achieved
via concatenating on the feature statistics produced by the
blocks in the backbone ResNet. For instance, given the fea-
ture xi

j generated by the j-th block, the style statistics are
calculated across spatial dimensions for each channel:

µ(xi
j) =

1

HW

H∑
h=1

W∑
w=1

xi
j (3)

σ(xi
j) =

√√√√ 1

HW

H∑
h=1

W∑
w=1

(xi
j − µ(xi

j))
2 + ϵ, (4)

where H and W representing height and width of xi
j . After-

wards, the semantic embedding xi
sem is obtained by stack-

ing µ(xj) and σ(xj) for j ∈ {1, 2, 3, 4}. Then the semantic
embedding and style embedding are concatenated and sent
into the coefficient prediction module which is designed as
a Multi-Layer Perception (MLP). The coefficient prediction
module provides weights for the convolution kernels, then
the multiple kernels are aggregated by the weights to dy-
namically adjust the visual features f i. Such dynamic con-
volution is used to replace the static convolution of the visual
encoder in the baseline method.

Dynamic Semantic Modulator
In this section, we show how the semantic modulator dy-
namically adjusts the composition prototypes generated by
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Original Label: heavy camera
Correct Label: new phone

Original Label: dry pond
Correct Label: steaming river

Original Label: empty bag
Correct Label: young cat

Original Label: heavy building
Correct Label: clean truck

Original Label: rusty bed
Correct Label: rusty wire

Original Label: sliced potato
Correct Label: large bowl

Figure 3: Re-Labelling of MIT-States. We show the origi-
nal label annotations present in MIT-States as well as our
correction, with green indicating the correct label, red indi-
cating that the original label disagrees with our correction.

Dataset Train Val Test
sc sc uc sc uc

MIT-States 1262 300 300 400 400
UT-Zappos 83 15 15 18 18

C-GQA 5592 1252 1040 888 923

Table 1: Detailed statistics of the used CZSL datasets in our
experiments. Here we report the number of seen composi-
tions sc for training split, seen compositions sc and unseen
compositions uc for validation and test split from left to
right.

the OCN for the CLIP-free method or the text encoder for
the CLIP-based method. In order to capture the visual vari-
ances of the same composition in various images, the fea-
tures generated by each block of the backbone ResNet are
stacked after resize to make up the visual representation xv

of an image. To this end, these features are resized to the
same shape using 1*1 convolution and GAP. We choose xv

instead of xi as the image representation for these low-level
features better preserve the visual details, they update Ec by
the semantic modulator via:

E′
c = f(xv ∗ softmax(xT

v ∗Ec)) +Ec, (5)

where is f(·) a MLP network and ∗ represents the ma-
trix multiplication. Finally, the prototypes after modulation
could be aware of the visual variances of the same semantic
in different images, as they effectively aggregate the visual
details in xv that related to the semantic information of each
composition.

Experiments
Experimental Setting
Dataset for CZSL setting. We evaluate our method on
three benchmark CZSL datasets, i.e., MIT-States (Isola,

Num Train Val Test
se <se, uc, up> <se, uc, up>

pair 1398 -, 108, 74 -, 193, 189
img 22548 4330, 3240, 1978 10103, 5604, 5950

domain 2 3, 3, 3 3, 3, 3

Table 2: Detailed statistics of the created MIT-States-
RCZSL dataset in our experiments. From left to right: the
seen compositions on the training split (se), the seen com-
positions (se), unseen compositions with seen concepts (uc)
and with unseen concepts (up) on the validation split and on
the test split.

Lim, and Adelson 2015), UT-Zappos (Yu and Grauman
2014) and C-GQA (Naeem et al. 2021). Specifically, MIT-
States is a common CZSL dataset composed of 53753 im-
ages with 115 attribute categories and 245 object categories.
In MIT-States, 30338 images are used for training, 10420
images for validation, and 12995 for test. UT-Zappos is a
medium-sized dataset composed of 50025 images of shoes
with 16 attribute categories and 12 object categories. Among
them, 22998 images are used for training, 3214 for valida-
tion, and 2914 for test. We also adopt C-GQA which is com-
posed of 413 attribute categories and 674 object categories.
In C-GQA, the number of images used for training, vali-
dation and test are 26920, 7280 and 5098 respectively. We
use the same data split as proposed in (Purushwalkam et al.
2019) and (Mancini et al. 2022). The detailed statistics of
the used CZSL datasets are summarized in Table 1.

Dataset for RCZSL setting. Here we propose that there is
no existing dataset for the proposed RCZSL task. Therefore
we developed the RCZSL benchmark dataset based on the
MIT-States, in which the natural images included could bet-
ter reflect the real-world circumstances. We note that earlier
studies (Atzmon et al. 2020) have pointed out that due to the
infancy of image search engine technology, about 70% sam-
ples in MIT-States are mistakenly labeled. To tackle this, we
first perform re-labelling on MIT-States to create a cleaner
and more believable experimental setting. Figure 3 illus-
trates that many images in MIT-States are initially allocated
with the incorrect label, and how our re-labelling more ac-
curately describes the image. We encourage future works to
follow this benchmark, for the incorrect label annotations
could lead to the opposite conclusion.

We then apply the pre-trained style transfer model to ac-
quire images from other domains, namely art and cartoon,
as MIT-States only consists images of the photo domain. To
be more precise, we apply the CycleGAN model (Zhu et al.
2017) to conduct photo-to-art transfer, which is pre-trained
using adversarial and cycle-consistency losses. Additionally,
we perform photo-to-cartoon transfer using an another GAN
model (Wang and Yu 2020) that individually recognizes sur-
face, structure, and texture representations of cartoons.

Then the generated MIT-States-RCZSL dataset has 53753
images and 1962 pairs for each of the three domains which
are split into training, validation and test sets. The training
set specifically consists of two training domains, each with
1398 pairs and 22420 images. The validation set and test
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Model MIT-States UT-Zappos C-GQA
AUC HM S U AUC HM S U AUC HM S U

Attop (Nagarajan and Grauman 2018) 1.6 9.9 14.3 17.4 25.9 40.8 59.8 54.2 0.7 5.9 17.0 5.6
LE+ (Misra, Gupta, and Hebert 2017) 2.0 10.7 15.0 20.1 25.7 41.0 53.0 61.9 0.8 6.1 18.1 5.6
TMN (Purushwalkam et al. 2019) 2.9 13.0 20.2 20.1 29.3 45.0 58.7 60.0 1.1 7.5 23.1 6.5
SymNet (Li et al. 2020) 3.0 16.1 24.4 25.2 23.9 39.2 53.3 57.9 2.1 11.0 26.8 10.3
CompCos (Mancini et al. 2021) 4.5 16.4 25.3 24.6 26.9 41.1 57.7 62.8 2.6 12.4 28.1 11.2
CGE (Naeem et al. 2021) 5.1 17.2 28.7 25.3 26.4 41.2 56.8 63.6 2.3 11.4 28.1 10.1
Co-CGE (Mancini et al. 2022) 5.1 17.5 27.8 25.2 29.1 44.1 58.2 63.3 2.8 12.7 29.3 11.9
DeCa (Yang et al. 2022) 5.3 18.2 29.8 25.2 31.6 46.3 62.7 63.1 - - - -
SCEN (Li et al. 2022) 5.3 18.4 29.9 25.2 32.0 47.8 63.3 62.5 2.9 12.4 28.9 12.1
SCD (Hu and Wang 2023) 4.8 17.6 30.7 24.6 31.8 46.3 62.3 64.5 3.2 14.1 29.9 14.5
CANet (Wang et al. 2023b) 5.4 17.9 29.0 26.2 33.1 47.3 61.0 66.3 3.3 14.5 30.0 14.5
Our Method 5.8 19.2 30.7 26.6 37.7 52.1 66.5 68.1 3.3 14.8 30.7 14.5
CLIP (Yun et al. 2022) 11.0 26.1 30.2 46.0 5.0 15.6 15.8 49.1 1.4 8.6 7.5 25.0
CSP (Nayak, Yu, and Bach 2022) 19.4 36.3 46.6 49.9 33.0 46.6 64.2 66.2 6.2 20.5 28.8 26.8
Our Method 20.0 37.4 46.3 49.8 39.6 52.0 67.1 72.5 7.3 21.9 32.4 28.5

Table 3: Comparison with state-of-the-art results: we measure the best area under the curve (AUC), best harmonic mean (HM),
best seen (S) and unseen accuracy (U) on MIT-States, UT-Zappos and C-GQA dataset. Here the results produced by CLIP-free
and CLIP-based methods are separately reported for a fair comparision. The best results are marked in bold.

set both comprise three groups of images, which we refer
to them as the seen pairs during training, the unseen com-
positions composed by seen concepts, and the unseen pairs
composed by unseen concepts during training, represented
by se, uc and up, respectively. Detailed description of the
division of MIT-States-RCZSL can be found in Table 2.

Evaluation Metrics. For CZSL setting, there exists sig-
nificant inductive bias when testing on both seen and un-
seen compositions, making the model susceptible to predict-
ing unseen compositions as seen ones. Thus, to balance the
model performance over seen and unseen compositions, we
adopt the calibrated stacking which lowers the seen class
confidence by multiplying a balancing coefficient. We adopt
the same evaluation protocol as prior works, which com-
putes the Area Under the Curve (AUC) of seen-unseen ac-
curacy curve by adjusting the balancing coefficient. The best
harmonic mean (HM) between seen and unseen accuracy is
also reported. In addition, the best accuracy for seen classes
(S) and unseen classes (U) are recorded separately.

While for the RCZSL setting, the image recognition ac-
curacy on the three groups for each domain should all be
considered. Here we introduce two balancing coefficients
which adds on the prediction scores for unseen compositions
of seen concepts and unseen concepts respectively. Thus
the highest harmonic mean of the three groups’ accuracy
would be achieved via adjusting the balancing coefficients.
In the subsequent experiment, each group’s maximum ac-
curacy and their maximum harmonic mean are given sepa-
rately, while harmonic mean is the main concern.

Implementation Details. We conduct our method with
the PyTorch (Paszke et al. 2019) framework. Here we pro-
vide the results of the CLIP-free method by adopting the
pre-trained ResNet18 model to generate the visual features
and Glove algorithm to generate the composition prototypes.
Also we conduct the CLIP-based models by leveraging pre-
trained ViT-L/14 models as both visual encoder and text

encoders. The model is trained for 50 epochs using the
Adam (Kingma and Ba 2014) optimizer with learning rate
of 1e−4 and weight decay of 5e−5. The number of dynamic
kernels in the visual modulator is set as 4. The visual en-
coder and text encoder in CLIP and the ResNet18 backbone
are fixed during the experiment for fair compasision with
prior works. The model that performs the best on the valida-
tion set is used to produce the final test results.

Experimental Results for CZSL
With the MIT-States, UT-Zappos and CGQA dataset, sev-
eral representative works are chosen for comparison. As
shown in Table 3, we conclude that on the three datasets,
our method outperform the current SOTA methods-SCEN
and CANet by a significant margin. We claim that such
gain can be attributed to that our method addressed the do-
main shift introduced by the attribute-object interaction. Es-
pecially, our method significantly surpasses state-of-the-art
methods on UT-Zappos, improving the harmonic mean and
overall AUC metrics by nearly 5.0%. Moreover, we also
achieve comparable results on the MIT-States and C-GQA.

In comparision with the CLIP-based methods, we offer
the results produced by the fixed CLIP model (Yun et al.
2022) as well as the CSP method (Nayak, Yu, and Bach
2022) which uses the soft prompt mechanism to generate the
composition prototypes. It can be concluded that our method
also outperforms these approaches with the proposed seman-
tic modulator.

Experimental Results for RCZSL
In this section, we use the CLIP-free method to conduct the
experiment without loss of generality. The art and cartoon
domains are separately chosen as the test domain, for the
photo domain has been observed at the model pre-training
stage, thus would violate the ”unseen image style” principle
if chosen as the test domain. Here we ablate our model ar-
chitecture to illustrate the effectiveness of the visual and se-
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Test Domain Modulator Train Domain 1 Train Domain 2 Test Domain
Vis Sem se uc up HM se uc up HM se uc up HM

Art

✗ ✗ 27.0 43.0 33.6 19.7 26.3 42.5 31.4 18.9 16.8 33.2 25.1 12.8
✓ ✗ 41.0 49.3 37.0 26.8 40.0 48.5 35.8 26.2 23.8 36.5 26.4 16.0
✗ ✓ 36.0 47.8 36.7 24.6 34.6 46.4 35.4 23.0 22.7 36.9 28.5 16.1
✓ ✓ 41.3 49.4 38.3 27.5 40.7 48.7 37.1 27.1 24.9 36.2 27.3 16.7

Cartoon

✗ ✗ 29.5 44.7 33.9 21.0 26.3 40.6 31.9 18.8 24.4 37.5 28.4 17.0
✓ ✗ 39.3 48.7 36.5 26.4 37.2 46.5 35.3 25.2 29.9 41.8 31.1 19.8
✗ ✓ 35.0 47.1 34.9 23.6 33.1 45.9 34.9 22.8 27.5 38.8 28.4 18.1
✓ ✓ 40.0 49.6 36.4 26.5 37.8 47.6 35.1 25.2 31.0 43.0 31.3 20.7

Table 4: Ablation studies on the RCZSL setting. We quantitatively verify the effectiveness of the visual and semantic modulators
by ablating over the architecture of our model. Here se, uc and up respectively represents the recognition accuracy for seen
compositions, unseen compositions with seen concepts and unseen concepts, while HM represents their maximum harmonic
mean. The train domain 1 stands for the photo domain, while the train domain 2 stands for the rest.

Figure 4: Qualitative results of attribute and object predic-
tions for test samples on MIT-States-RZSL. The ground
truth label and the predictions are listed for each image.

mantic modulator. As observed from Table 4, we conclude
that both modulators improve the model performance, and
combining them together performs the best. Additionally,
the accuracy improvement on all the three groups prove that
our method effectively tackles the domain shift brought by
various types of unknown factors. Finally, we believe that
our method builds a baseline for RCZSL thus could moti-
vate more future researches into this setting.

Qualitative Results
We show several qualitative results on MIT-States-RCZSL
in Figure 4, where the test images with the predictions of
our model are provided. The first column shows the test im-
ages with unseen compositions of seen concepts, while the
images of the second column are with unseen concepts. In
the first two rows, our predictions could accurately describe
the visual content of the test images, even though multiple
types of unknown factors simultaneously exist in the test im-
ages. Also there are failure cases as shown in the third row.
We state that such failure cases are partially attributed to the
issue of incomplete annotation. The multi-label characteris-
tic of natural images provides additional challenge for the
RCZSL task.

Limitations
We provide the RCZSL task that incorporates the novel se-
mantic categories, novel compositions, novel image styles,
as well as their combinations which could be present in the
real-world unseen images in the meanwhile. Our research,
however, only concentrates on the task of image classifica-
tion, leaving other significant computer vision applications
to be investigated. For instance, a Compositional Zero-Shot
Segmentation system might play an important role in seg-
menting novel target structures for medical image analysis,
while a Compositional Zero-Shot Video Object Segmenta-
tion system could better explore the challenging autonomous
driving tasks. In conclusion, we hope that our work could in-
spire future researches into other real-world Compositional
Zero-Shot Learning computer vision settings.

Conclusion
In this paper, we propose a Realistic Compositional Zero-
Shot Learning (RCZSL) setting which considers the un-
seen concepts and unseen styles in the conventional CZSL
tasks. We build the corresponding dataset by conducting re-
labelling and employing pre-trained GAN models to gener-
ate images of various domains. The dataset split and eval-
uation metrics are determined by considering the general-
ized circumstance. To prevent the domain shift under this
setting, we design two dynamic modulators that adapt the
visual features and composition prototypes according to the
input images respectively. We verified the effectiveness of
our proposed method on both the standard CZSL setting and
the proposed RCZSL setting. Comparison experiments illus-
trate that our method outperforms previous state-of-the-art
approaches, and ablation studies support the effectiveness of
the dynamic learning approach. Finally, we discuss the lim-
itations of our work, which we hope could motivate future
researches to explore more practical applications of CZSL.
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