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Abstract
Benefiting from instrumental global dependency modeling of
self-attention (SA), transformer-based approaches have be-
come the pivotal choices for numerous downstream visual
reasoning tasks, such as visual question answering (VQA)
and referring expression comprehension (REC). However,
some studies have recently suggested that SA tends to suffer
from rank collapse thereby inevitably leads to representation
degradation as the transformer layer goes deeper. Inspired by
social network theory, we attempt to make an analogy be-
tween social behavior and regional information interaction in
SA, and harness two crucial notions of structural hole and
degree centrality in social network to explore the possible op-
timization towards SA learning, which naturally deduces two
plug-and-play social-like modules. Based on structural hole,
the former module allows to make information interaction in
SA more structured, which effectively avoids redundant in-
formation aggregation and global feature homogenization for
better rank remedy, followed by latter module to comprehen-
sively characterize and refine the representation discrimina-
tion via considering degree centrality of regions and transi-
tivity of relations. Without bells and whistles, our model out-
performs a bunch of baselines by a noticeable margin when
considering our social-like prior on five benchmarks in VQA
and REC tasks, and a series of explanatory results are show-
cased to sufficiently reveal the social-like behaviors in SA.

Introduction
The success of transformer-based methods (Vaswani et al.
2017) in the natural language domain paves the way for the
prosperity of vision reasoning tasks (Goyal et al. 2017), and
numerous well-devised transformer variants have achieved
promising performance on various benchmarks (Johnson
et al. 2017). Due to the powerful global modeling ability of
self-attention (SA) mechanism in transformer, these meth-
ods not only facilitate the intra-modality context learning,
but also excel in inter-modality alignment and complementa-
tion. However, as discussed by several extant works (Dong,
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Figure 1: Illustration of Social-like Transformer Block
(STB), where vanilla self-attention is replaced with SSA.
Add&Norm denotes addition and layer normalization, re-
spectively, CA represents the cross-modality attention, and
FFN is the feed-forward network. In SSA, “IAWG” denotes
information aggregation within groups, Gi and us represent
the i-th subgraph and structural hole, respectively.

Cordonnier, and Loukas 2021; Dong et al. 2021), the tra-
ditional SA mechanism easily leads to quicker rank col-
lapse and representation degradation without Feed-Forward
Network (FFN) (Vaswani et al. 2017) and residual connec-
tion (He et al. 2016). Therefore, how to further optimize the
effective learning of SA and generate more expressive repre-
sentations for vision-and-language tasks remains an impera-
tive issue.

Intriguingly, we accidentally perceive that the feature ag-
gregation amongst different image regions in SA seemingly
shares similar philosophy with the information communica-
tion in social network. Moving forward in a purposeful way,
we attempt to equip the social network theory (SNT) (Tabas-
sum et al. 2018) into SA learning to gain some merits. For
the sake of clarity, we first shed light on the counterparts
between SA and social network. Regarding visual SA mod-
eling in transformer, each visual unit, which can be grid fea-
ture (Jiang et al. 2020) or salient object (Anderson et al.
2018), follows to perform feature aggregation from other vi-
sual units based on the similarity score. We perceive that this
process parallels social behavior, in other words, each visual
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region can be likened to a social member, and each member
tends to make friends who has kindred spirits.

In this work, we make contributions towards optimizing
SA learning from two kinds of social perspectives: (1) In-
spired by the concept of structural holes (Tabassum et al.
2018) mentioned in SNT, we argue that not all pair-wise
regions tend to establish connections in SA, and most re-
gion except structural hole is inclined to interacts with a
limited number of regions whereas structural hole can be
served as a link for communication with several isolated re-
gional groups. This mechanism makes information interac-
tion across different regions more structured, and effectively
avoids redundant information aggregation and global feature
homogenization, which elicits our Dynamic Structured In-
teraction (DSI). (2) After performing DSI, the excavated
structural holes are responsible for receiving more sources
of information as information hub, because of their greater
degree and larger possibility to contact the representative re-
gions within different groups. In light of this, we take the
notion of degree centrality and transitivity in SNT into con-
sideration to further delve into the spontaneous formation
condition of pillar: one region has larger possibility to be
pillar 1) when it obtains more focus from other regions or 2)
it tends to establish closer connection to other pillars, which
naturally leads to our Discriminative Pillar Verification
(DPV) for further attention re-assignment. These two com-
ponents are sequentially integrated into vanilla SA, and sys-
tematically work as a whole (i.e., SSA) for structured rank
optimization and discriminative representation refinement.

We further equipped several transformer-based models
with our SSA for two highly competitive tasks, VQA and
REC, and we conducted extensive experiments on five popu-
lar public benchmarks, namely, VQA 2.0 (Goyal et al. 2017),
CLVER (Johnson et al. 2017), RefCOCO (Yu et al. 2016),
RefCOCO+ (Yu et al. 2016), and RefCOCOg (Mao et al.
2016a). The quantitative comparison shows that our method
surpasses a bunch of baselines by a noticeable margin, and
even achieves the new state-of-the-art (SOTA), and related
visualization and mechanism exploration results sufficiently
indicate the social behavior that SSA brings.

Our contributions are summarized as follows:

• We draw the inspiration from the social network theory to
optimize the self-attention learning for two competitive
visual reasoning tasks.

• We introduce SSA, where two novel modules are elabo-
rately deployed. The former bespeaks the great potential
to retard the rank collapse via structured interaction, fol-
lowed by the latter one to further refine the discriminative
representation based on region centrality.

• We conducted extensive experiments on five public avail-
able datasets to demonstrate the gain of two social-like
modules and convincingly showcase their mechanism.

Related Work
Visual Question Answering
Visual question answering (VQA) targets at correctly an-
swering the related questions based on given images, which

is generally considered as a classification task with fixed
number of categories. The recent years have witnesses the
prosperity of VQA, numerous well-designed multimodal
methods (Shi, Zhang, and Li 2019) and various bench-
marks (Goyal et al. 2017; Johnson et al. 2017) have been
proposed to facilitate this task. Earlier works utilize various
multimodal embedding techniques (Hedi et al. 2019) to op-
timize the joint representation of image and question. Dif-
ferent from these lines of studies, lots of interpretable stud-
ies (Shi, Zhang, and Li 2019; Hu et al. 2018) open these
black-box models to better explore the compositional rea-
soning. With the prevailing advent of attention mechanism
in computer vision, a series of attention-based VQA mod-
els have been introduced to this task. Bottom-up and top-
down attention mechanism (Anderson et al. 2018) is ex-
ploited to locate the crucial visual parts and learn more dis-
criminative visual features. Concurrent with these works,
some researchers (Wu et al. 2018; Li et al. 2019) focus
on strengthening context-aware representation via exploring
the relations between different visual regions. However, the
increasing difficulty of sufficiently understanding questions
in VQA often exceeds the ability of these single-step ap-
proaches. In this case, multiple-step attentions (Peng et al.
2019; Cadène et al. 2019) or stacked attentions (Gao et al.
2019) are further dedicated to gradually refine the visual/text
information. The state-of-the-art methods (Gao et al. 2019;
Zhou et al. 2021) exploit mainstreaming transformer-based
architecture to capture the delicate relationships within and
across modalities in a stacked manner.

Referring Expression Comprehension
Referring Expression Comprehension (REC) aims to local-
ize the referred region in an image according to the given
textual description. Existing methods typically base the ob-
ject detection framework to improve the performance of
REC task, which can be roughly categorized as two-stage
framework and one-stage framework. Two-stage framework
first utilizes the off-the-shelf object detectors (Yu et al.
2018a) to generate a bunch of region proposals from the
image, and then select the top-ranked semantic-related pro-
posal which mostly matches the language description. How-
ever, this framework heavily hinge on the quality of the pre-
trained proposal detector. Recently, one-stage framework di-
rectly predicts the coordinate of referred regions without
generating sets of candidate proposals in advance. These
lines of work focus on devising diverse architectures, such as
modular attention network (Yu et al. 2018a), various kinds
of graph structure (Wang et al. 2019a; Yang, Li, and Yu
2019a), and multi-modal tree (Liu et al. 2019b), to establish
fine-grained multimodal relationship for referred localiza-
tion. Most recently, transformer-based methods (Yang et al.
2022; Deng et al. 2021) have been introduced to strengthen
the plenitudinous interaction between the visual-linguistic
context and further facilitate this task.

Preliminaries
For brevity, we formulate these two reasoning-hungry tasks
as a generic form as follows. Given the training set Φ =
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{Ub, Tb, eb}Bb=1, where eb can be the answer ab in answer
set A in the matter of VQA task or localization coordi-
nate vector bb for REC task, Ub corresponds to the b-th
image with related text Tb, where Tb can be questions and
expressions, and B denotes the number of total training
samples. During training, we are required to learn a map-
ping function zb = g(Ub,Tb) that obtains the represen-
tation zb for answer distribution prediction or grounding
coordinate prediction, where Ub = [ub1,ub2, ...,ubR] and
Tb = [tb1, tb2, ..., tbW ] are obtained from Ub and Tb via
image and text feature extractor, respectively, and ubr and
tbw denotes the feature of the r-th region and the w-th word,
respectively.

Transformer with Social-Like Prior
To highlight our contribution, we provide the illustration of
architecture of our proposed Social-Like Transformer Block
(STB) in Figure 1. In STB, we replace the traditional SA
with our SSA, which consists of two key parts: Dynamic
Structured Interaction (DSI) and Discriminative Pillar Veri-
fication (DPV). In what follows, we elaborate the designed
motivation and details of these two components sequentially.

Dynamic Structured Interaction (DSI)
Before introducing our DSI, we first briefly review the tra-
ditional calculation pipeline of SA. The traditional SA func-
tion fSA(Q,K,V) first operates on query Q ∈ RR×d, key
K ∈ RR×d, and value V ∈ RR×d, which are obtained by
three separate linear projections φq(·), φk(·), φv(·) using
the visual regional representation U = [u1,u2, ...,uR] ∈
RR×d as input, where R is the number of regions in image,
and the interaction matrix between any pair-wise regions are
calculated as follows,

Air = φq(ui)φk(ur)
⊤/

√
d = qik

⊤
r /

√
d, (1)

where Air considers all the long-range correlations and as-
signs a fixed number of interactive neighbors for each re-
gion to strengthen the reasoning-hungry contextual repre-
sentation. However, this strategy would unavoidably trig-
ger some redundant connection that the irrelevant regions
bring. Based on the analysis in the literatures (Dong, Cor-
donnier, and Loukas 2021; Dong et al. 2021), the deeper
SA would result in more common neighbors, and similarly
lead to the representation assimilation as the over-smoothing
phenomenon in Graph Neural Network (GNN) (Velickovic
et al. 2018), which further incurs rank collapse. To tackle
this issue, we harness structural holes in SNT to make the
interaction pattern between regions more structured. As de-
picted in Figure 2, structural hole us can be served as a
hub that establishes connections between several isolated
social groups G1, G2 and G3. Interestingly, we observe
that identifying the structural holes us is equivalent to ex-
actly removing the possible redundant relationships from
the complete graph that built by regions in different groups,
i.e, uiur|ui,ur∈G1,G2,G3

. As concluded in SNT, the appear-
ance of structural holes hinges on their relative location sur-
roundings and their own features (Tabassum et al. 2018). In
light of this, two modulation networks φα(·) and φβ(·) (i.e.,

Structure Holes

(a) Find the Structural Hole (b) Interaction Pattern
8 16 240 32 40 56 6448

2

6

10

14

18

Equivalent

Figure 2: (a) shows the equivalence between localizing the
possible structural hole us and removing the redundant re-
lations, and (b) shows the interaction number (y-axis) with
other regions of each region (x-axis), where the region index
with red circle signifies structural hole.

learnable fully connected networks) are employed, using the
region feature ui and its connection preference Ai,: as con-
trol information to generate the effective mask that helps to
form structural hole,

Mi,: = φα(F)⊙ (Ai,: −M(Ai,:)) + φβ(F), (2)

where F = [Ai,:,ui] ∈ Rd+R, M(·) is used to calculated
the average value of vector, and ⊙ denotes the element-
wise multiplication operation. We then further impose a non-
negative constraint to obtain the discrete interactive indica-
tor for each region,

Hi,: = I(ReLU(Mi,:)), (3)

where I(·) denotes the indicator function, where its value
will be set to 1 if the input is larger 0, and set to 0 otherwise.
After obtaining Hi,:, we achieve the structured interaction
calibration as follows,

Ãij = Softmax(Hij ⊙Aij). (4)

Guided by the structured interaction matrix Ãij , the feature
update process can be summarized as,

ũi =
∑
j

Ãij φv(uj). (5)

By this means, Ãij has the ability to control the struc-
tured interaction pattern, which effectively avoids redundant
information aggregation and global feature homogenization.

Discriminative Pillar Verification (DPV)
As shown in Figure 2, the localized structural hole us has
greater degree and larger possibility to get in touch with the
representative regions within different groups. They are re-
sponsible for receiving more sources of information when
performing context representation enhancement. Therefore,
these holes, called pillar candidates, convey more global in-
formation of image than other local-ware regions after DSI,
which are supposed to be assigned more attention. Based on
these observations, we take two key concepts, degree cen-
trality and transitivity, into consideration to quantify the rea-
sonable attention allocation, that is, finding the pillar. The
former characterizes the importance of each region accord-
ing to its degree, and the latter models the interaction prefer-
ence towards different neighbors. Inspired by this, we make
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attempts to reveal the possibility of identifying the pillar by
leveraging the degree information and connection pattern,
which leads to two nature standards of being pillar: one re-
gion has larger possibility to be pillar when 1) it obtains the
focus from more other regions in image or 2) it has larger
possibility to be pillar when it establish closer connection
to other pillars. It is worth emphasizing that unlike the
traditional top-down approaches (Anderson et al. 2018), our
DPV supports to harness the intrinsic structure information
in visual graph rather than semantic-guided strategies to re-
fine the visual discriminative representation.

In what follows, we illustrate the details regarding how to
verify pillar based on above philosophy. We first generate
the region importance score si of the i-th region by comput-
ing si =

∑
r Air, where si denotes the obtained focus from

other regions. By concatenating all the focus score of regions
s = [s1, s2, ..., sR], we can obtain the global focus vector
s of whole visual graph. Taking the transitivity and degree
centrality in visual graph structure into consideration, these
region importance information would be transferred along-
side the weight of connected relationship, and we combine
the transitivity information (Hi,: ⊙Ai,:) with centrality in-
formation s to obtain the final focus score,

wi = Hi,: ⊙ (s+Ai,:). (6)

In Eqn.(6), (Hi,:⊙Ai,:) characterizes the structured interac-
tion preference of the i-th region to other regions, (Hi,: ⊙ s
represents the calibrated importance distribution of regions,
and the informative vector wi could comprehensively con-
vey the possibility to be pillar. To further endow pillar veri-
fication process with more flexibility, we adopt the learnable
form as follows,

pi = Sigmoid(φp([wi, si])), (7)

where [·, ·] denotes the concatenation operation, φp(·) rep-
resents the two-layer linear projection. By concatenating
the score of each region, the learned score vector p =
[p1, p2, ..., pR] is obtained. Thereafter, the learned visual
representation in SA is further re-calibrated by regularized
vector p, which is updated as follows,

Ū = Ũ⊙ p, (8)

where Ū = [ū1, ū2, ..., ūR] and Ũ = [ũ1, ũ2, ..., ũR],
each of vector ũi can be obtained by Eqn.(5), and ūi is
accordingly calculated by ūi = ũi · pi. After obtaining
Ū, we input these representation to the subsequent blocks,
such as FFN (Vaswani et al. 2017) or Cross-Modality Atten-
tion (Vaswani et al. 2017), which is the same as the modules
in traditional transformer block. After T iterations of our
STB, we derive the final refined output Ū(T ).

Training Objective
Output Head. In VQA task, we aggregate Ū(T ) with orig-
inal question representation T by attentional reduction (Tan
and Bansal 2019) to obtain the joint global representation
for the whole image, which are followed by a multi-layer
predictor for multi-label classification,

z = Fd→|A|(Ū
(T ),T), (9)

where A denotes the candidate answer set, |A| represents the
number of element in A, d denotes the feature dimension be-
fore predictor, and z ∈ R|A| represents the predicted answer
distribution. For REC task, we adopt the pooling operator on
Ū(T ) , which is followed by the box regression layer,

b = Fd→4(Ū
(T )), (10)

where b ∈ R4 denotes the predicted 4-dim bounding box
vector, each of element represents four coordinates of the
grounding region, respectively.

Loss Function. In VQA task, we use the binary cross-
entropy as the loss function for training following (Anderson
et al. 2018), which is defined as follows:

Lvqa = −
|A|∑
j

yj log(zj)− (1− yj)log(1− zj), (11)

where zj denotes the predicted probability on the j-th an-
swer slot, and yj = 1 if the ground-truth answer is aj , and
other slot is set to 0. For REC task, we denote the prediction
as b = (x, y, w, h), and the normalized ground-truth box is
denoted as b̃ =

(
x̃, ỹ, w̃, h̃

)
. The training objective is,

Lrec = Lsmooth(b̃,b) + Lgiou(b̃,b), (12)
where Lsmooth(·) and Lgiou(·) represents the smooth ℓ-1
loss and GIoU loss (Rezatofighi et al. 2019), respectively.

Experiments
To demonstrate the effectiveness of our method, we apply
them to two considerably competitive reasoning tasks, VQA
and REC. Five benchmarks are involved, namely, VQA 2.0,
CLEVR, RefCOCO, RefCOCO+ and RefCOCOg.

Experimental Setup
Datasets. VQA 2.0 is the most commonly used bench-
mark dataset for VQA, which is developed based on VQA
1.0. The images stems from Microsoft COCO (Lin et al.
2014). The overall dataset has about ∼1000K examples,
which are splited into train, val and test, respectively.
CLEVR is a synthetic diagnostic dataset, which is used to
examine a range of visual reasoning abilities. In CLEVR,
there are ∼70K/∼15K images and ∼700K/∼150K ques-
tions in the train/val set, where questions are parsed as sev-
eral compositional functional programs. RefCOCO, Ref-
COCO+, and RefCOCOg are three commonly used bench-
marks for REC. RefCOCO has ∼20K images with ∼142K
referring expressions for 50K referred objects, which is split
into train, val, testA, and testB set. The expressions are
generally represented as short sentences with an average
length of 3.5 words. RefCOCO+ provides ∼20K images
and ∼142K expressions regarding 50K referred objects. Re-
fCOCOg has ∼260K images with ∼960K expressions to de-
scribe 50K objects. The expressions in RefCOCOg are gen-
erally longer than those in the other two datasets, with 8.4
words on average. In particular, RefCOCOg can be split-
ted into two parts, which are RefCOCOg-google (Mao et al.
2016b) (val-g) and RefCOCOg-umd (Nagaraja, Morariu,
and Davis 2016) (val-u, test-u).
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Figure 3: (a) and (b) show the learned interaction matrix (discretization via threshold 0.1 and 0.6 for better illustration, respec-
tively) with DSI and without DSI in the last SA layer, respectively. (c) shows how our DSI facilitates the rank learning in SA.
For x-axis, we define L ∼ [H0 : H7] as the Hh-th head of the L-th layer in transformer. (d) shows the semantic groups obtained
by clustering the learned grid features using spectral clustering.

Models VQA 2.0 test-dev
All Y/N Num. Others

Multimodal Embedding:
MCB (Fukui et al. 2016) 62.3 78.8 38.3 53.4
MLB (Kim et al. 2017) 66.3 83.6 44.9 56.3
MUTAN (Hedi et al. 2017) 66.0 82.9 44.5 56.5
BLOCK (Hedi et al. 2019) 67.6 83.6 47.3 58.5
Attentional Modeling:
CapsAtt (Zhou et al. 2019) 65.5 82.6 45.1 55.5
UpDn (Anderson et al. 2018) 65.3 81.8 44.2 56.1
BAN (Kim and Jun 2018) 69.5 85.3 50.9 60.3
Visual Relation Modeling:
ODA (Wu et al. 2018) 68.2 84.7 48.0 58.7
MuRel (Cadène et al. 2019) 68.2 84.7 48.0 58.7
ReGAT (Li et al. 2019) 70.3 86.0 54.4 60.3
CRA-Net (Peng et al. 2019) 68.6 84.9 49.5 59.0
VCTREE (Tang et al. 2020) 68.2 84.3 47.8 59.1
Transformer-based:
MMNAS (Yu et al. 2020) 71.2 87.3 55.7 61.0
LENA (Han et al. 2021) 70.3 86.6 54.3 60.2
AGAN (Zhou et al. 2020) 71.2 86.9 54.3 61.6
ReATT (Guo et al. 2021) 70.4 87.0 53.1 60.2
SUPER (Han et al. 2023) 70.3 86.6 51.5 60.7
Ours:
MCAN∗ (Yu et al. 2019) 71.3 87.2 53.7 61.7
+Ours 71.9 87.8 54.8 62.4
TRAR∗ (Zhou et al. 2021) 71.5 87.5 54.5 61.7
+Ours 72.0 87.8 54.8 62.2
TRAR† (Zhou et al. 2021) 71.9 87.5 54.1 62.6
+Ours† 72.5 88.0 55.1 63.0

Table 1: Performance comparison on VQA 2.0 test-dev, all
the model is trained on the train + val + vg splits. “*” de-
notes our re-implementation results, and “†” represents the
versions that finetuned with only train + val after 10 epochs.

Implementation Details. In VQA task, the model con-
figuration for VQA 2.0 and CLEVR are similar. Follow-
ing (Zhou et al. 2021), the input text words are initialized
by 300-dimension GLOVE embeddings, and LSTM is uti-
lized to the encode language information, and the dimen-

(a) Without DPV (b) With DPV

Figure 4: t-SNE visualization of representation from the last
SA layer in MCAN. (a) and (b) show the vectors obtained
by performing average pooling on Ũ and Ū, respectively.

sion is set to 512. We use ResNext152 pre-trained on Visual
Genome as the basic visual backbone to extract grid image
features, these features are first padded to 16 × 16 scale, and
then pooled by a kernel size of 2 × 2 with a stride of 2, ob-
taining the 8 × 8 resolution for visual input. The numbers
of training epochs for VQA 2.0 and CLEVR are set to 13
and 16, respectively, and warming-up strategy is adopted in
the first three epochs. The learning rates is initialized by 1e-
4, which are decayed by 0.2 on the 10-th, 13-th and 15-th
epochs. The batch size is set to 64. In REC task, following
(Yang et al. 2022), we use DarkNet-152 or ResNet-50 as
our visual feature extraction backbone followed by 6-layer
transformer encoder for visual information encoding, and
the textual embedding extraction branch is initialized with
basic BERT model (Devlin et al. 2019). On three datasets,
our model is trained for 90 epochs with a initial 1e-4 learn-
ing rate dropped by a factor of 10 after 60 epochs, except
RefCOCOg with training for 60 epochs and dropping after
40 epochs, and we set the batch size to 16.

Evaluation Metric. For VQA task, we adopted the stan-
dard accuracy metric for evaluation following (Antol et al.
2015). Given an image and a corresponding question, for a
predicted answer a, the accuracy is computed as follows,

Acca = min(1,
#humans that provide a

3
). (13)

For REC task, we follow the same Acc@0.5 evaluation pro-
tocol in prior work (Yang et al. 2022). Given a language ex-
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Models Program? CLEVR val (Acc%)
Overall Count Exist Comp Num Query Attr Comp Attr

Human (Hu et al. 2017) None 92.60 86.70 96.60 86.40 95.00 96.00
Supervised:
DDRProg (Zhuang et al. 2018) Used 98.30 96.50 98.80 98.40 99.10 99.00
NS-VQA (Yi et al. 2018) Used 99.80 99.70 99.90 99.90 99.80 99.80
NS-CL (Mao et al. 2019) Used 98.90 98.20 99.00 98.80 99.30 99.10
OCCAM (Wang et al. 2021) Used 99.40 98.10 99.80 99.00 99.90 99.90
Unsupervised:
FILM(Zhang, Niu, and Chang 2018) Non-used 97.60 94.50 99.20 93.80 99.20 99.00
MAC (Zhuang et al. 2018) Non-used 98.90 97.20 99.50 99.40 99.30 99.50
TBD (Zhuang et al. 2018) Non-used 98.70 96.80 98.90 99.10 99.40 99.60
XNM-Net (Shi, Zhang, and Li 2019) Non-used 97.80 96.00 98.10 98.60 98.70 97.80
Ours:
MCAN∗ (Yu et al. 2019) Non-used 98.32 95.24 98.06 98.53 98.85 98.42
+Ours Non-used 98.75 96.38 99.51 99.28 99.65 99.13
TRAR∗ (Zhou et al. 2021) Non-used 98.83 96.73 99.50 99.18 99.65 99.24
+Ours Non-used 99.15 97.73 99.65 99.33 99.61 99.35

Table 2: Comparison with the state-of-the-arts on CLEVR val. The program option “Non-used” means totally without program
annotations, and “Used” means using ground-truth programs. “*” denotes our re-implementation results.

Models VQA 2.0 val
All Others Yes/No Num.

MCAN 67.27 58.70 84.88 49.04
+DSI 67.58 59.21 85.25 49.95
+DPV 67.69 59.13 85.15 49.82
+DSI+DPV 68.01 59.30 85.47 50.71
TRAR 67.62 58.87 85.32 49.81
+DSI 67.89 59.38 85.34 50.28
+DPV 67.97 59.08 85.42 50.19
+DSI+DPV 68.16 59.54 85.56 50.42

Table 3: Ablative results on VQA 2.0 val.

pression query, the predicted region is considered as correct
if its covered region has at least 0.5 overlap with the ground-
truth bounding box.

Overall Performance Comparison
We compare the performance of our method against state-
of-the-art baselines on five popular benchmarks. (1) Results
on VQA 2.0: The quantitative results are illustrated in Ta-
ble 1. It can be seen that our model not only achieves the
significant improvement based on several modern architec-
tures, but also outperforms a bunch of SOTA by a notice-
able margin. Specifically, we integrate our social-like prior
into TRAR, obtaining the new SOTA performance on this
highly competitive benchmark. Our best single model de-
livers 72.5% overall accuracy on the test-dev set. In addi-
tion, with a deeper look at the others type (involves more
“what ...” or “why ...” types) that deeply requires for rea-
soning ability, we observe that our method yields a clear-cut
improvement over MCAN and TRAR by 0.6% and 0.67%
on VQA 2.0 val, respectively, and 0.7% and 0.5% on VQA
2.0 test-dev, respectively. This adequately shows the power
of our social-like mechanism on reasoning ability. (2) Re-

Original Image Discriminative Pillar Verification

Q: What is behind the foot of the bed?    GT: Chair   Pred: Chair   

T: a tall brown and tan giraffe eating from a tree    
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Figure 5: Case studies of the learned pillar score from the
1-th and 5-th layer on VQA 2.0 and RefCOCOg. The index
within [0−M ] (M = 8, 20) represents the scale of images.

sults on CLEVR 1.0: As can be observed in Table 2, we
also report the results on CLEVR. This dataset mainly fo-
cuses on the diagnosis about visual reasoning ability, and
the questions are usually longer and more complicated com-
pared to VQA 2.0. On CLEVR, the performance gain shows
obvious at Count and Exist based on MCAN, this proba-
bly due to that answering this type of questions requires
more sensitivity to spatial information in image. Our DSI
excells in the structural modeling and dynamism of interac-
tion, which better verifies this phenomenon. (3) Results on
RefCOCOg, RefCOCO, and RefCOCO+: To further verify
the gain on the grounding task, we also report our perfor-
mance in Table 4. With our social-like modeling, our method
consistently achieves the new SOTA performance among al-
most all the subsets and splits. Remarkably, when perform-
ing grounding on longer expressions (on the RefCOCOg
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Models Backbone RefCOCO RefCOCO+ RefCOCOg
val testA testB val testA testB val-g val-u test-u

Two-stage:
MAttNet (Yu et al. 2018b) ResNet-101 76.65 81.14 69.99 65.33 71.62 56.02 - 66.58 67.27
LGRANs (Wang et al. 2019b) VGG16 - 76.60 66.40 - 64.00 53.40 61.78 - -
DGA (Yang, Li, and Yu 2019b) VGG16 - 78.42 65.53 - 69.07 51.99 - - 63.28
RvG-Tree (Hong et al. 2019) ResNet-101 75.06 78.61 69.85 63.51 67.45 56.66 - 66.95 66.51
NMTree (Liu et al. 2019a) ResNet-101 76.41 81.21 70.09 66.46 72.02 57.52 64.62 65.87 66.44
Ref-NMS (Chen et al. 2021) ResNet-101 80.70 84.00 76.04 68.25 73.68 59.42 - 70.55 70.62
One-stage:
SSG (Chen et al. 2018) DarkNet-53 - 76.51 67.50 - 62.14 49.27 47.47 58.80 -
FAOA (Yang et al. 2019) DarkNet-53 72.54 74.35 68.50 56.81 60.23 49.60 56.12 61.33 60.36
RCCF (Liao et al. 2020) DLA-34 - 81.06 71.85 - 70.35 56.32 - - 65.73
ReSC-Large (Yang et al. 2020) DarkNet-53 77.63 80.45 72.30 63.59 68.36 56.81 63.12 67.30 67.20
LBYL-Net (Huang et al. 2021) DarkNet-53 79.67 82.91 74.15 68.64 73.38 59.49 62.70 - -
Ours:
TransVG∗ (Zhou et al. 2021) ResNet-50 79.89 83.64 74.53 62.28 63.56 53.12 63.89 64.51 65.67
+Ours ResNet-50 80.78 84.66 75.09 63.34 65.71 55.01 64.76 65.69 65.43
VLTVG∗ (Yang et al. 2022) ResNet-50 82.45 84.98 76.45 71.08 75.71 60.45 69.20 71.08 70.64
+Ours ResNet-50 83.09 84.87 76.98 71.52 76.46 61.46 70.73 72.24 70.79

Table 4: Comparison of our method with other state-of-the-art methods on RefCOCO, RefCOCO+, and RefCOCOg. “*” de-
notes our re-implementation results. Due to that transformer implementation of TransVG and VLTVG adopts toolkit (i.e.,
nn.MultiheadAttention), which ceases to provide the open interface for our design, and we can only resort to the bootstrapped
implementation in MCAN. This may cause ∼2% drop compared with the official results.

dataset), we achieve 70.73% and 72.24% on the val set and
val-u, respectively, obtaining 1.53% absolute improvement
over the previous SOTA VLVTG. In a deep analysis, longer
expression with complicated semantic like “a tall brown and
tan giraffe eating from a tree” tends to localize more details,
such as “tan giraffe”, “eating”, “tall brown”, and “tree” in the
image, which may be more brittle to the noise from redun-
dant regions when performing context learning. Benefiting
from social-like prior, our method could learn more delicate
visual context and discriminative region representation.

Analysis on Social-Like Prior
To take a closer look on our social-like prior, we devise
three variants: (1) +DSI refers to the method using only
DSI. (2) +DPV is the variant that solely equipped with DPV.
(3) +DSI+DPV represents the full model with collaborative
learning of two modules. In what follows, we shed light on
their behaviors from two perspectives: (1) Ablative Quanti-
tative Results: The ablative results are reported in Table 3,
which dissects the effectiveness of DSI and DPV. It is ev-
ident that the performance of all part-equipped variants ex-
hibits a noticeable improvement compared to the base model
across all types of questions. Furthermore, our full method
achieves superior gain on several basic versions, which can
be observed in Table 1, 2, and 4. These observations con-
vincingly verified the effectiveness of our social-like mod-
ules. (2) Interpretability: As depicted in Figure 3 (a), (b),
and (c), structural holes in DSI, serve as a link for commu-
nication with different semantic groups and also have more
sources of information, are naturally required to have more
diverse interactions. In Figure 2 (b), it makes information
interaction more structured, which is reflected in better con-

tinuity within semantic groups and mostly approximate the
semantic distribution of the original image. In (c), we notice
that the rank of interaction matrix with DSI is consistently
larger than that without DSI in each SA layer, nearly ap-
proaching full rank, which verifies its advantages of retard-
ing the rank collapse. To obtain deeper insights into of DPV,
we use the t-SNE (van der Maaten and Hinton 2008) algo-
rithm to project the pooling representation obtained from SA
into a two-dimensional Euclid space. Afterwards, we ran-
domly sample nearly 1K instances from the original distri-
bution, and cluster these 2D vectors into 8 answer groups
in 8 colors. As shown in Figure 4, we can see that after
DPV, the representation distribution is prone to be sphere-
gathered and relatively detached. These observations under-
line the role of DPV in enhancing representation discrimina-
tive learning. Beyond that, we showcase the behavior DPV
in Figure 5. Taking the first case as example, the question
asks for the objects located at foot of bed, while being undis-
turbed by information mess derived from desk or printer, we
observe that the learned pillar score distribution is basically
consistent with the location of answer clues, which shows
the rationality and effectiveness of DPV.

Conclusion
In this paper, we launch social-like transformer based on so-
cial network theory, which facilitates dynamic structured in-
teraction and enhance the discriminative representation by
pillar verification. To verify their gains, we incorporate them
into several transformer-based methods, and the extensive
experiments convincingly demonstrate the superiority of our
method based on the observation on quantitative results, in-
teraction pattern, and representation visualization.
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