
Interpretable3D: An Ad-Hoc Interpretable Classifier for 3D Point Clouds

Tuo Feng1, Ruijie Quan2*, Xiaohan Wang2, Wenguan Wang2, Yi Yang2

1ReLER, AAII, University of Technology Sydney
2ReLER, CCAI, Zhejiang University

feng.tuo@student.uts.edu.au, quanruij@hotmail.com, {wxh1996111, wenguanwang.ai}@gmail.com, yi.yang@uts.edu.au

Abstract

3D decision-critical tasks urgently require research on expla-
nations to ensure system reliability and transparency. Exten-
sive explanatory research has been conducted on 2D images,
but there is a lack in the 3D field. Furthermore, the existing
explanations for 3D models are post-hoc and can be mislead-
ing, as they separate explanations from the original model. To
address these issues, we propose an ad-hoc interpretable classi-
fier for 3D point clouds (i.e., Interpretable3D). As an intuitive
case-based classifier, Interpretable3D can provide reliable ad-
hoc explanations without any embarrassing nuances. It allows
users to understand how queries are embedded within past ob-
servations in prototype sets. Interpretable3D has two iterative
training steps: 1) updating one prototype with the mean of the
embeddings within the same sub-class in Prototype Estima-
tion, and 2) penalizing or rewarding the estimated prototypes
in Prototype Optimization. The mean of embeddings has a
clear statistical meaning, i.e., class sub-centers. Moreover, we
update prototypes with their most similar observations in the
last few epochs. Finally, Interpretable3D classifies new sam-
ples according to prototypes. We evaluate the performance of
Interpretable3D on four popular point cloud models: DGCNN,
PointNet2, PointMLP, and PointNeXt. Our Interpretable3D
demonstrates comparable or superior performance compared
to softmax-based black-box models in the tasks of 3D shape
classification and part segmentation. Our code is released at:
github.com/FengZicai/Interpretable3D.

Introduction
Over the past decade, significant progress has been made
in deep neural networks (DNNs). However, serious con-
cerns have been raised over DNNs’ safety and trustworthi-
ness (Rudin 2019; Rudin et al. 2022), when applied to 3D
real-world decision-critical scenarios, such as self-driving
cars (Meng et al. 2021; Yin et al. 2022a; Zheng et al. 2020)
and medical diagnosis systems. Interpretability has emerged
as a critical concern regarding the trustworthiness of predic-
tions generated by DNNs. However, understanding DNNs
proves to be particularly challenging due to their complex,
non-linear, and high-dimensional nature. They lack natural
explanations that humans can easily comprehend. Similarly,

*Corresponding author: Ruijie Quan.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(b)

(a)
Logits

…

…

Parametric softmax classifier
New

sample

Class weight Bias

……

√ √

New
samples

Prototypical
observations

Stool Airplane Bottle

√ Selecting the
most similar one.
√ Selecting the
most similar one.

([, , , …,],)

…

([, , , …,],)

([, , , …,],)

ϕ

W b

Eq. (1)

w1
1 w1

2 w1
3 w1

d b1

w2
1 w2

2 w2
3 w2

d b2

w
|Y|
1 w

|Y|
2 w

|Y|
3 w

|Y|
d b|Y|

z1

z2

z|Y|

Figure 1: (a) The softmax-based DNN models employ para-
metric classifiers. However, they lack a direct and intuitive
interpretation of the decision-making processes. (b) Inter-
pretable3D selects the most similar prototype (i.e., the one
with the maximum cosine similarity) for new samples.

the parametric softmax classifier learns highly abstract pa-
rameters and lacks a direct and intuitive interpretation (Wang
et al. 2022; Li et al. 2018; Angelov and Soares 2020). In-
correct data fed into black-box models may lead to harmful
consequences. As a result, the demand for interpretable 3D
models has become increasingly urgent.

Extensive research has been conducted on the interpretabil-
ity/explainability of 2D images (Wang et al. 2022; Zhang,
Rao, and Yang 2021; Akhtar and Jalwana 2023; Hu et al.
2023), but there is a lack of interpretable 3D point cloud
research. Not to mention the few existing explanation studies
on 3D models have been conducted with post-hoc expla-
nations and only play an auxiliary role in 3D systems. For
instance, saliency/attention maps (Chen et al. 2021; Schinagl
et al. 2022) have been applied to existing voxel-based 3D ob-
ject detection networks. However, the post-hoc saliency maps

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

1761

cannot explain the roles of highlighted parts in the decision-
making process (Rudin 2019). The various saliency methods
even produce conflicting saliency maps, making it difficult
for researchers to determine which one actually reflects at-
tention (Rudin et al. 2022). Moreover, post-hoc explanations
are derived from a separate modeling process with strong
priors. These priors, however, are not part of training (Li et al.
2018). The nuances (minor differences) between post-hoc
modeling process and DNNs are also unknown (Rudin 2019).
So post-hoc analysis may result in problematic and mislead-
ing explanations (Rudin et al. 2022; Arrieta et al. 2020). In
contrast, ad-hoc interpretability methods can provide reliable
explanations without any unknown nuances (Rudin 2019).

In this work, we design an inherently interpretable clas-
sifier for 3D point clouds (i.e., Interpretable3D). It is in-
herently an intuitive case- or instance-based classifier, as it
reveals what the representation means and how the embed-
ding queries typical past observations from the prototype sets.
As shown in Fig. 1, new observations are classified based on
their proximity to a prototype observation within the dataset.
Therefore, Interpretable3D can explain its own reasoning
process in a human-understandable way. The learned models
naturally come with explanations for each prediction, and the
explanations are loyal to what the network actually computes.
Our Interpretable3D provides a level of interpretability that
is absent in existing post-hoc 3D explanation models.

In each iteration, training sample embeddings are clus-
tered and averaged to estimate prototypes (i.e., Prototype
Estimation). Compared to the softmax classifier, the mean of
embeddings holds distinct statistical significance, represent-
ing class sub-centers. Furthermore, the estimated prototypes
are then either penalized or rewarded based on their perfor-
mance in the prediction (i.e., Prototype Optimization). By
taking the within-class clustering as a dual optimal transport
problem (Feng et al. 2023; Wang et al. 2022), Prototype Esti-
mation can proficiently uncover diverse intra-class variations
in an online mode. Moreover, it can automatically extract
discriminative prototypes to handle complex real-world dis-
parities. The following Prototype Optimization can enhance
the representativeness of the estimated prototypes by apply-
ing penalties or rewards. Furthermore, we enhance the inter-
pretability of prototypes by updating them with their most
similar observations in the final few epochs.

We evaluate Interpretable3D with four point cloud models:
DGCNN (Phan et al. 2018) (Graph-based), PointNet2 (Yan
2019), PointMLP (Ma et al. 2021), and PointNeXt (Qian
et al. 2022) (MLP-based). Our experiments are conducted on
three well-known public benchmarks (i.e., ModelNet40 (Wu
et al. 2015) and ScanObjectNN (Uy et al. 2019) for shape
classification and ShapeNetPart (Yi et al. 2016) for part seg-
mentation). Interpretable3D achieves comparable or even
better performance than softmax-based black-box models.
Additionally, our approach provides intrinsic interpretability
to the classification and part segmentation results. This is a
key advantage of our approach, as it allows for better trans-
parency and comprehensibility of the AI decision-making
process. This is our response to the current lack of ad-hoc
interpretable research within the field of 3D vision.

Related Work
In 3D vision, existing research of post-hoc analysis includes
activation maximization (Tan 2023) and saliency/attention
maps (Zheng et al. 2019; Ziwen et al. 2020; Chen et al. 2021;
Schinagl et al. 2022). However, post-hoc explanations are
problematic and misleading (Rudin et al. 2022; Laugel et al.
2019; Arrieta et al. 2020) for the following reasons: i) Post-
hoc analysis requires a separate modeling effort, which is
not completely faithful to the original model, with unknown
nuances (Rudin 2019). Such a nuance makes it hard to guar-
antee the correctness of their interpretations (Fan et al. 2021).
ii) Post-hoc explanations can vary depending on the chosen
explanation models (Li et al. 2018). This can lead to nu-
merous conflicting yet seemingly convincing explanations
for the same classification decision (Li et al. 2018), none of
which may actually be the correct reason for the classifica-
tion (Hong et al. 2023; Rudin et al. 2022). iii) Post-hoc expla-
nations cannot provide a reasoning process for the network’s
decision-making (Li et al. 2018; Chen et al. 2019; Zhu and
Yang 2020). For instance, saliency maps cannot explain how
the highlighted pixels are used (Rudin 2019). iv) Post-hoc
methods may produce explanations that are not interpretable
to humans, necessitating extra modeling to ensure under-
standability (Li et al. 2018; Wang et al. 2023a). In a sense,
post-hoc explainability methods are often regarded as an ex-
cuse to deploy black-box models (Rudin and Radin 2019;
Min et al. 2023), explaining and losing accuracy. Whereas an
ad-hoc interpretable model does not. Interpretability should
promote accuracy and not the other way around.

As far as we know, we are the first attempt to design an ad-
hoc interpretable classifier for point cloud parsing. Although
neural networks have complex structures and it is unclear
how the data are mapped into features, we can use inter-
pretable machinery to gain insights into the decision-making
mechanism (Rudin et al. 2022; Wang et al. 2023b). To pursue
ad-hoc interpretability, our Interpretable3D has integrated
interpretable machinery into black-box models. It intrinsi-
cally relies on intuitive case- or instance-based paradigms,
revealing the meaning of the representation and how that
information influences decision-making. During training, In-
terpretable3D defines prototypes as representative class cen-
ters (Zhou et al. 2022; Yin et al. 2022b; Liang et al. 2023)
within the same space as the observed data. This unique ap-
proach allows for more meaningful discussions with domain
experts, as prototypes can be easily interpreted, just like the
original observations. This contrasts starkly with the widely
used unexplainable parametric softmax classifier. More im-
portantly, Interpretable3D not only provides self-explanation
without post-hoc analysis but also achieves comparable per-
formance when compared to the softmax-based DNN models.

Proposed Algorithm
We develop an interpretable nearest neighbor based proto-
type classifier, the overview of which is illustrated in Fig. 2.
Suppose that the input is X = {xk :k = 1,2,. . . ,K}, i.e., a
set with K training samples

{
xk :xk∈RN×3

}
. Each sample

consists of N points. L= {lk∈Y :k = 1,2,. . . ,K} is a set
of object labels, where Y is the label set. The point-based

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

1762

methods φ ◦ ϕ:X 7→L take X as input.ϕ:X 7→F learns the
underlying representations F= {fk : k = 1, 2, . . . ,K}, and
then φ:F 7→L predicts the labels.

Preliminary: Softmax Classifier
Currently, the prevailing approach for φ is the parametric
softmax classifier, it can be formulated as:

l̂ = argmaxl∈Yz
l, (1)

where l̂ denotes class prediction; zl is an unnormalized l class
output of the last fully-connected (FC) layer, composing the
logits vector z = [zl]l ∈ R|Y|. A softmax function is then
applied to z. While training, the learnable parameters in φ
and ϕ are updated by minimizing the cross-entropy loss:

argmin
w∗,b∗,θ

K∑
k=1

− log
exp

((
wlk

)>
ϕθ(xk) + blk

)∑
l∈Y exp

((
wl
)>
ϕθ(xk) + bl

) , (2)

where the parameters θ are in ϕ, the weight matrix W =
[wl]l ∈Rd×|Y| and bias vector b=[bl]l ∈R|Y| are learnable
parameters. The softmax classifier φ has been trained purely
to optimize the accuracy. However, these learned highly ab-
stract parameters are disconnected from the physical charac-
teristics of the problem being modeled (Angelov and Soares
2020) and lack a direct or intuitive interpretation (Li et al.
2018; Wang et al. 2022). From a human perspective, they do
not provide any clues about what drives the classifier to reach
its decisions.

Interpretable3D
Previous point cloud methods either utilize a non-transparent
parametric softmax classifier or attempt to understand the net-
work in post-hoc paradigms. However, these paradigms can
be problematic and misleading. To offer a human-readable
explanation for point clouds, we propose Interpretable3D.
In contrast to the softmax classifier, Interpretable3D is built
upon the intuitive concept of selecting the most similar pro-
totype for new samples. Note that this contrast between para-
metric and non-parametric classifiers is important. It enables
researchers to comprehend that φ can be learned without
relying on non-transparent weight vectors.

Here we utilize S within-class prototypes for Y to repre-
sent past observations, i.e., |Y|×S prototypes M=[ml

s]l,s∈
Rd×|Y|×S in total. This is due to the presence of intra-class
differences; each class cannot be accurately represented by
just one prototype. In most cases, the number of prototypes
surpasses that of categories (Nova and Estévez 2014). There-
fore, the prediction l̂ is made by assigning the labels of the
most similar prototypes to the samples (Wang et al. 2022):

l̂ = l∗, (l∗, s∗) = argmaxl∈Y,s∈{1,··· ,S}
〈
f,ml

s

〉
, (3)

where 〈·, ·〉 is cosine similarity. Our model is fully online
and end-to-end trained. We use the most standard and simple
initialization strategy (Biehl, Hammer, and Villmann 2016):
randomly selecting S data samples per class as the initial
prototypes. During each training iteration, the prototypes are
first updated and then optimized. Firstly, training samples
within the same category are clustered and assigned sub-class

Prototype Estimation

………

Prototype Optimization

………

Training Samples

Test Samples

Eq. (6)

Eq. (8)

ϕ

ϕ

X

X

Figure 2: The overview of our Interpretable3D. At each train-
ing iteration, Interpretable3D first estimates the prototypes
and then optimize them. Sample features are represented by
points, and prototypes are represented by squares. In Proto-
type Estimation, sample features are regarded as an optimal
transport problem (i.e., Eq (6)). Intra-class clustering is then
conducted to estimate the mean of embeddings that are within
the same subclass. In Prototype Optimization, prototypes that
have a higher cosine similarity to the correct prediction re-
ceive a reward (), while those that are misclassified receive
a punishment ().

labels. The |Y|×S prototypes are updated with the mean of
embeddings from the same subclass in a momentum manner.
We then assign the labels of the most similar prototypes to
the samples (Eq. (3)), and l̂ is obtained. Next, Prototype Opti-
mization involves penalizing or rewarding ml

s according to l̂
and l (Eq. (7,8)). Moreover, in the final few epochs, the proto-
types are updated with the features of the most representative
training samples, rather than the mean of embeddings. As a
result, the prototypes are connected to typical examples and
can be seen as typical observations for classification. Finally,
all the prototypes are stored as classification evidence for
inference.

Interpretable3D predicts by evaluating the similarity be-
tween samples and prototypes, offering a clear depiction
of the decision-making process. This aligns with the proto-
type theory in psychological cognitive sciences (Rosch 1975;
Knowlton and Squire 1993). In prototype theory, an object
can be classified based on a single representative example or
a set of items that are typical for the category (Taylor 2003).

Prototype Estimation
We cluster intra-class representations in the latent space F
to mine typical prototypes. Suppose there are N l samples for
class l, underlying representation F l ∈ Rd×N l

are mapped
to prototypes M l ∈ Rd×S . We denote Al ∈ {0, 1}S×N l

as the assignment matrix of F l among S subclasses. The
(s, n)-th element of Al indicates whether to assign the n-th

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

1763

feature of F l to the s-th sub-cluster center. The optimization
of Al can be accomplished by taking the similarity between
the representations and cluster centers as a cost matrix, i.e.,
Ql = softmax(−M l>F l) . Thus, the label assignment task
can be viewed as an instance of the optimal transport prob-
lem (Asano, Rupprecht, and Vedaldi 2019; Wang et al. 2022):

Al∗ = argmin
Al≥0

〈Ql,Al〉F ,

s.t. Al1Nl = r,Al>1S = c,

(4)

where Al∗ is the optimal transportation plan between the
representations and cluster centers, which can be also viewed
as the transportation plan of the sample and prototype.
〈·〉F is the Frobenius dot-product. The vectors r and c are
marginal projections of Al. They define constraints for Al,
i.e., r = 1

S
1S , c = 1

Nl 1Nl . The former equipartition con-
straint guarantees that, on average, each prototype is selected
at least 1/S times. The latter unique assignment constraint
ensures that every point is exclusively assigned to one proto-
type. The entropic regularization (Cuturi 2013) of problem 4
is formulated as:

min
Al≥0

〈Ql,Al〉F − ζH(Al),

s.t. Al1Nl = r,Al>1S = c, ζ > 0,
(5)

where ζ is the regularization parameter, and H(Al) is the
entropic regularization. Problem 5 is constrained by affine
constraints, while the dual problem is unconstrained, making
it simpler to design algorithms and analyze complexity (Lin,
Ho, and Jordan 2019). With the Lagrangian function, the
dual form (Lin, Ho, and Jordan 2019) of problem 5 can be
simplified as follows:

min
u∈RS ,v∈RNl

{
1>SA

l∗1Nl − 〈u, r〉F − 〈v, c〉F
}
, (6)

where Al∗ = diag (eu) e−Ql/γ diag (ev) . u and v are two
vectors of scaling coefficients, resulting from a small number
of matrix multiplications. γ trades off convergence speed
with closeness to the original transport problem. This task
can be solved by Sinkhorn-Knopp algorithm (Knight 2008)
and APDAGD (Lin, Ho, and Jordan 2019). During training,
the latent representation space F undergoes changes. This
attribute means that the prototypes need be recalculated after
each batch using the entire dataset. However, this process can
be costly and time-consuming. To address this, we employ a
momentum update strategy (He et al. 2020). It updates each
prototype with the average of embeddings assigned to each
sub-cluster of the training samples. However, in the last few
epochs, we substitute the average of embeddings with the
features of the closest training sample.

Prototype Optimization
Among prototype-based classification methods, a particu-
larly attractive approach is Learning Vector Quantization
(LVQ) (Kohonen 1990, 2012; Nova and Estévez 2014). The
LVQ family employs the winner-takes-all (WTA) principle,
where prototypes compete for updates according to labels
and predictions (Bishop and Nasrabadi 2006; Ritter et al.

1992). One fundamental design within LVQ family is the
LVQ1 algorithm. This algorithm aims to rectify the decision
boundary by adjusting the prototypes. To avoid suboptimal
local minima or so-called “dead unit” in the WTA training
process (Biehl, Hammer, and Villmann 2016), we take the es-
timated prototypes M l in Prototype Estimation as the initial
set. Therefore, each class is also represented by S prototypes.
Similar to LVQ1, we crisply assign each representation in
F l = [f l ∈ Rd]l to the closest prototype Mw, the so-called
winner. Only the winning prototypes Mw are altered accord-
ing to the competitive learning update equation:

Mw ←Mw + η ψ
(
l, l̂w

)(
F l −Mw),

ψ(l, l̂w) =

{
+1 if l = l̂w
−1 else

,
(7)

where η is the update rate, it controls the magnitude of up-
dates; l̂w denotes class prediction of the winning prototypes.
This update strategy implements a rewarding mechanism for
the winner, which is based on its ability to correctly classify
the input, by migrating the winner towards F l. Conversely,
it applies a punishment to the winner when it fails to cor-
rectly label the input, i.e., moving the winner away from
F l. Upon repeated presentation of each training sample, the
winner is moved in the direction of the example feature if
they share the same label and in the opposite direction if they
don’t. An enhanced LVQ algorithm, known as LVQ2.1 (Ko-
honen 1990, 2012), is often favored because it is effective in
Bayesian decision theory. Starting with properly estimated
initial prototypes, we can update Mw as follows:{

Mw
p ←Mw

p − η
(
F l −Mw

p

)
,

Mw
q ←Mw

q + η
(
F l −Mw

q

)
,

if min
(〈F l,Mw

p 〉
〈F l,Mw

q 〉
,
〈F l,Mw

q 〉
〈F l,Mw

p 〉
)
>

1− µ
1 + µ

,

(8)

where 〈·, ·〉 is cosine similarity. Mw
p and Mw

q are the nearest
prototypes to F l; F l and Mw

p belong to the same class, while
Mw

q doesn’t. Moreover, µ refers to relative window width,
defined around the midplane of the two nearest prototypes.
Decision boundaries (i.e., the midplane) are directly shifted
toward the Bayes limits with attractive and repulsive forces
from F l. Finally, prototypes can represent their respective
class by assuming class-typical positions in F .

Algorithm Details
Training Objective. In Interpretable3D, we utilize |Y|×S
prototypes

[
ml
s

]
l,s
∈Rd×|Y|×S (i.e., mean feature vectors of

the training data) to involve in training objective:

argmin
θ

K∑
k=1

−log
exp

(
max

({〈
ϕθ(xk),m

lk
s

〉}S
s=1

))
∑
l∈Y

exp
(
max

({〈
ϕθ(xk),ml

s

〉}S
s=1

)) . (9)

Comparing Eq. (2) and Eq. (9),
[
ml
s

]
l,s

are derived solely
from data features, and the model can minimize training ob-
jective only by optimizing the vector ϕθ(xk) instead of the

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

1764

Method OA(%) mAcc(%)
PointNet (Qi et al. 2017a) 89.2 86.0

PointNet++ (Qi et al. 2017b) 90.7 -
PointNet2 (Yan 2019) 92.2 -

PointNet2 + Ours 93.2 89.3
DGCNN (Phan et al. 2018) 92.9 90.2

DGCNN + Ours 93.5 90.3
PointMLP (Ma et al. 2021) 94.1 91.3

PointMLP + Ours 94.1 92.0
PointNeXt (Qian et al. 2022) 94.0 91.1

PointNeXt + Ours 94.3 91.8

Table 1: Classification results on ModelNet40.

parametric softmax classifier. Moreover, with such a non-
parametric, distance-based scheme, Interpretable3D builds a
closer link to metric learning in the adaptive latent space.
Typical Past Observations. While updating with the average
of embeddings, the working mechanism remains intuitive —
classify data to the class of closest sub-center, and the proto-
types have a clear statistical meaning — class sub-centers. In
contrast, the class weights of softmax classifier are learnable
parameters that are difficult to understand. During the last 20
epochs, we find the typical past observation that has maxi-
mum similarity for each estimated prototype, and the pro-
totypes are updated with the typical samples’ features in-
stead of average embeddings. This implements the classic
prototype theory in cognition: human refer to past exem-
plar observations for classification decision-making (Rosch
1975; Knowlton and Squire 1993; Taylor 2003). Once trained,
these prototypes are stored (like the learnable weights of the
softmax classifier) as classification evidence. By showing
these prototypical training samples, human can understand
how our model actually works — it performs a direct com-
parison between test data and these prototypical samples for
classification. Thus our model is ad-hoc interpretable.
Online Clustering. Intra-class data samples are grouped into
S subclasses for exploiting latent structures of the entire
dataset. We empirically set S=15. The momentum coeffi-
cient and µ in Eq. (8) are set as 0.999 and 0.4, following (He
et al. 2020; Kohonen 1990, 2012).
Backbones φ ◦ ϕ. We evaluate our algorithm on point-
based and graph-based networks, including DGCNN (Phan
et al. 2018), PointNet++ (Qi et al. 2017b; Yan 2019),
PointMLP (Ma et al. 2021), PointNeXt (Qian et al. 2022). The
training and testing configurations follow the default settings
of the respective methods mentioned above. Our algorithm
implements an interpretable prototype-based learning scheme
for 3D shape classification and part segmentation. For the
part segmentation task, we deploy Deep Hough Voting (Qi
et al. 2019) to extract instance-level features. Therefore, Inter-
pretable3D can be applied to any object recognition and part
segmentation networks that can learn instance-wise features.

Experiment
In this section, we integrate point cloud networks with In-
terpretable3D to demonstrate its capabilities. We begin by

Method OA(%) mAcc(%)
PointNet (Qi et al. 2017a) 68.2 63.4

PointNet++ (Qi et al. 2017b) 77.9 75.4
DGCNN (Phan et al. 2018) 78.1 73.6

DGCNN + Ours 78.0 74.3
PointNet2 (Yan 2019) 79.1 77.6

PointNet2 + Ours 79.3 78.4
PointMLP (Ma et al. 2021) 85.4 83.9

PointMLP + Ours 85.6 84.5
PointNeXt (Qian et al. 2022) 87.7 85.8

PointNeXt + Ours 88.0 86.5

Table 2: Classification results on ScanObjectNN.

presenting the results of 3D shape classification on the Mod-
elNet40 dataset (Wu et al. 2015). Subsequently, we delve into
the performance evaluation on the ScanObjectNN dataset (Uy
et al. 2019). Moving forward, we evaluate our algorithm
on a part segmentation benchmark, i.e., the ShapeNetPart
dataset (Yi et al. 2016). Additionally, we utilize qualitative
results to examine the decision-making process, and then use
MMD2 and Maximum witness value to evaluate the proto-
types and data distribution. Finally, we provide the analysis
of the core components.
Datasets and Metrics. For shape classification, the model
takes 1,024 points as input, and for part segmentation, it takes
2,048 points as input. We report the class-average accuracy
(mAcc) and overall accuracy (OA) for shape classification,
along with the class mean intersection over union (mIoU)
and instance mIoU for part segmentation.

Shape Classification on ModelNet40
We compare the classification results of various classic works
in Table 1. The results achieved by Interpretable3D are just as
good as those of competitors in terms of OA and mAcc. More
specifically, PointNet2 + Ours achieves 1.0% higher OA
than PointNet2. PointNeXt + Ours and PointMLP + Ours
demonstrate comparable performance to their counterparts on
OA. These results are promising as the ModelNet40 dataset
is extensively studied and the results have been long-standing
at around 94%. Moreover, PointNet2 + Ours outperforms
the advanced variant of PointNet++ (Qi et al. 2017b) (91.9%
OA) that incorporates normal vectors and highly dense points
(5k). This verifies the effectiveness of PointNet2 + Ours.

Shape Classification on ScanObjectNN
Except for the OA metric of DGCNN + Ours, our approach,
as detailed in Table 2, outperforms point-based methods by
a margin of 0.2%-0.3% and 0.6%-0.8% in terms of OA and
mAcc, respectively. Moreover, with Interpretable3D, all the
methods narrow the gap between mAcc and OA, indicating a
more decent level of robustness than their counterparts. Actu-
ally, ScanObjectNN is highly challenging due to occlusions,
noise, etc. Through Prototype Estimation, Interpretable3D
can automatically uncover real-world variations and extract
distinctive prototypes. The consistent improvements of Point-
Net2 + Ours, PointMLP + Ours, and PointNeXt + Ours

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

1765

Method C. mIoU I. mIoU
PointNet (Qi et al. 2017a) 80.4 83.7

PointNet++ (Qi et al. 2017b) 81.9 85.1
DGCNN (Phan et al. 2018) 82.3 85.2

DGCNN + Ours 82.9 85.5
PointNet2 (Yan 2019) 82.5 85.4

PointNet2 + Ours 82.9 85.7
PointMLP (Ma et al. 2021) 84.6 86.1

PointMLP + Ours 84.9 86.2
PointNeXt (Qian et al. 2022) 85.2 87.0

PointNeXt + Ours 85.6 87.2

Table 3: Segmentation results on ShapeNetPart. C. mIoU
refers to Class mIoU, and I. mIoU indicates Instance mIoU.

Figure 3: The prototypes for ‘stool’ on ModelNet40.

strongly confirm the effectiveness of Interpretable3D.

Part Segmentation on ShapeNetPart
We deploy Deep Hough Voting (Qi et al. 2019) to extract
instance-level features. With Interpretable3D, each instance
is assigned a part label, and all points belonging to the same
instance are assigned the same category label. The outcomes
are presented in Table 3. Our approach has achieved compa-
rable results among all the tested methods, demonstrating its
suitability for the part segmentation task.

Interpretability
As mentioned above, we have demonstrated the effective-
ness of Interpretable3D. Here, we showcase its capabil-
ities in transparency and interpretability. Following prior
literature (Chen et al. 2019; Li et al. 2018) in other domains,
we examine ad-hoc interpretability by presenting prototypes
and assessing the similarity between prototypes and samples.
Interpretability for Predictions and Prototypes. To make
it easier to understand, we visualize some prototypical ob-
servations of Interpretable3D trained on the ModelNet40
dataset (Wu et al. 2015). Fig. 3 shows the prototypes for
‘stool’. In addition, Interpretable3D allows users to see how
the model comes to its predictions by visualizing the proto-
types based on the similarity scores between test sample rep-
resentatives and prototypes. In Fig. 4, we can understand how
Interpretable3D makes decisions on the ModelNet40 dataset
and ScanObjectNN. Taking the results on ModelNet40 for
example, a bookshelf (test sample in the first row) is correctly
classified, it also looks close to the prototype of ‘bookshelf’
(Prototype 1). However, in the failure case, Interpretable3D
has difficulty in accurately determining whether the obser-
vation represents a ‘flower pot’ or a ‘bottle’. It eventually
makes the wrong decision. Even though users are unsure how

Model OA(%)↑ mAcc(%)↑ MMD2↓ Witnessmax↓
ProtoPNet 92.83 89.70 0.243 0.577

PointNeXtPE 94.21 91.27 0.101 0.328
PointNeXtPO 94.29 91.77 0.085 0.225

Table 4: Quantitative results on data distribution.

Test Sample Prototype 1 Prototype 2 Prototype 3 Prototype 4

Bookshelf Bookshelf Bookshelf Mantel Range Hood
Similarity: 0.8266 0.0971 0.0364 0.0133

Bowl Bowl Flower Pot Bowl Vase
Similarity: 0.8668 0.0583 0.0376 0.0313

Bottle Flower Pot Bottle Stool Chair
Similarity: 0.4263 0.3922 0.0758 0.0526

Test Sample Prototype 1 Prototype 2 Prototype 3 Prototype 4

Bed Bed Cabinet Bed Sink
Similarity: 0.8945 0.0332 0.0302 0.0054

Display Display Door Display Pillow
Similarity: 0.8544 0.0992 0.0284 0.0006

Chair Sofa Chair Toilet Table
Similarity: 0.4435 0.3078 0.1356 0.0647

Figure 4: The upper part presents the results of Inter-
pretable3D on ModelNet40, while the lower part displays the
results on ScanObjectNN. Here, we interpret predictions with
normalized similarity and visualized prototypes, including
success and failure cases. For each part, the first two rows
show the success cases that are correctly classified, while
the last row shows the failure case. Test sample is in the left
column, with the four prototypes sorted by similarity scores
in the right columns. Test samples are categorized based on
prototypes that have maximum similarity.

Interpretable3D maps point clouds to features, the decision-
making mode (Rudin et al. 2022) is straightforward for users.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

1766

PE1 PE2 PO1 PO2 PointMLP OA(%) PointNeXt OA(%) Train Speed ↑ Test speed ↑
Random Init 68.0±1.5 70.4±1.2 422.8 1441.0

PE1 X 80.3±0.5 84.2±0.4 97.6

1441.0

PE2 X 81.2±0.3 84.8±0.4 228.3
PE1 + PO1 X X 83.6±0.2 85.5±0.2 92.8
PE1 + PO2 X X 84.1±0.1 86.4±0.3 91.3
PE2 + PO1 X X 85.2±0.2 87.0±0.1 223.8
PE2 + PO2 X X 85.6±0.1 88.0±0.2 219.5

Table 5: Study of Prototype Estimation/Optimization process on ScanObjectNN(Uy et al. 2019). PE1, PE2, PO1, PO2 refer to
Sinkhorn-Knopp algorithm, APDAGD, Eq. (7), Eq. (8), respectively. We report the speed by throughput (instances per second).

Because it provides explanations for its decisions, humans
can trust it and make decisions in high-stakes situations.
Understanding Prototypes and Data Distribution. Next,
we use the MMD2 metric and the maximum witness
value (Kim, Khanna, and Koyejo 2016; Molnar 2020) to
quantitatively measure prototype distribution and test sam-
ple distribution. We use the cosine similarity as a kernel
function to approximate the densities of prototypes and test
samples. This is different from the implementation in (Kim,
Khanna, and Koyejo 2016). Based on the kernel function,
Maximum Mean Discrepancy (MMD) is a measure of the
difference between two probability distributions. When the
MMD2 value is close to zero, the prototype distribution is
well-suited for the dataset. This is because the prototypes
are evenly distributed among the test samples within the la-
tent space. Additionally, the witness function quantitatively
represents the relationship between each test sample and all
the prototypes. We treat the test sample with the maximum
witness value (i.e., Witnessmax) as a criticism. Specifically,
criticisms are data points where the distribution of prototypes
and data diverges.

On the top of PointNeXt, we adapt ProtoPNet (Chen et al.
2019) to 3D vision for comparison. Following (Chen et al.
2019), ProtoPNet employs three combined models and relies
on voting for results (6000 prototypes in total). Moreover,
two Interpretable3D models, PointNeXtPE and PointNeXtPO
(600 prototypes), are trained on ModelNet40. PointNeXtPE
is trained with Prototype Estimation, and PointNeXtPO is
trained with Prototype Estimation and Optimization. As
shown in Table 4, PointNeXtPO exhibits better performance in
both MMD2 and OA compared to PointNeXtPE and ProtoP-
Net. PointNeXtPO and PointNeXtPE surpass ProtoPNet with
significantly fewer prototypes. This shows that our method
learns more representative prototypes; we don’t need to as-
semble multiple models to enlarge the representative capa-
bility. Comparing PointNeXtPO and PointNeXtPE, the better
performance of PointNeXtPO can be attributed to the fact
that the LVQ-type algorithm optimizes the distribution of
prototypes, aligning them more closely with the original
distribution of the training data. In other words, it is also
understandable for humans that Prototype Optimization gives
a “penalty” or “reward” signal to prototypes based on object
labels, making the prototypes closer to the density distribu-
tion of the training data. A test sample can be identified as a
criticism if it has the largest witness value, indicating that it

deviates the most from the prototype distribution. The smaller
Witnessmax value of PointNeXtPO reflects that all test sam-
ples fit the prototype distribution better. The performance
of PointNeXtPE and PointNeXtPO is also reported based on
typical samples rather than average embeddings on Model-
Net40. What’s even more remarkable is that PointNeXtPO
outperforms the softmax-based black-box PointNeXt (94.0%
OA and 91.1% mAcc) while enhancing interpretability.

Ablation and Analysis
To further analyze the core components in Interpretable3D,
we conduct ablation studies on the ScanObjectNN(Uy et al.
2019) test set. We set two baselines: PointMLP and Point-
NeXt. In Table 5, the mean results from three random runs are
reported. All the results are obtained without voting strategies.
The OA metric for the baselines (random initialization for
prototypes) are 68.0% and 70.4%, respectively. Performance
improvement is observed when both Prototype Estimation
and Optimization are employed. However, the best results
come from combining both processes, yielding 85.6% and
88.0%. This indicates that Prototype Estimation and Opti-
mization have the potential to achieve superior performance
by modifying the prototype feature space and preserving
the most prototypical examples. Furthermore, the reported
training and testing speeds confirm the high efficiency of our
approach.

Conclusion
We developed an ad-hoc interpretable classifier, i.e., Inter-
pretable3D, specifically designed for point cloud classifica-
tion and part segmentation tasks. By performing Prototype
Estimation and Optimization, Interpretable3D benefits from
a reshaped prototype feature space and the preserved typi-
cal prototypes. The revealed decision-making mode enables
users to understand how the system works and how decisions
are made. Prototype Optimization further enhances the inter-
pretability by illustrating how prototypes can be modified in
a manner easily comprehensible for humans. Our algorithm
consistently produces promising results across three datasets.
In the future, our will explore the application of this ad-hoc
style Interpretable3D to other 3D tasks.

Acknowledgments
This work was supported by China Scholarship Council
(CSC) scholarship.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

1767

References
Akhtar, N.; and Jalwana, M. A. A. K. 2023. Rethinking in-
terpretation: Input-agnostic saliency mapping of deep visual
classifiers. In AAAI.
Angelov, P.; and Soares, E. 2020. Towards explainable deep
neural networks (xDNN). Neural Networks, 130: 185–194.
Arrieta, A. B.; Dı́az-Rodrı́guez, N.; Del Ser, J.; Bennetot, A.;
Tabik, S.; Barbado, A.; Garcı́a, S.; Gil-López, S.; Molina, D.;
Benjamins, R.; et al. 2020. Explainable Artificial Intelligence
(XAI): Concepts, taxonomies, opportunities and challenges
toward responsible AI. Information fusion, 58: 82–115.
Asano, Y.; Rupprecht, C.; and Vedaldi, A. 2019. Self-labelling
via simultaneous clustering and representation learning. In
ICLR.
Biehl, M.; Hammer, B.; and Villmann, T. 2016. Prototype-
based models in machine learning. Wiley Interdisciplinary
Reviews: Cognitive Science, 7(2): 92–111.
Bishop, C. M.; and Nasrabadi, N. M. 2006. Pattern recognition
and machine learning, volume 4. Springer.
Chen, C.; Li, O.; Tao, D.; Barnett, A.; Rudin, C.; and Su, J. K.
2019. This looks like that: deep learning for interpretable
image recognition. In NeurIPS.
Chen, Q.; Li, P.; Xu, M.; and Qi, X. 2021. Sparse Activation
Maps for Interpreting 3D Object Detection. In CVPR.
Cuturi, M. 2013. Sinkhorn distances: Lightspeed computation
of optimal transport. In NeurIPS.
Fan, F.-L.; Xiong, J.; Li, M.; and Wang, G. 2021. On in-
terpretability of artificial neural networks: A survey. IEEE
Transactions on Radiation and Plasma Medical Sciences, 5(6):
741–760.
Feng, T.; Wang, W.; Wang, X.; Yang, Y.; and Zheng, Q. 2023.
Clustering based point cloud representation learning for 3d
analysis. In ICCV.
He, K.; Fan, H.; Wu, Y.; Xie, S.; and Girshick, R. 2020. Mo-
mentum contrast for unsupervised visual representation learn-
ing. In CVPR.
Hong, J.-H.; Nam, W.-J.; Jeon, K.-S.; and Lee, S.-W. 2023.
Towards Better Visualizing the Decision Basis of Networks
via Unfold and Conquer Attribution Guidance. In AAAI.
Hu, B.; Tunison, P.; RichardWebster, B.; and Hoogs, A. 2023.
Xaitk-Saliency: An Open Source Explainable AI Toolkit for
Saliency. In AAAI.
Kim, B.; Khanna, R.; and Koyejo, O. O. 2016. Examples are
not enough, learn to criticize! criticism for interpretability. In
NeurIPS.
Knight, P. A. 2008. The Sinkhorn–Knopp algorithm: conver-
gence and applications. SIAM Journal on Matrix Analysis and
Applications, 30(1): 261–275.
Knowlton, B. J.; and Squire, L. R. 1993. The learning of cate-
gories: Parallel brain systems for item memory and category
knowledge. Science, 262(5140): 1747–1749.
Kohonen, T. 1990. Improved versions of learning vector quan-
tization. In IJCNN.
Kohonen, T. 2012. Self-organizing maps, volume 30. Springer
Science & Business Media.

Laugel, T.; Lesot, M.-J.; Marsala, C.; Renard, X.; and De-
tyniecki, M. 2019. The dangers of post-hoc interpretability:
unjustified counterfactual explanations. In IJCAI.

Li, O.; Liu, H.; Chen, C.; and Rudin, C. 2018. Deep learning
for case-based reasoning through prototypes: A neural network
that explains its predictions. In AAAI.

Liang, J. C.; Zhou, T.; Liu, D.; and Wang, W. 2023. CLUST-
SEG: Clustering for Universal Segmentation. In ICML.

Lin, T.; Ho, N.; and Jordan, M. 2019. On efficient optimal
transport: An analysis of greedy and accelerated mirror descent
algorithms. In ICML.

Ma, X.; Qin, C.; You, H.; Ran, H.; and Fu, Y. 2021. Rethink-
ing Network Design and Local Geometry in Point Cloud: A
Simple Residual MLP Framework. In ICLR.

Meng, Q.; Wang, W.; Zhou, T.; Shen, J.; Jia, Y.; and Van Gool,
L. 2021. Towards a weakly supervised framework for 3d point
cloud object detection and annotation. IEEE TPAMI, 44(8):
4454–4468.

Min, Z.; Luo, Y.; Yang, W.; Wang, Y.; and Yang, Y.
2023. Entangled View-Epipolar Information Aggregation
for Generalizable Neural Radiance Fields. arXiv preprint
arXiv:2311.11845.

Molnar, C. 2020. Interpretable machine learning. https://
christophm.github.io/interpretable-ml-book/.

Nova, D.; and Estévez, P. A. 2014. A review of learning vector
quantization classifiers. Neural Computing and Applications,
25(3): 511–524.

Phan, A. V.; Le Nguyen, M.; Nguyen, Y. L. H.; and Bui, L. T.
2018. Dgcnn: A convolutional neural network over large-scale
labeled graphs. Neural Networks, 108: 533–543.

Qi, C. R.; Litany, O.; He, K.; and Guibas, L. J. 2019. Deep
hough voting for 3d object detection in point clouds. In ICCV.

Qi, C. R.; Su, H.; Mo, K.; and Guibas, L. J. 2017a. Pointnet:
Deep learning on point sets for 3d classification and segmenta-
tion. In CVPR.

Qi, C. R.; Yi, L.; Su, H.; and Guibas, L. J. 2017b. Pointnet++:
Deep hierarchical feature learning on point sets in a metric
space. In NeurIPS.

Qian, G.; Li, Y.; Peng, H.; Mai, J.; Hammoud, H.; Elhoseiny,
M.; and Ghanem, B. 2022. PointNeXt: Revisiting PointNet++
with Improved Training and Scaling Strategies. In NeurIPS.

Ritter, H.; Martinetz, T.; Schulten, K.; et al. 1992. Neural com-
putation and self-organizing maps: an introduction. Addison-
Wesley Reading, MA.

Rosch, E. 1975. Cognitive representations of semantic cate-
gories. Journal of experimental psychology: General, 104(3):
192.

Rudin, C. 2019. Stop explaining black box machine learning
models for high stakes decisions and use interpretable models
instead. Nature Machine Intelligence, 1(5): 206–215.

Rudin, C.; Chen, C.; Chen, Z.; Huang, H.; Semenova, L.; and
Zhong, C. 2022. Interpretable machine learning: Fundamental
principles and 10 grand challenges. Statistics Surveys, 16:
1–85.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

1768

Rudin, C.; and Radin, J. 2019. Why are we using black box
models in AI when we don’t need to? A lesson from an ex-
plainable AI competition. Harvard Data Science Review, 1(2):
1–9.
Schinagl, D.; Krispel, G.; Possegger, H.; Roth, P. M.; and
Bischof, H. 2022. OccAM’s Laser: Occlusion-Based Attri-
bution Maps for 3D Object Detectors on LiDAR Data. In
CVPR.
Tan, H. 2023. Visualizing Global Explanations of Point Cloud
DNNs. In WACV.
Taylor, J. R. 2003. Linguistic categorization. OUP Oxford.
Uy, M. A.; Pham, Q.-H.; Hua, B.-S.; Nguyen, T.; and Yeung,
S.-K. 2019. Revisiting point cloud classification: A new bench-
mark dataset and classification model on real-world data. In
ICCV.
Wang, W.; Han, C.; Zhou, T.; and Liu, D. 2022. Visual Recog-
nition with Deep Nearest Centroids. In ICLR.
Wang, X.; Zheng, Z.; He, Y.; Yan, F.; Zeng, Z.; and Yang,
Y. 2023a. Progressive local filter pruning for image retrieval
acceleration. IEEE TMM.
Wang, Y.; Zeng, Z.; Guan, T.; Yang, W.; Chen, Z.; Liu, W.;
Xu, L.; and Luo, Y. 2023b. Adaptive Patch Deformation for
Textureless-Resilient Multi-View Stereo. In CVPR.
Wu, Z.; Song, S.; Khosla, A.; Yu, F.; Zhang, L.; Tang, X.;
and Xiao, J. 2015. 3d shapenets: A deep representation for
volumetric shapes. In CVPR.
Yan, X. 2019. Pointnet/Pointnet++ Pytorch.
Yi, L.; Kim, V. G.; Ceylan, D.; Shen, I.-C.; Yan, M.; Su, H.; Lu,
C.; Huang, Q.; Sheffer, A.; and Guibas, L. 2016. A scalable
active framework for region annotation in 3d shape collections.
ACM TOG, 35(6): 1–12.
Yin, J.; Fang, J.; Zhou, D.; Zhang, L.; Xu, C.-Z.; Shen, J.; and
Wang, W. 2022a. Semi-supervised 3D object detection with
proficient teachers. In ECCV.
Yin, J.; Zhou, D.; Zhang, L.; Fang, J.; Xu, C.-Z.; Shen, J.; and
Wang, W. 2022b. Proposalcontrast: Unsupervised pre-training
for lidar-based 3d object detection. In ECCV.
Zhang, Q.; Rao, L.; and Yang, Y. 2021. A novel visual inter-
pretability for deep neural networks by optimizing activation
maps with perturbation. In AAAI.
Zheng, T.; Chen, C.; Yuan, J.; Li, B.; and Ren, K. 2019. Point-
cloud saliency maps. In ICCV.
Zheng, Z.; Ruan, T.; Wei, Y.; Yang, Y.; and Mei, T. 2020.
VehicleNet: Learning robust visual representation for vehicle
re-identification. IEEE TMM, 23: 2683–2693.
Zhou, T.; Wang, W.; Konukoglu, E.; and Van Gool, L. 2022.
Rethinking semantic segmentation: A prototype view. In
CVPR.
Zhu, L.; and Yang, Y. 2020. Label independent memory for
semi-supervised few-shot video classification. IEEE TPAMI,
44(1): 273–285.
Ziwen, C.; Wu, W.; Qi, Z.; and Fuxin, L. 2020. Visualizing
Point Cloud Classifiers by Curvature Smoothing. In BMVC.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

1769

