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Abstract
Multi-modal image segmentation is one of the core issues
in computer vision. The main challenge lies in integrating
common information between modalities while retaining spe-
cific patterns for each modality. Existing methods typically
perform full fine-tuning on RGB-based pre-trained parame-
ters to inherit the powerful representation of the foundation
model. Although effective, such paradigm is not optimal due
to weak transferability and scarce downstream data. Inspired
by the recent success of prompt learning in language mod-
els, we propose the Grouping Prompt Tuning Framework
(GoPT), which introduces explicit semantic grouping to learn
modal-related prompts, adapting the frozen pre-trained foun-
dation model to various downstream multi-modal segmenta-
tion tasks. Specifically, a class-aware uni-modal prompter is
designed to balance intra- and inter-modal semantic propaga-
tion by grouping modality-specific class tokens, thereby im-
proving the adaptability of spatial information. Furthermore,
an alignment-induced cross-modal prompter is introduced to
aggregate class-aware representations and share prompt pa-
rameters among different modalities to assist in modeling
common statistics. Extensive experiments show the superior-
ity of our GoPT, which achieves SOTA performance on var-
ious downstream multi-modal image segmentation tasks by
training only < 1% model parameters.

Introduction
Semantic segmentation aims to assign a semantic category
to each pixel in the observed scene, which plays an impor-
tant role in various applications (Zhao et al. 2017; Liu et al.
2022a; Zheng et al. 2021). With the development of sensor
technology, multi-modal fusion using multiple data sources
for segmentation has become one of the core issues in image
interpretation (Hazirbas et al. 2017; Zhou, Ruan, and Canu
2019; Zhang et al. 2021).

Thanks to the success of deep learning, multi-modal fu-
sion has recently been specifically referred to as deep multi-
modal fusion (Hazirbas et al. 2017; Wang et al. 2022b)
through end-to-end neural integration of multiple image
modalities, and has shown significant advantages over uni-
modal segmentation (Park et al. 2017; Li et al. 2023). Deep
learning pipelines for multi-modal segmentation are usu-
ally expected to capture strong semantics and rich spatial
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Figure 1: Multi-modal images with complex structural rela-
tions. Here, red dots indicate objects with solid lines indi-
cating similarity to each other and dashed lines indicating
dissimilarity.

details, which benefit greatly from joint training on multi-
modal data sources. According to the type of fusion, existing
methods are generally classified into alignment-based fu-
sion (Valada et al. 2020; Wang et al. 2020) and aggregation-
based fusion (Wang et al. 2022a; Zhou et al. 2022a). De-
spite the fruitful progress, these methods still face great chal-
lenges: integrating common information between modalities
while retaining the specific patterns of each modality re-
mains dilemmatic.

More specifically, (i) Cross-modal Gaps. Modalities with
different imaging mechanisms may have heterogeneous
gaps, i.e., the same object has different descriptions in dif-
ferent data sources and requires inter-modal alignment, as
shown in fig. 1. However, alignment-based fusion mostly
provides invalid inter-modal fusion due to weak information
exchange through only training the alignment loss (Zhou
et al. 2022b; Shivakumar et al. 2020). (ii) Information Im-
balances. The effective information that different modalities
can provide differs due to various features across domains,
e.g., acquisition frequency, visual disparity, etc. However,
aggregation-based fusion tends to ignore intra-modal propa-
gation, resulting in insufficient balance between inter-modal
knowledge sharing and intra-modal information processing
(Xu et al. 2017; Gao et al. 2021; Ordun 2023).

Given the above challenges, we attempt to learn discrim-
inative and compact modality-specific and shared patterns
via multi-modal grouping to alleviate cross-modal gaps and
information imbalances in multi-modal image segmentation.
Grouping aims to reorganize pixels into candidate groups
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to provide explicit semantic priors and facilitate recognition
(Roelfsema and Houtkamp 2011; Watt and Phillips 2000;
Hosseinaee et al. 2021). Considering that multi-modal meth-
ods usually employ RGB-based pre-trained segmenters, we
propose to introduce the semantic grouping mechanism into
the fine-tuning on task-oriented training sets. While the full
fine-tuning method is effective, it is inefficient and causes
a large burden of parameter storage (Lee and Kwon 2017;
Lin et al. 2020). In addition, due to limited sample labeling,
full fine-tuning cannot take advantage of the pre-training
knowledge of the foundation model trained on large-scale
datasets to obtain generalized representations (Sun, Zuo,
and Liu 2019). Inspired by recent prompt tuning in Natu-
ral Language Processing (NLP) (Lester, Al-Rfou, and Con-
stant 2021; Liu et al. 2022b), we try to improve the adap-
tation efficiency of downstream multi-modal segmentation
by freezing the foundation model and fine-tuning only the
visual prompt parameters.

To this end, we propose Grouping Prompt Tuning
(GoPT), which provides unified visual prompts for multi-
modal image segmentation by explicitly grouping context
semantics. As shown in Figure fig. 2, unlike full fine-tuning
the RGB segmenters combined with other auxiliary modal
branches, GoPT only needs to learn modality-specific vi-
sual prompts to maximize the inheritance of prior knowledge
from large-scale RGB pretraining. Specifically, GoPT first
inserts the class-aware uni-modal prompter (CUP) into the
frozen foundation model, which employs uni-modal group-
ing to extract modality-complementary features. Then, by
introducing the alignment-induced cross-modal prompter
(ACP) to group cross-modal spatial contexts, GoPT mines
object patterns from updated embeddings. Notably, GoPT
is a general framework for various multi-modal image seg-
mentation, including RGB-Depth (RGB-D), RGB-Thermal
(RGB-T), and RGB-Synthetic Aperture Radar (RGB-SAR)
segmentation. We summarize the main contributions of this
paper as follows:

• A grouping prompt tuning framework for task-oriented
multi-modal image segmentation is proposed, which can
be generalized to various tasks, i.e., RGB-D, RGB-T
and RGB-SAR segmentation. By simplifying auxiliary
modalities to a few prompts instead of designing ad-
ditional network branches, GoPT effectively adapts the
off-the-shelf RGB-based pre-trained foundation model to
downstream multi-modal segmentation.

• A class-aware uni-modal prompter is designed to balance
intra- and inter-modal semantic propagation by group-
ing modality-specific class tokens, thereby improving the
adaptability of spatial information.

• An alignment-induced cross-modal prompter is intro-
duced to aggregate class-aware representations and share
prompt parameters among different modalities to assist
in modeling common statistics.

• Extensive experiments show the superiority of our GoPT,
which achieves SOTA performance on multiple down-
stream multi-modal image segmentation tasks by train-
ing only < 1% parameters.

Figure 2: Motivation of GoPT. It introduces parameter-
efficient prompt learning into multi-modal segmentation and
combines semantic grouping to adapt the foundation model
to downstream tasks with a more concise network structure.

Related Work
Multi-Modal Image Segmentation
As a mainstream method for multi-modal image segmenta-
tion, deep multi-modal fusion aims to enhance fine-grained
details and pixel-level semantics using multiple data sources
to combat uni-modal defects (Zhou, Ruan, and Canu 2019;
Ha et al. 2017; Hazirbas et al. 2017). In fact, relevant meth-
ods of multi-modal segmentation are basically divided into
alignment- and aggregation-based fusion. Alignment-based
fusion methods (Valada et al. 2020; Wang et al. 2020) em-
ploy conditional loss to align subnetwork embedding while
maintaining the full propagation of each subnetwork. These
methods align multi-modal features by applying similarity
rules, with maximizing mean difference being the most com-
monly used (Park et al. 2017). However, focusing solely on
the entire uniform distribution may miss specific patterns in
each mode/domain. Thus, Wang et al. (Wang et al. 2022c)
offer a possible mitigation of this problem, which preserves
modality-specific information while associating modality-
common features. Whereas aggregation-based fusion meth-
ods apply specific operators to combine multi-modal sub-
networks into a single network and fuse features, e.g., con-
catenating (Shivakumar et al. 2020), averaging (Sun, Zuo,
and Liu 2019), and attention-based modules (Wang et al.
2022b). Considering the inadequacy of intra-modal propaga-
tion, recent aggregation-based methods perform feature fu-
sion while maintaining subnetworks of all modalities (Wang
et al. 2022a; Zhou et al. 2022a).

However, due to the lack of large-scale multi-modal train-
ing sets, data-driven deep learning models are facing poten-
tial risks of increasing overfitting (Lee and Kwon 2017).
Therefore, the above two types of methods usually load
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Figure 3: Overview of GoPT. RGB and auxiliary modalities are first to generate corresponding tokens with patch embedding,
and then fed to the L-layer stacked visual transformer for feature encoding. Grouping prompters {pl}L−1

l=0 are inserted into
the foundation model to learn visual prompts, where CUP improves intra-modal semantic propagation by learning modality-
specific class tokens, while ACP aggregates class-aware representations and assists in modeling modality-common statistics.

RGB-based pre-trained model parameters first, and then fine
tune on specific downstream task-oriented datasets (Gao
et al. 2021). In this work, we propose a fusion method based
on semantic grouping prompts to explore the adaptation
from RGB-based pre-trained models to downstream multi-
modal segmentation tasks, which only requires tuning a few
parameters to achieve intra-modal learning and inter-modal
interaction.

Visual Prompt Learning
Large pre-trained models have long relied on fine-tuning to
perform specific downstream tasks, where all model param-
eters typically need to be updated during downstream data
training (Erhan et al. 2010; Devlin et al. 2018; He et al.
2022). This approach requires storing multiple task-oriented
copies of the entire pre-trained model. Therefore, prompt
tuning has been proposed as a new paradigm to overcome
such parameter-inefficient dilemma (Lester, Al-Rfou, and
Constant 2021; Liu et al. 2022b). It greatly improves the
performance of many downstream NLP tasks and shows a
strong generalization ability on transfer learning. Recently,
prompts have been applied to visual tasks. Sandler et al.
(Sandler et al. 2022) introduce memory tokens to embed a
set of learnable vectors in each transformer layer. Jia et al.
(Jia et al. 2022) propose a similar idea and study the uni-
versality and feasibility of visual prompts through extensive
experiments on several recognition tasks across backbone
architectures and multiple domains. Unlike most existing
methods that focus on uni-modal recognition tasks, our work
aims to explore the core ideas of visual prompt learning and
design a prompt tuning framework for multi-modal image
segmentation to replace the fully fine-tuning paradigm.

Methodology
In this work, we propose GoPT to adapt the RGB-based pre-
trained foundation model to downstream multi-modal seg-
mentation tasks in a simple but efficient manner. Compared

with full fine-tuning on the foundation model, GoPT only
needs to tune a few prompt parameters to achieve satisfac-
tory cross-modal transfer learning capabilities. The overall
architecture is shown in fig. 3.

Preliminaries

Problem Setup. Multi-modal image segmentation improves
the performance of the original segmenter F pre-trained
on RGB data xrgb by introducing an additional spatially
aligned input xm, where the subscript m indicates other aux-
iliary modalities (e.g., depth, thermal infrared, or synthetic
aperture radar). Therefore, multi-modal image segmentation
can be expressed as F : {xrgb,xm} → S, where S is the
segmentation mask.
Foundation Model. Generally, the segmenter F can be de-
composed into Ψ ◦ B, where B : xrgb → frgb indicates
the feature extraction function, and the segmentation head
Ψ : frgb → S predicts the final result. In our scheme, B is
a powerful L-layer vision transformer backbone, i.e., MAE
(He et al. 2022) pre-trained ViT (Dosovitskiy et al. 2020).
Specifically, the input sample xrgb is first divided into non-
overlapping patches, and the corresponding initialization to-
kens are generated by linear projection. Formally, the tokens
of the l-th layer transformer T l are indicated as {f l,irgb}

Sl
i=1,

where Sl represents the number of tokens in the l-th layer.
The forward propagation process can be defined as:

{f l,irgb}
Sl
i=1 = T l({f l−1,i

rgb }Sl−1

i=1 ), l = 1, 2, . . . , L (1)

S = Ψ({fL,i
rgb}

SL
i=1), (2)

where {fL,i
rgb}

SL
i=1 is the feature output of the last encoding

layer. For more information on the RGB foundation model,
please see MAE (He et al. 2022) and SETR (Zheng et al.
2021).
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Figure 4: Structure of uni-modal grouping module gm.
It captures the similarity between auxiliary modal tokens
{f̂ l,im }Sl

i=1 and learned class tokens {ĉl,jm }Cj=1. Through com-
puting one-hot assignments using Gumbel-Softmax on class
tokens, auxiliary modal tokens assigned to the same group
are merged together to update prompts {pl,j

m }Cj=1.

Overview
Multi-modal image segmentation provides an additional
auxiliary modality stream, which is spatially aligned and
time-synchronized with the RGB stream. As shown in fig. 3,
GoPT first feeds two inputs {xrgb,xm} to the patch em-
bedding layer to obtain the corresponding RGB tokens
{f0,irgb}

S0
i=1 and auxiliary modality tokens {f0,im }S0

i=1. Then,
{f0,irgb}

S0
i=1 is fed to the foundation model, {f0,irgb}

S0
i=1 and

{f0,im }S0
i=1 are sent to the grouping prompter to generate

modality-specific prompts. The learned prompts are added
to the original RGB stream as residuals:

{f l,i}Sl
i=1 = {f l,irgb ∗ p

l,i}Sl
i=1, l = 0, 1, . . . , L− 1 (3)

where {f l,i}Sl
i=1 indicates the token that will be fed to the

next layer of the foundation model, {pl,i}Sl
i=1 is the prompt

token from the l-th grouping prompter, and “∗” is element-
wise multiplication. Adding prompts directly to the interme-
diate features of the foundation model enables our GoPT to
be easily deployed on existing pre trained segmenters. The
introduction of hierarchical prompters can also make full use
of the semantic analysis of different modalities and different
levels. Notably, the network parameters related to the RGB
modality are frozen during training, including patch embed-
ding and feature extraction.

Grouping Prompt Tuning
The proposed grouping prompter is inserted into multiple
stages of the foundation model to achieve rapid learning by
fine-tuning only a few parameters. It mainly includes class-
aware uni-modal prompter (CUP) and alignment-induced
cross-modal prompter (ACP). CUP balances intra- and inter-
modal information processing by learning modality-specific
class tokens, while ACP aggregates class-aware representa-
tions to model modality-public statistics.
Class-Aware Uni-Modal Prompter (CUP). To explicitly
group class-aware matching semantics from the auxiliary
modality xm, we design CUP that performs hierarchical
progressive grouping of visual concepts. CUP introduces
modality-specific class tokens {cl,jm }Cj=1 to help prompt the

original patch features {f l,im }Sl
i=1, where C indicates the

number of semantic categories. We apply a self-attention
layer to temporally aggregate uni-modal features and align
the features with class token embedding:

{f̂ l,im }Sl
i=1, {ĉ

l,j
m }Cj=1 = {ϕsa(z

l,h
m ,Zl

m,Zl
m)}Sl+C

h=1 , (4)

Zl
m = {zl,hm }Sl+C

h=1 = [{f l,im }Sl
i=1; {c

l,j
m }Cj=1], (5)

where [; ] indicates the concatenation operator, and ϕsa indi-
cates the self-attention function:

ϕsa(z
l,h
m ,Zl

m,Zl
m) = Softmax(

zl,hm Zl⊤
m√
d

)Zl
m, (6)

where d indicates the feature dimension of each token. Then,
the uni-modal grouping module gm(·) takes the aggregated
features and learned semantic class tokens as input to gener-
ate class-aware prompt embedding:

{pl,j
m }Cj=1 = gm({f̂ l,im }Sl

i=1, {ĉ
j
m}Cj=1), (7)

as shown in fig. 4. During grouping, all uni-modal features
belonging to the same class token are merged into the new
uni-modal class-aware features. Similarity matrix A

l,(i,j)
m

between class tokens and uni-modal features is computed
via Gumbel-Softmax operator (Jang, Gu, and Poole 2017):

Al,(i,j)
m = Gumbel-Softmax(W l,q

m f̂ l,im ·W l,k
m ĉl,jm )

=
exp(W l,q

m f̂ l,im ·W l,k
m ĉl,jm + γl,j

m )∑C
h=1 exp(W

l,q
m f̂ l,im ·W l,k

m ĉl,hm ) + γl,h
m

,
(8)

where W l,q
m and W l,k

m are the learned weights for linear pro-
jection of the input modality features and class tokens, re-
spectively. {γl,j

m } are independent samples drawn randomly
from the Gumbel(0, 1) distribution. Based on such sim-
ilarity, we perform one-hot with argmax on all prompt
embedding to compute the groups to assign image tokens
to. Considering that the one-hot assignment of argmax is
non-differentiable, the straight through technique in (Van
Den Oord, Vinyals et al. 2017) is introduced:

Âl
m = one-hot(Al

m,argmax) +Al
m − sg(Al

m), (9)

where sg indicates the gradient stop operator. Âl
m obtains

one-hot values assigned to individual groups, and has the
same gradient as Al

m. This one-hot assignment is called a
hard assignment. After assigning image tokens to different
learnable prompts, we merge the embedding of all tokens
belonging to the same group to update the class-aware fea-
tures:

pl,j
m = gm({f̂ l,im }Sl

i=1, ĉ
j
m)

= ĉjm +W l,o
m

∑Sl

i=1 Â
l,(i,j)
m W l,v

m f̂ l,im∑Sl

i=1 Â
l,(i,j)
m

,
(10)

where W l,o
m and W l,v

m indicate the learning weights for
merging projection features. Soft assignments (i.e., Al

m in-
stead of Âl

m) can also be chosen to calculate eq. (10), but it
has been empirically found that hard assignments allow for
more efficient grouping.
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Alignment-Induced Cross-Modal Prompter (ACP). The
inter-modal gap caused by different imaging mechanisms re-
quires fine-grained cross-modal interactions to facilitate in-
formation fusion. Since the alignment relationship between
RGB and auxiliary modalities is explicitly available, we de-
sign ACP to aggregate class-aware representations from the
auxiliary modality. According to the semantic similarity of
explicit grouping, key patterns from other data sources are
combined into RGB stream to generate new cross-modal
alignment-induced prompts {pl,i}Sl

i=1:

{pl,i}Sl
i=1 = grgb,m({pl,j

m }Cj=1, {p
l,i
rgb,m}Sl

i=1), (11)

{pl,i
rgb,m}Sl

i=1 = {ϕca(f
l,i
rgb,P

l
m,Pl

m)}Sl
i=1, (12)

Pl
m = {pl,h

m }Ch=1, (13)

where grgb,m is a grouping module similar to gm in eq. (7),
and ϕca indicates the cross-attention function:

ϕca(f
l,i
rgb,P

l
m,Gl

m) = Softmax(
f l,irgbP

l⊤
m√

d
)Pl

m, (14)

where d indicates the feature dimension. In the actual im-
plementation, we insert grouping prompters into different
levels of the foundation model, and use the inheritance
mechanism to construct a progressive hierarchy. Specifi-
cally, modality-specific class tokens in the CUP module in-
herit from the cross-modal alignment-induced feature of the
previous layer:

{cl+1,j
m }Cj=1 = {pl,j

m }Cj=1. (15)

The class tokens (i.e., {c0,jm }Cj=1) input for the initial stage
are only a set of learnable parameters with random initial-
ization.
Optimization The multi-modal segmentation model is
initialized by the parameters of the RGB-based pre-
trained foundation model. While the data stream propagates
throughout the model during prompt tuning, we only update
gradient values for a few specific parameters, i.e. grouping
prompter and segmentation head Ψ . Due to the differences
in the category settings in different downstream multi-modal
datasets, the parameters of Ψ also need to be fine-tuned.
Even so, the default version of our GoPT still contains only
0.97M trainable parameters and beats the full fine-tuning
paradigm. Tuning with a small number of prompt param-
eters can promote the model convergence in a short time
and effectively inherit the prior knowledge of the pre-trained
foundation model, so as to achieve rapid learning.

Experiments
Downstream Tasks
GoPT achieves the unification of several downstream multi-
modal image segmentation tasks, among which three chal-
lenging tasks are selected to verify the effectiveness and su-
periority of the proposed method. (i) For RGB-D segmenta-
tion, we provide the comparison results of NYUDv2 (Silber-
man et al. 2012) and SUN RGB-D (Song, Lichtenberg, and
Xiao 2015). (ii) For RGB-T segmentation, we evaluate our

Figure 5: Qualitative visual comparison with foundation and
SOTA segmenters on various multi-modal datasets.

segmenter on MFNet (Ha et al. 2017) and PST900 (Shiv-
akumar et al. 2020). (iii) For RGB-SAR segmentation, we
report experimental results on WHU-OS (Li et al. 2022). All
experimental settings are kept the same, i.e., prompt tuning
on these downstream tasks without any specific modulation.

Experimental Setup
To fully verify the superiority of the propsed method, when
fine-tuning GoPT on downstream tasks, we only use the
training sets corresponding to the above datasets without
introducing other algorithms for data expansion. GoPT is
trained on 1 NVIDIA Tesla A100 GPU with a batch size
of 64 and fine-tuning epochs of 60. AdamW (Loshchilov
and Hutter 2019) is employed as training optimizer, where
the initial learning rate is 4× 10−5 and scheduled following
the polynomial annealing policy. The parameters of the pre-
trained foundation model remain fixed, while the learnable
prompt parameters are initialized with the xavier uniform
scheme (Glorot and Bengio 2010). Concretely, our models
include GoPT (B) and GoPT (L), corresponding to MAE
(He et al. 2022) pre-trained ViT-B and ViT-L (Dosovitskiy
et al. 2020) as the foundation model.

Comparison With State-of-the-Arts
NYUDv2. NYUDv2 (Silberman et al. 2012) is an indoor un-
derstanding dataset containing 1,449 RGB-Depth (RGB-D)
pairs of size 640× 480, split into 795/654 for train/test
with 40 classes. In table 1, we compare our method with
various SOTA methods. The results show that our GoPT
achieves new records better than previous methods in all
metrics, and even the basic version improves by 4.8% mIoU
compared to our RGB-based foundation segmenter (Zheng
et al. 2021). This also verifies the efficiency of GoPT to uti-
lize depth information to assist segmentation.
SUN RGB-D. SUN RGB-D (Song, Lichtenberg, and Xiao
2015) is one of the most challenging benchmarks for in-
door semantic segmentation, containing 10,335 RGB-D
images of 37 semantic classes. We employ the standard
train/test split. As shown in table 1, our GoPT (L)
outperforms previous competing methods, achieving 52.3%
mIoU. GoPT outperforms the foundation segmenter by 3.4%
mIoU, while another prompt-based segmenter EVP (Liu
et al. 2023) only boosts 0.9% mIoU over the baseline.
MFNet. MFNet (Ha et al. 2017) is an urban street dataset
containing 1,569 RGB-T pairs of size 640 × 480 with 8
classes. 820 pairs are collected during the day and the other
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NYUDv2 SUN RGB-DMethod Modal PAcc. mAcc. mIoU PAcc. mAcc. mIoU

(Long et al. 2015) RGB 60.0 42.2 29.2 68.4 41.1 29.0
(Lin et al. 2020) RGB 74.4 59.6 47.6 81.1 57.7 47.0
(Zheng et al. 2021) RGB 76.9 61.1 49.3 82.7 59.3 48.9
(Liu et al. 2023) RGB 77.5 64.2 50.7 84.1 61.5 49.8
(Hazirbas et al. 2017) RGB-D 68.1 50.4 37.9 76.3 48.3 37.3
(Valada et al. 2020) RGB-D 75.2 60.5 48.7 81.0 58.1 45.7
(Park et al. 2017) RGB-D 76.0 62.8 50.1 81.5 60.1 47.7
(Wang et al. 2020) RGB-D 77.0 64.0 51.2 – – –
(Wang et al. 2022c) RGB-D 77.7 65.0 52.5 83.5 63.2 51.1
(Wang et al. 2022b) RGB-D 78.6 66.2 53.3 84.0 63.3 51.4

GoPT (B) RGB-D 79.8 67.5 54.1 85.7 64.2 52.1
GoPT (L) RGB-D 80.1 67.4 54.3 85.5 64.6 52.3

Table 1: Comparison results on the NYUDv2 and SUN RGB-D datasets with SOTAs for RGB-D segmentation. Evaluation
metrics include pixel accuracy (PAcc.) (%), mean accuracy (mAcc.) (%), and mean IoU (mIoU) (%).

MFNet PST900Method Modal mAcc. mIoU mIoU

(Zhao et al. 2017) RGB 51.9 44.7 68.7
(Liu et al. 2022a) RGB 57.6 51.4 70.6
(Ha et al. 2017) RGB-T 45.1 39.7 57.0
(Sun, Zuo, and Liu 2019) RGB-T 63.1 53.2 74.6
(Shivakumar et al. 2020) RGB-T 55.5 48.6 68.4
(Zhou et al. 2021) RGB-T 72.3 55.5 77.1
(Zhou et al. 2022b) RGB-T 72.7 54.8 78.5
(Zhou et al. 2022a) RGB-T 75.2 56.1 78.6
(Li et al. 2023) RGB-T 75.9 56.2 80.5

GoPT (B) RGB-T 77.1 57.4 81.3
GoPT (L) RGB-T 77.0 57.7 81.5

Table 2: Comparison results on the MFNet and PST900
datasets with SOTAs for RGB-T segmentation.

749 pairs were captured at night. The train set consists
of 50% daytime images and 50% nighttime images, while
the val and test sets contain 25% daytime images and
25% nighttime images. We compare the proposed GoPT
with recent RGB-T segmenter in table 2. The results show
that our GoPT (B) achieves astonishing mAcc. and mIoU
of 77.1% and 57.4%, beating the well-designed RGB-T seg-
menter RSFNet (Li et al. 2023).
PST900. PST900 (Shivakumar et al. 2020) contains 894
synchronized and calibrated RGB-T image pairs with 5 se-
mantic classes. The ratio of train/test set is 2/1. As
shown in table 2, GoPT (L) achieves the best performance
compared to other SOTA methods. We argue that prompt
tuning exploits thermal information to enable GoPT to adapt
well to diverse segmentation scenarios.
WHU-OS. WHU-OS (Li et al. 2022) is a remote sens-
ing dataset containing 100 RGB-SAR images of 5556 ×
3704 pixels with 6 land-cover classes, splitting into
60%/20%/20% for train/val/test. In the experiment,
the images are cropped to 512 × 512 patches without over-
lapping. table 3 shows that GoPT (B) is better than the
runner-up MIFNet (Wang et al. 2022a) by 2.8% AA and
0.9% Kappa, and is better than other classic RGB-SAR seg-
menters. Although the high signal-to-noise ratio of remote

Method Modal OA AA Kappa

(Melgani and Bruzzone 2004) RGB-SAR 60.5 57.4 45.4
(Li et al. 2015) RGB-SAR 48.3 49.3 34.7
(Xu et al. 2017) RGB-SAR 65.8 67.8 41.8
(Lee and Kwon 2017) RGB-SAR 66.3 68.9 54.0
(Gao et al. 2021) RGB-SAR 67.9 67.3 55.2
(Wang et al. 2022a) RGB-SAR 72.5 66.5 59.8

GoPT (B) RGB-SAR 72.9 69.3 60.7
GoPT (L) RGB-SAR 72.7 70.4 60.9

Table 3: Comparison results on the WHU-OS dataset with
SOTAs for RGB-SAR segmentation. Evaluation metrics in-
clude overall accuracy (OA) (%), average accuracy (AA)
(%), and Kappa coefficient (%).

sensing images is more challenging for model representation
capabilities, our GoPT still shows convincing adaptability
by explicitly grouping multi-modal contexts.

Ablation Studies and Analyses
We further explore the properties of our method on various
downstream tasks, including experimental results of GoPT
(B) on several representative benchmarks, i.e., NYUDv2,
MFNet and WHU-OS.
Visualization. We visualize the segmentation results on var-
ious tasks in fig. 5. It can be seen that GoPT has a more
accurate semantic discrimination for some complex situa-
tions under the prompt of the auxiliary modality. For exam-
ple, GoPT successfully captures sparse details of foreground
objects and connects them to form an overall representation
when encountering illumination changes and background in-
terference. This shows that GoPT can perceive and parse di-
verse scenes in a more robust and generalized manner.
Variant Analysis. To verify the effectiveness of the group-
ing prompt, we study different variants of GoPT. For fair
comparison, we introduce VPT (Jia et al. 2022) style vari-
ants and GoPT-shallow, where the input prompts of VPT-
shallow and VPT-deep are replaced by embeddings of aux-
iliary modalities to adapt to multi-modal segmentation. No-
tably, in order to align RGB and auxiliary modalities, we
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NYUDv2 MFNet WHU-OSMethod Params PAcc. mAcc. mIoU mAcc. mIoU OA AA Kappa

Foundation – 76.9 61.1 49.3 72.8 54.6 68.1 65.2 56.5
FFT 112.59M 78.5 65.4 53.1 74.9 56.3 70.8 68.3 58.9

VPT-Shallow 0.54M 77.0 61.9 50.2 73.2 54.5 68.4 65.7 57.1
VPT-Deep 3.39M 78.3 64.2 52.8 74.1 55.7 69.8 67.0 58.3
GoPT-Shallow 0.68M 78.1 65.0 52.9 74.5 56.0 70.3 67.5 58.1

GoPT 0.97M 79.8 67.5 54.1 77.1 57.4 72.9 69.3 60.7
GoPT (w/o ACP) – 78.6 65.4 53.7 75.3 56.4 70.9 67.8 58.4
GoPT (w/o CUP) – 78.5 65.7 53.9 75.6 56.8 71.2 67.9 58.3

Table 4: Ablation studies on various downstream tasks. “Params” refers to the parameters that need to be trained.

Figure 6: Impact of different number of grouping prompters.

choose element-wise multiplication instead of the original
concatenation in VPT to process prompt tokens. table 4 pro-
vides a comparison of the amount of trainable parameters
and performance. Obviously, the proposed GoPT achieves
the best balance in accuracy and efficiency.
Effectiveness of Prompter Structure. The proposed group-
ing prompter consists of CUP and ACP, which are analyzed
for ablation in table 4. Compared with VPT, the introduction
of CUP (row 7) promotes the accuracy of almost all metrics,
verifying the effectiveness of promoting intra-modal seman-
tic propagation. We also try to apply ACP directly to the
foundation model (row 8), even with such a simple setup,
it still brings performance improvements. We argue that the
grouping structure in prompters can aid in mining the under-
lying modality-common distribution.
Impact of Multi-Modal Information. To explore the im-
pact of multi-modal information on segmentation, we quan-
titatively evaluate the performance of uni-modal input (i.e.,
RGB-based foundation segmenter) and multi-modal input,
where the difference between GoPT and full fine-tuning
(FFT) for the multi-modal case is also compared. FFT is
extended from the foundation model by adding auxiliary
modal branches, and the design of the specific structure is
inspired by (Wang et al. 2022c). As shown in table 4, FFT
combined with auxiliary modal input achieves a significant
improvement over the foundation model, with significant
increases in all three tasks. Even so, GoPT still has more
performance advantages, and the amount of parameters re-
quired for training is less than 1% of FFT.
Number of Grouping Prompter. GoPT achieves multi-
modal segmentation by inserting grouping prompters into
different layers of the foundation model. We study the im-
pact of the number of prompters on performance by setting

Figure 7: Impact of hard vs. soft assignment on grouping.

different insertion intervals, i.e., inserting prompters at every
1, 2, 4, 6 and 12 layers of the foundation model. As shown in
fig. 6, the results on different tasks all show that the segmen-
tation performance is positively correlated with the number
of prompters.
Hard vs. Soft Assignment. We assign image tokens to
prompts via hard or soft assignment in each grouping
prompter. For soft assignment, we use the original Al

m ma-
trix instead of Âl

m for hard assignment to compute eq. (10).
As shown in fig. 7, we find that hard assignment improves by
a large margin than soft one. We conjecture that in the case
of soft assignment, since there are no zero values in Al

m, the
features of the new image tokens are likely to be more cor-
related with each other. Thus, the information of the same
image token may be assigned to different prompts, increas-
ing ambiguity. However, in the case of hard assignment, the
affinity matrix works in a mutually exclusive manner, mak-
ing prompts more discriminative.

Conclusion
In this paper, we propose a novel parameter-efficient vi-
sual tuning framework for multi-modal image segmenta-
tion, i.e., GoPT, by introducing explicit semantic grouping
into prompt learning to adapt the frozen pre-trained foun-
dation model to various downstream multi-modal segmenta-
tion tasks. Specifically, a class-aware uni-modal prompter is
designed to balance intra- and inter-modal semantic propa-
gation by grouping modality-specific class tokens. Further-
more, an alignment-induced cross-modal prompter is intro-
duced to aggregate class-aware representations and assist in
modeling common statistics. Extensive experiments on var-
ious downstream tasks demonstrate the superiority and gen-
eralization of the proposed GoPT.
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