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Abstract

The artificial neuron (N-N) model-based networks have ac-
complished extraordinary success for various vision tasks.
However, as a simplification of the mammal neuron model,
their structure is locked during training, resulting in overfit-
ting and over-parameters. The astrocyte, newly explored by
biologists, can adaptively modulate neuronal communication
by inserting itself between neurons. The communication, be-
tween the astrocyte and neuron, is bidirectional and shows the
potential to alleviate issues raised by unidirectional commu-
nication in the N-N model. In this paper, we first elaborate on
the artificial Multi-Astrocyte-Neuron (MA-N) model, which
enriches the functionality of the artificial neuron model. Our
MA-N model is formulated at both astrocyte- and neuron-
level that mimics the bidirectional communication with tem-
poral and joint mechanisms. Then, we construct the MA-
Net network with the MA-N model, whose neural connec-
tions can be continuously and adaptively modulated during
training. Experiments show that our MA-Net advances new
state-of-the-art on multiple tasks while significantly reducing
its parameters by connection optimization.

Introduction
Networks constructed with the artificial neuron (N-N) model
have achieved notable successes (Han et al. 2022; Cheng
et al. 2022; Yang, Pan, and Liu 2023). However, their net-
work structures are fixed once the training starts, i.e., struc-
tures cannot be adjusted during training. This brings up two
problems: 1) over-fitting (Li et al. 2021; Cao et al. 2022); and
2) over-parameterization (Frankle and Carbin 2019), as the
complexity of a network can not apply to all data. Though
existences attempt to solve the mentioned issues by con-
straining and searching neural connections, such still lead
to unstable performance and resource consumption (Li et al.
2020; Yang, Liu, and Xu 2023).

The key culprit for the weakness of the N-N model is
the simplified unidirectional communication between neu-
rons (McCulloch and Pitts 1943; Rosenblatt 1958; Hai et al.
2023). In previous understanding, pre-neurons release neu-
rotransmitters to stimulate a post-neuron, which is unidi-
rectional propagation. Neurotransmitters are formulated as
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Figure 1: The illustration of our bidirectional communica-
tion between neurons and astrocytes. Previous N-N model
only let pre-neurons {Ni}Fi=1 release neurotransmitters to
connect to the post-neuron N, where F is the number of pre-
neurons. In our model, M astrocytes {Aj}Mj=1 are involved
to jointly modulate the neurotransmitters by releasing glio-
transmitters. For example, astrocyte A1 is stimulated by
neurotransmitters released by pre-neurons {Ni}F1

i=1 and pro-
duce gliotransmitters. The gliotransmitters force these pre-
neurons to re-release neurotransmitters (Perea and Araque
2010), achieving the modulation of connections. Moreover,
we formulate the modulation iteratively both between ‘as-
trocyte to pre-neurons’ and ‘astrocyte to astrocyte’ (pur-
ple box). Our iteratively optimized Multi-Astrocyte-Neuron
(MA-N) model, therefore, mimics the functionality of a rel-
atively real neuron model.

connections (weights) in a network. Indicating by the new
explorations, astrocytes assist the connections between the
pre- and post-neuron with bidirectional communication. The
bidirectional allows the neurotransmitters, i.e., network con-
nections, to be modulated during training adaptively and it-
eratively (see Fig. 1)

Existing work starts from modeling a single astrocyte to
optimize the network connection, e.g., a neuronal-astrocytic
group (Hastings et al. 2023) and AstroNet (Han, Pan, and
Liu 2023). Considering the neuron activity varies from each
other (Frankle and Carbin 2018), it is difficult to fully mine
structural features for all neurons through only one astro-
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cyte. Moreover, their modeled single astrocyte maintains
only one state during the iterations, weakening the ability
of temporal modulation of the bidirectional communication.

In this paper, we first revisit the bidirectional connection
between astrocytes and neurons. Then, pioneering formu-
lates the artificial Multi-Astrocyte-Neuron (MA-N) model
at both astrocyte- and neuron-level.

Astrocyte-level: Considering astrocytes are inherently
abundant in the nervous system (Perea and Araque 2010),
we need to model multi-astrocyte in the MA-N model. Un-
like the existing single astrocyte model, we model the multi-
ple sub-astrocytes by two modulation mechanisms. First, our
sub-astrocyte varies in iterations to enable its temporal abil-
ity. For example, a sub-astrocyte at iteration t is the modula-
tion results of its neighbor sub-astrocytes at iteration t−1, as
a sub-astrocyte can be updated by historically released glio-
transmitters (Fossati, Matteoli, and Menna 2020). Second,
we also optimize the interaction between sub-astrocytes at
the current iteration jointly, as each sub-astrocyte is not only
stimulated by neurotransmitters from its associated partial
pre-neurons but also implicitly affected with the rest of the
pre-neurons by the interaction between sub-astrocytes. We,
therefore, build a temporal and joint modulation mechanism
to mimic the interaction among each sub-astrocyte.

Neuron-level: The neuron connections, i.e., neurotrans-
mitters, also collaborate to influence each sub-astrocyte
(Fields and Stevens-Graham 2002). On the one hand, each
sub-astrocyte is affected by its associated pre-neurons’ re-
leased neurotransmitter sequences, which reflect the mod-
ulation history of the pre-neurons. On the other hand, the
association of pre-neurons and sub-astrocyte is implicitly af-
fected by the global connection of all neurons jointly. Hence,
we further enhance the temporal and joint modulation mech-
anism at the neuron-level in our MA-N model.

With the built MA-N model, we construct our MA-Net,
where its structure can be optimized during training. Our
main contributions are:
• We formulate the artificial Multi-Astrocyte-Neuron

(MA-N) model at both astrocyte- and neuron-level with
the temporal and joint modulation mechanism.

• We construct our MA-Net which adaptively optimizes
the dynamically changing neural connections during
training based on the MA-N model.

• We extensively evaluate out MA-Net on multiple tasks,
e.g., classification, segmentation, and object detection
with public datasets.

Compared to the state-of-the-art (SOTA) methods, our MA-
Net improves the accuracy by 0.23% ∼ 2.91% on clas-
sification (CIFAR10 and ImageNet-1k). AP improved by
0.7% ∼ 2.0% on segmentation (COCO) and 0.5% ∼ 1.5%
on object detection (COCO). The optimized connections
with parameters are reduced by 10.72% ∼ 71.25%.

Related Work
N-N model-based network fixes the architecture during
training. Extensive efforts have been made for network com-
pression and inference, including but not limited to, pa-
rameter pruning, knowledge distillation (KD), and dynamic

neural network (DyNN). Parameter pruning contains non-
structural pruning disabling the weak connections (Frankle
and Carbin 2019) and structural pruning aiming at zeroing
out groups of the convolutional filters (Wen et al. 2016),
which has a tedious fine-tuning process and lead to an accu-
racy drop when pursuing high a compression rate (Li, Wang,
and Ruiz 2020). KD shows that the student model learns lit-
tle from some teacher models due to the model capacity gap
between them (Zhao et al. 2022). Existing DyNNs are de-
signed in different aspects including sample-wise by adjust-
ing network architectures based on each sample (Mullapudi
et al. 2018), spatial-wise by performing adaptive inference
with respect to different spatial locations of images (Wang
et al. 2019), and temporal-wise dynamism by dynamically
allocating less computation to the inputs at unimportant tem-
poral locations (Hansen et al. 2019). Note that DyNN is a
data or image (pixel, region, or resolution level)-dependent
method whose structure and parameters vary by each sample
or different spatial locations of images/features (Han et al.
2021). In contrast, we optimize the structure and parameters
of a network by its own connections to fit each dataset.
Neural architecture search methods (NAS) contain net-
work parameters optimization and architecture optimization.
Note NAS can be viewed as an ’adaptive’ method searching
connections from the artificial neuron model-based search
space (Xu et al. 2021). The network parameters optimiza-
tion includes independent optimization (Real et al. 2019)
and sharing optimization (Bender et al. 2018). The archi-
tecture optimization is to search the network architectures,
including: 1) search space defines which architectures can
be defined, including global (Zhong et al. 2020) and cell-
based (Brock et al. 2017) search spaces; 2) search strat-
egy includes: RL-based methods (Zoph et al. 2018) use the
performances of generated architectures as the rewards for
training the controller. EA-based methods (Real et al. 2019)
search architectures with evolutionary algorithms. Gradient-
based methods (Dong and Yang 2019) regard network ar-
chitecture as a group of learnable parameters; 3) estimation
strategy scores the searched architectures (Xu et al. 2021).
Neural communication is based on the Tripartite Synapse
concept (Perea, Navarrete, and Araque 2009) between
neurons and astrocytes. Astrocytes establish bidirectional
communication with neurons, whereby they respond to
synaptically-released neurotransmitters, in turn, release
gliotransmitters that influence the activity of neuronal
synapses (Bonvento and Bolaños 2021). This shows that
changes in synaptic activity combine external disturbances
and their own state. In our previous work, we focused on
modeling a single astrocyte (Han, Pan, and Liu 2023).

In contrast, this paper aims to formulate an MA-N model
to better mimic the bidirectional communication between
multi-astrocyte and multi-neuron, temporally and jointly.

Proposed Method
In this section, we first introduce the MA-N model. Then,
we elaborate on our MA-Net and its training scheme.
Preliminary. The traditional N-N model (McCulloch and
Pitts 1943) formulates the unidirectional connection be-
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Figure 2: The overall pipeline of our MA-N model. (a) The pipeline of our MA-N model at the astrocyte- and neuron-level
with temporal and joint modulation mechanism. (b) At astrocyte-level, a sub-astrocyte At

j at iteration t is modulated by history
output of {At−1

j }Mj=1 (At−1
{M} for short) and the interaction among all At

{M} simultaneously. The green box zoom in as an
example of a sub-astrocyte that varies temporally. (c) At the neuron-level, a sub-astrocyte At

j is also stimulated by pre-neurons
Nt

{Fj} and Nt−1
{Fj} at iteration t and t− 1, separately.

tween pre-neurons and post-neuron is formulated as:

y = ϕn

( F∑
i

xiwi

)
= ϕn

(
XTW

)
, (1)

where y denotes the output signal of the post-neuron,
and ϕn() is the activation function of the neuron. Let
X = [x1, · · · , xi · · · , xF ]

T be the data and W =
[w1, · · · , wi · · · , wF ]

T. Here, wi is the connecting weight
from the ith pre-neuron to the post-neuron, and F is the
number of pre-neurons.

With the concept of the astrocyte, the neurotransmitters
(weights) from pre-neurons are first passed to the astrocyte
for modulation. The simplified artificial Astrocyte-Neuron
model with only one astrocyte can be formulated as,

XTW =

F∑
i=1

xi

(
ϕa

(
f
(
wt

i

)))
= XT

(
ϕa

(
f
(
W t

)))
,

(2)
where f() and ϕa() denote the modulation and activa-
tion function of the astrocyte separately. Here. W t =
[wt

1, · · · , wt
i , · · · , wt

F ]
T and wt

i = f(wt−1) is the connect-
ing weight of ith pre-neuron at iteration time t ∈ [1, T ].
Previous work (Han, Pan, and Liu 2023) used one state f()
during all iterations for all pre-neurons.

Different from the simplified version of the artificial
Astrocyte-Neuron model in Eq. (2), we build our MA-N
model among both astrocyte- and neuron-level (see Fig. 2a).

Artificial Multi-Astrocyte-Neuron Model
Given M numbers of astrocytes, each one corresponds to a
sub-set of F numbers of pre-neurons. For example, the jth

astrocyte Aj establishes the connections with Fj numbers
of pre-neurons. Formally,

XTW = XT

(
ϕa

(
fj
(
ej ⊙W t

)))M

j=1

, (3)

where ⊙ is the element-wise product, fj() denotes the mod-
ulation function of the jth astrocyte, and ej ∈ IRF×1 is a bi-
nary vector with value one in the established connection be-
tween pre-neurons and astrocytes. Note that

∑M
j=1 ej = 1,

|ej | = Fj . Here, ej is the mask for selecting pre-neurons’
connecting weights from W t that participate in bidirectional
connections with the jth astrocyte.We further formulate the
MA-N model at both the astrocyte- and neuron-level.

Astrocyte-level: The interaction between sub-astrocytes
involves two aspects, i.e., temporally and jointly. First, a
sub-astrocyte At

j at tth iteration is stimulated by historically
gliotransmitters released from At−1

{M} at (t− 1)th iterations,
and then resulting the modulation of At

j . Therefore, it en-
ables us to improve the previous modulation function fj() to
f t
j () with temporal ability. Second, sub-astrocytes are con-

nected with each other, i.e., a sub-astrocyte is stimulated
by transmitters released from neighboring sub-astrocytes.
Specifically, a sub-astrocyte At

j is optimized among iterac-
tions of all M numbers of astrocytes At

{M−1} (see Fig. 2b).
Therefore, we build a joint function U() between astrocytes.
Based on Eq. (3), we have

XTW = XTU
(
ϕa

(
f t
j

(
ej ⊙W t

)))M

j=1

, (4)

where f t
j () denotes the temporal modulation function of the

jth astrocyte at the iteration time t.
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Neuron-level: As each sub-astrocyte modulates a sub-set
of pre-neurons, the performance of the sub-astrocyte is in-
fected with neurotransmitters released by associated pre-
neurons, e.g., At

j with Nt
{Fj} (see Fig. 2c). To modulate the

connection of sub-set pre-neurons Nt
{Fj} jointly, we build

an adaptive function G(). Note, the activity of an astrocyte
combines external disturbances and their own state history
(Kofuji and Araque 2021). Hence, the G() not only implic-
itly connected with Nt

{Fj} but also implicitly considers the
connection with the rest F−Fj pre-neurons. In addition, his-
torical connections are included, i.e., W t−1 of Nt−1

{F}. With
the above concerns, we enable the astrocyte to encode both
local and global information of the connections with pre-
neurons by

XTW = XTU
(
ϕa

(
f t
j

(
ej ⊙ G(W t,W t−1)

)))M

j=1

, (5)

where the adaptive function G(W t,W t−1) is a fusion,
e.g., average, of g1(wt

{Fj}, w
t−1
{Fj}) and g2(W

t,W t−1) that
jointly enhance the temporal ability of each astrocyte. We
name the Eq. (5) as our MA-N model.

Framework of MA-Net
Network Architecture: Based on our MA-N model that
can modulate network connections adaptively, we build our
MA-Net. Given a set of input X, and rearranging Eq. (5) to
Eq. (1), yields

Y = N
(
X, A

(
W,Φ

))
. (6)

In our framework, the artificial neurons with function N ()
aim to perform various downstream tasks, i.e., N () is our
task network (TNet). Here, TNet is an N-N model-based
network with connecting weights W. The W is optimized
by our astrocytes with the function A(), i.e., the modula-
tion network (MNet). The connecting weights of astrocytes
Φ = {ϕG , ϕf , ϕU} are implied in G(), {f t

j ()}
M,T
j,t=1 and U().

The G() first compresses the TNet connections W be-
fore correlating. This is due to the fact that W can contain
large amounts of parameters, e.g., a 101-layer ResNet has
around 44.5 million parameters. We express the G() through
an adaptive global compression, i.e., g1() and g2() in G() are
realized by the attention module and ViT module, respec-
tively. The attention module (Hu, Shen, and Sun 2018) is ap-
plied to each astrocyte-input connection. First, the squeeze
operation is used to compress the local receptive field into
channel descriptor (feature) through global average pooling.
Then, using the fusion operation to fuse these descriptors
through two fully connected layers, i.e., a global compressed
feature with respect to the input of each astrocyte is ob-
tained. The ViT module (Dosovitskiy et al. 2021) acts on
a global compressed input between astrocytes. ViT, by treat-
ing the input features of each astrocyte as a patch, represents
their relationship in the whole N () by imposing location in-
formation. This enables G() to integrate the corresponding
local and global connectivity features. Note that our ViT can

be designed as a lightweight model since the weights have
been compressed by the attention module.

For f t
j () with each sub-astrocyte at an iteration, to en-

hance its temporal ability, we design it based on LSTM with
a recursive structure, e.g., f t

j () = [LSTMk]Kk=1. The input of
each LSTM layer in sub-astrocyte integrates the output of all
previous LSTM layers, i.e., f t

j (w
t, k) =

∑k−1
k=1 f

t
j (w

t, k), to
enhance astrocytes response to every optimization history.

For U() that controls the whole astrocyte set, we achieve
its functional ability with a chain optimization strategy. As
shown in Fig. 2b, in each iteration, we train from A1 to
AM until the optimization of the MNet is completed. There-
fore, the realization of U() involves the optimization of
{f t

j ()}
M,T
j,t=1. The chain optimization brings the temporal cor-

relation between connections by modulating connections to
have a temporal impact on other connections, thereby ex-
pressing the joint modulation between astrocytes.
Training Scheme: The optimization of our MA-Net is
in an alternate manner. Following (Fossati, Matteoli, and
Menna 2020), neurons preferentially develop in the neurons-
astrocytes system. Therefore, we first optimize TNet such
that the TNet weights include task-specific information. The
optimal parameter W is calculated by minimizing the fol-
lowing function:

W∗ = argmin
W

LTN(N (X,W),Ygt) , (7)

where LTN() is the task specific loss function and Ygt is the
ground-truth label.

Then, with the initialized W∗, we optimized the MNet
with a data term Ldata() and regularization term Lreg(). The
data term forces the MNet to modulate the TNet for high
performance and is defined as

Ldata(Φ) = LTN

(
N
(
X, A(W∗,Φ)

)
,Ygt

)
. (8)

The regularization term, inspired by (Zhang et al. 2022),
encourages astrocytes to learn similar representations for
different features by MNet, e.g., zj and zM+j , from the same
connecting weight of TNet, W.

Lreg(Φ) = −
M∑
j=1

log
exp(zj · zM+j)/τ∑2M

l=1 1[l ̸=j] exp(zj · zl)/τ
, (9)

where 1 ∈ {0, 1} is an indicator function evaluating to 1 if
l ̸= q and τ is a temperature. Taking Eq. (8) and (9), the final
learning objective of MNet is formulated as

Φ∗ = argmin
Φ

(
Ldata(Φ) + λLreg(Φ)

)
= argmin

Φ

(
LMN(Φ)

)
,

(10)

where λ is to balance the two items. Compared with As-
troNet (Han, Pan, and Liu 2023) with carefully tuned initial-
ization, our alternate optimization strategy (se Algorithm 1)
is more effective. After MA-Net training, we remove the
TNet connections whose probabilities are less than the prun-
ing threshold δ and obtain the final TNet weights.

With the obtained final TNet structure, we then perform
on multiple public datasets and achieve high accuracy.
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Algorithm 1: The MA-Net Optimization Algorithm
Input: TNet and MNet parameters: W and Φ, ground-truth

label: Ygt, max iterations: R, and number of rounds
to optimize the TNet without MNet: RTN.

Output: TNet output: N , MA-Net output: Y
for r = 0 to R:

if r ≤ RTN:
Optimize LTN(N ,Ygt) → Update W

else:
if r%2 == 0:

Optimize LMN(Y,Ygt) → Update Φ
else:

Optimize LTN(Y,Ygt) → Update W
end for

Experiments
Implementation Details. Our MA-Net is implemented in
PyTorch and trained via SGD optimizer with a learning rate
of 1e-1. We set the number of astrocytes as M = 4, each as-
trocyte contains K = 4 LSTMs inside, λ = 1e-1 in Eq. (10),
and pruning threshold δ = 1e-3. All report figures are the
average of five times repeated experiments. Our code will
be published on GitHub for reproducible research.
Image Classification. We validate our MA-Net on two
classification datasets, CIFAR10 (Krizhevsky, Hinton et al.
2009) and ImageNet-1k (Deng et al. 2009), with commonly
used convolutional neural networks as the TNet includ-
ing ResNet (RNT) (He et al. 2016), Wide ResNet (WRN)
(Zagoruyko and Komodakis 2016), DenseNet-BC (DNT-
BC) (Huang et al. 2017), and vision transformers including
ViT (Dosovitskiy et al. 2021) and Swin (Liu et al. 2021).
We further compare our MA-Net with SOTA NAS methods
(Wang et al. 2021; Xiao et al. 2022), DyNN (Yu et al. 2023)
method, and N-N model-based CDS (Zhang et al. 2022) with
contrastive learning to verify our adaptive ability.
Segmentation. For segmentation, our method is evaluated
on COCO (Lin et al. 2014). The comparison with the box-
supervised and fully-supervised methods by updating their
backbones that are trained under our proposed framework.
Object Detection. For object detection, our method is also
evaluated on COCO with RCNN (Ren et al. 2015) and
DETR (Dai et al. 2021).

Experimental Results
Image Classification. The experimental results of our MA-
Net on CIFAR10 and ImageNet-1k are shown in Tab. 1
and Tab. 2. For CIFAR10, our MA-Net achieves SOTA ac-
curacy on RNT18, RNT50, and WRN50 and outperforms
CDS (Zhang et al. 2022) and AstroNet (Han, Pan, and Liu
2023) by 0.35% and 0.33% in accuracy on average. No-
tably, our method reduces the capacity of RNT18, RNT50
and WRN50 by 37.87%, 71.25% and 43.56%, respectively.
For ImageNet-1k, on average, our MA-Net outperforms the
CDS and AstroNet by 0.57% and 0.55% in accuracy, respec-
tively. Our method reduces the average capacity of the model
by 58.51%. By optimizing the connections in the same TNet,
MA-Net can find a larger network structure for complex

Architecture Acc (%) Params (M)
RNT18 94.96 11.17
CDS 96.49 11.17
AstroNet 96.52 7.31
Ours (RNT18) 96.81 6.94
RNT50 95.07 25.60
CDS 96.78 25.60
AstroNet 96.76 7.64
Ours (RNT50) 97.10 7.36
WRN50 95.01 68.90
CDS 96.88 68.90
AstroNet 96.90 42.55
Ours (WRN50) 97.25 38.89

Table 1: Experiments on classification with different meth-
ods on CIFAR10. With the same settings, compare networks
constructed by our MA-N model and other models. Our
(RNT) and Our (WRN) denote that the TNet in MA-Net is
set to RNT or WRN. We highlight the best and the second-
best numbers in bold and underlined.

Architecture Acc (%) Params (M)
RNT18 69.21 11.68
CDS 72.85 11.68
AstroNet 72.82 8.05
Ours (RNT18) 73.27 7.52
RNT50 75.30 26.11
CDS 78.25 26.11
AstroNet 78.31 8.70
Ours (RNT50) 78.96 8.16

Table 2: Experiments on classification with different meth-
ods on ImageNet-1k. With the same settings, compare net-
works constructed by our MA-N model and other models.

datasets, indicating that MA-Net can adaptively search more
connections to represent complex features.
Segmentation. We compare with the box-supervised
method BoxInst and the fully-supervised method CondInst
on COCO. Note, the backbone, i.e., RNT50, of the standard
segmentation method is pre-trained on ImageNet-1k. Keep-
ing the same as other settings in BoxInst (Tian et al. 2021)
and CondInst (Tian, Shen, and Chen 2020), we only replace
RNT50 with RNT50-CDS, RNT50-Ast and RNT50†, which
are pre-trained by CDS, AstroNet and our method, respec-
tively. Tab. 3 reports the comparison of our method with
baselines on COCO dataset.

It is observed that the backbone (RNT50†) pre-trained
with our method, compared to the second-best, achieves AP
improvements of 2.0% and 0.7%, respectively. Furthermore,
our RNT50† can reduce the parameters of the segmenta-
tion model by 17.95M (see Tab. 2 details). Fig. 3 shows
our qualitative segmentation comparison against previous
backbones, confirming our benefit. We predict a sharper and
completed boundary compared to the AstroNet method, es-
pecially on the oxtails and skateboard.
Object Detection. Tab. 4 shows our object detection perfor-
mance on COCO. We use the same RNT50-based backbone
as those in the segmentation task and then fine-tune them
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Model backbone AP APS APM

BoxInst RNT50 32.1 15.6 34.3
CDS RNT50-CDS 32.5 15.9 34.6
AstroNet RNT50-Ast 32.7 15.7 34.1
Ours RNT50† 34.7 16.4 34.8
CondIns RNT50 39.1 21.5 41.7
CDS RNT50-CDS 39.8 21.6 42.2
AstroNet RNT50-Ast 40.0 21.8 41.8
Ours RNT50† 40.7 22.7 42.8

Table 3: Experiments on segmentation with different back-
bones on COCO. RNT50, RNT50-CDS, RNT50-Ast and
RNT50† are pre-trained on ImageNet-1k by standard train-
ing, CDS, AstroNet and Ours.

(a) Input (b) AstroNet (c) Ours

Figure 3: We display the segmentation results on images (a)
using different backbones, which are obtained by the As-
troNet method (b) and our method (c). Our segmentation
boundary is accurate, e.g., areas in the red rectangular.

with the same settings for the object detection task. It is ob-
served that by using the backbone (RNT50†) pre-trained in
our method, we achieve 1.5% and 0.5% AP improvements
compared to the second-best, i.e., AstroNet (RNT50-Ast) in
RCNN (Ren et al. 2015) and CDS (Dai et al. 2021) in DETR,
respectively.

Discusssions
In this section, we verify the performance of our MA-Net by
setting TNet to the vision transformer architecture. Then, we
compare the adaptive modulation of neural connections with
SOTA dynamic networks. Finally, we compare our transfer-
ability with the N-N model-based NAS methods.
With vision transformer. We apply our method to the vi-
sion transformer, on ImageNet-1k, to evaluate the effective-
ness of our method. The results are shown in Tab. 5. Com-
pared with ViT (Dosovitskiy et al. 2021) and Swin (Liu et al.
2021), by following their settings for training, our method
achieves a relative improvement in accuracy by 1.57% and
1.16%, respectively. It also reduces the capacity of ViT and
Swin by 19.33% and 10.72%. For the popular vision trans-
former, our method shows the potential of our MA-Net to
alleviate the high parameter problem of transformers.
Comparison with DyNN method. We evaluate the perfor-
mance of our connection-based adaptive modulation method
with the sample (feature)-based adaptive inference DyNN
method (Yu et al. 2023). Compared with SOTA Boost-

Model backbone AP APS APM

RCNN RNT50 37.4 21.2 41.0
CDS RNT50-CDS 38.3 21.6 42.0
AstroNet RNT50-Ast 38.0 21.3 42.2
Ours RNT50† 39.8 21.9 42.5
DETR RNT50 42.9 24.6 44.9
CDS RNT50-CDS 43.2 25.1 45.4
AstroNet RNT50-Ast 43.5 25.0 45.5
Ours RNT50† 44.0 25.8 45.8

Table 4: Experiments on object detection with different
backbones on COCO. RNT50, RNT50-CDS, RNT50-Ast
and RNT50† are pre-trained on ImageNet-1k by standard
training, CDS, AstroNet and Ours.

Architecture Acc (%) Params (M)
ViT 77.90 86.20
Ours (ViT) 79.47 69.54
Swin 84.50 84.70
Ours (Swin) 85.66 75.62

Table 5: Results of our method on the visual transformer
on ImageNet-1k. Our (ViT) or Our (Swin) denotes that the
TNet in MA-Net is set to ViT or Swin, respectively.

Architecture Acc (%) Params (M)
RNT50 75.30 25.60
Boost-DyNN 76.05 11.38
Ours (RNT50) 78.96 8.16

Table 6: Compared our method with the SOTA DyNN
method on ImageNet-1k. Take RNT50 whose performance
is close to that of the DyNN method as a reference.

DyNN (76.05%), our MA-Net (78.96%) still achieves com-
petitive performance with more network parameters re-
duced.
Comparison with NAS methods. Tab. 7 reports the per-
formance results of our MA-Net and SOTA NAS methods
on CIFAR10. Compared with NAS-LID (He et al. 2023)
and HOTNAS Yang, Liu, and Xu (2023), our method im-
proves the accuracy by 0.25% and 0.23% with fewer com-
putational resources and time costs. The comparison results
on ImageNet-1k are demonstrated in Tab. 8. We trained the
best-found architectures (both our MA-Net and NAS) on
CIFAR10 to evaluate their transferability on ImageNet-1k.
Compared to the second-best method HOTNAS, our method
leads to an improvement in accuracy by 0.96%, which veri-
fies the transferability of our method.
Comparison with the plug-and-play module. we show
comparison results with the plug-and-play module on
ImageNet-1k, like non-local and channel attention. As
shown in Tab. 9, we achieve competitive accuracy compared
to these plug-and-play modules. In comparison to the non-
local attention method (Chen et al. 2023), our method yields
an accuracy improvement of 0.87%. Similarly, when com-
pared with the channel attention method (Jin et al. 2022),
we observe a more substantial enhancement of 1.23% in ac-
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Architecture Acc (%) Params
(M)

Time Cost
(GPU days)

DNT-BC 96.54 25.60 -
NAS-LID 97.52 6.90 2.30
HOTNAS 97.54 4.70 3.40
Ours (DNT-BC) 97.77 7.52 0.65

Table 7: Comparison with SOTA NAS methods. MA-
Net and NAS architectures are searched and evaluated on
CIFAR10. Time cost only denotes the search time by our
method and NAS methods.

Architecture Acc (%) Params
(M)

Time Cost
(GPU days)

RNT50 75.30 26.11 -
NAS-LID 77.10 6.90 2.30
HOTNAS 77.30 4.70 3.40
Ours (RNT50) 78.26 6.94 0.62

Table 8: Comparison with NAS methods for transferability.
MA-Net and NAS architectures are searched on CIFAR10
and then evaluated on ImageNet-1k.

Architecture Params (M) Acc (%)
ResNet50 26.11 75.30
ResNet50 + non-local 27.22 78.09
ResNet50 + channel 28.19 77.73
Ours (ResNet50) 8.16 78.96

Table 9: Comparison with different plug-and-play modules
on ImageNet-1k.

curacy. Notably, our method markedly reduces the number
of parameters.
Mores. For the varying parameters, 1) the capacity of our
MA-Net is related to the size of the chosen TNet. To this
end, we show the results with different numbers of parame-
ters (Tiny, Organ, and Large) based on DNT-BC in Tab. 10.
Our method still achieves competitive performance on the
tiny DNT-BC, and the capacity is significantly reduced; 2)
we focus on finding the optimal architecture. The pruning
threshold δ can be increased to further reduce parameters.

Ablation Studies
This section discusses the rationality of our method, where
the TNet in MA-Net is set to RNT18 in all experiments and
evaluated on CIFAR10.
The number of astrocytes in MNet. We investigate the
MA-Net performance with respect to the numbers of sub-
astrocyte in the MNet. Tab. 11 shows a positive correla-
tion between the number and performance of astrocytes,
i.e., increasing astrocyte numbers can achieve higher accu-
racy. Moreover, reducing astrocyte input, the associated sub-
neuron set, allows us to design sub-astrocyte capacity to be
smaller. Considering the time cost, we set the number of as-
trocytes to 4.
The architecture of U(). The temporal-based joint function
U() allows each sub-astrocyte to be modulated by the other
astrocytes and their historical output. We set up progressive
ablation experiments with three cases to verify the effective-

Pattern Architecture Acc
(%)

Params
(M)

Tiny-DNT-BC 64-128-128-256 97.55 7.25
Orgn-DNT-BC 64-128-256-512 97.77 7.52
Large-DNT-BC 64-256-256-512 97.86 7.94

Table 10: Comparison of different sizes of parameters of
TNet in MA-Net on CIFAR10. We set the TNet as DNT-BC
with different sizes. Taking ‘64-128-256-512’ as an exam-
ple, it denotes the output of the four dense blocks.

Astrocyte
Numbers AstroNet 2 4 6

Acc (%) 96.52 96.70 96.81 96.81
Paramrs (M) 2.88 2.52 5.04 7.56
Time Cost

(GPU days) 0.07 0.10 0.17 0.26

Table 11: Comparing the accuracy of MA-Net with respect
to different numbers of astrocytes on CIFAR10. AstroNet
sets a single astrocyte to UNet. The time cost of AstroNet is
the result of iteratively modulating the connections 6 times.
Our MA-Net, therefore, sets ‘sub-astrocyte with 6 LSTMs.

Manners Optimization for
Multi-Astrocyte Acc (%) Params

(M)
RNT18 - 94.96 11.17
Case 1 Independent 96.54 7.33
Case 2 Independent 96.57 7.29
Case 3 Chain 96.79 6.97
Ours (RNT18) Chain 96.81 6.94

Table 12: Experiments on classification with different
temporal-based joint functions U() on CIFAR10.

ness of our chain optimization strategy. Case 1: we use inde-
pendent optimization for multiple astrocytes in MNet, i.e.,
each astrocyte independently modulates the connections of
a sub-set pre-neurons. Case 2: we allow independent mod-
ulation of astrocytes to be based on their output at different
iterations. Case 3: we use chain optimization for multiple as-
trocytes to establish interactions between astrocytes. Ours:
we allow this interaction to be based on the output of astro-
cytes at different times. Tab. 12 shows the performance with
three cases. Note, all cases achieve better accuracy than the
RNT18 baseline, and our designed temporal-based chain op-
timization achieves the best performance.

Conclusions
In this paper, we propose the MA-N model by studying bidi-
rectional connections between multiple astrocytes and neu-
rons, from which we construct MA-Net. By analyzing the
bidirectional connection mechanism between astrocytes and
neurons, we formulate the connective enhancement mecha-
nism to improve its bidirectional ability, and the joint mod-
ulation mechanism between astrocytes, allowing our MA-
Net to modulate its connections adaptively. Experiments
on multiple tasks and datasets demonstrate that our MA-
Net achieves SOTA accuracy and significantly reduces the
network’s parameters with adaptive optimization.
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