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Abstract

Tooth motion generation is an essential task in digital or-
thodontic treatment for precise and quick dental healthcare,
which aims to generate the whole intermediate tooth motion
process given the initial pathological and target ideal tooth
alignments. Most prior works for multi-agent motion plan-
ning problems usually result in complex solutions. Moreover,
the occlusal relationship between upper and lower teeth is
often overlooked. In this paper, we propose a collaborative
tooth motion diffusion model. The critical insight is to re-
model the problem as a diffusion process. In this sense, we
model the whole tooth motion distribution with a diffusion
model and transform the planning problem into a sampling
process from this distribution. We design a tooth latent repre-
sentation to provide accurate conditional guides consisting of
two key components: the tooth frame represents the position
and posture, and the tooth latent shape code represents the
geometric morphology. Subsequently, we present a collabora-
tive diffusion model to learn the multi-tooth motion distribu-
tion based on inter-tooth and occlusal constraints, which are
implemented by graph structure and new loss functions, re-
spectively. Extensive qualitative and quantitative experiments
demonstrate the superiority of our framework in the applica-
tion of orthodontics compared with state-of-the-art methods.

Introduction
The tooth motion generation is a key task in digital or-
thodontics, which significantly assists dentists in efficiently
making diagnoses or treatment plans. Specifically, given the
initial pathological and target ideal tooth alignments, we
need to generate the motion process that transforms the tooth
alignment from the initial to the target state, as shown in
Fig. 1. At the same time, the tooth motion generation needs
to meet the requirements of no collision, reasonable inter-
action among multi-tooth, shortest and smooth transition
paths, simultaneously. The whole process of tooth motion
generation is time-consuming and laborious, and the quality
of tooth motion generation relies heavily on the subjective
experience of dentists and technicians. Therefore, develop-
ing an automatic and data-driven tooth motion generation
method is essential. However, existing data-driven digital
orthodontics methods mainly focus on the basic tooth data
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Figure 1: Our goal is to generate a tooth motion process of
the intermediate tooth alignments (orange) given the initial
alignment (blue) and the target alignment (blue). It shows
the sampling process from the predicted motion distribution
is first from a random normal distribution (leftmost column)
and gradually denoised using a learned denoiser into the fi-
nal predictions (rightmost column).

processing task (Cui et al. 2021; Qiu et al. 2022; Ma et al.
2020; Cui et al. 2022) and the tooth alignment target pre-
diction (Li et al. 2020a; Wei et al. 2020; Wang et al. 2022).
Due to its complexity and challenge, the data-driven tooth
motion generation method remains a blank area.

Previous approaches formulate tooth motion generation
task as a multi-agent motion planning problem by using tra-
ditional path planning algorithms such as A-Star (Li and
Yang 2011), particle swarm (Ma et al. 2021), genetic (Li, Li,
and Li 2009) and artificial bee colony algorithms (Li et al.
2020b), which require solving complex optimizations and
separate treatment of the upper and lower jaw, resulting in
the ignorance of the occlusal relationship. Some data-driven
tooth alignment target prediction methods (Wei et al. 2020;
Wang et al. 2022) generate the tooth motion process in an
iterative manner. However, these methods directly employ
tooth point cloud data with numerous parameters, leading to
limited tooth motion steps and error accumulation. Instead,
we remodel the tooth motion generation problem as a distri-
bution fitting problem, which samples the motion from the
learned distribution with the given initial and target align-
ments, as shown in Fig. 1. We aim to directly model the mo-
tion distribution of the entire process.

Diffusion-based generative models have achieved remark-
able success in path planning (Janner et al. 2022), human
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motion generation (Li, Liu, and Wu 2023; Tevet et al. 2022;
Chen et al. 2023; Dabral et al. 2023), and trajectory predic-
tion (Gu et al. 2022; Jiang et al. 2023). They demonstrate the
benefits of the diffusion model, including flexible behavior
synthesis, long-horizon scalability, and variable-length plans
in the motion generation and planning task (Janner et al.
2022). These advantages are well-suited for fitting motion
distributions. However, several challenges still exist when
applying diffusion models to fit the tooth motion distribu-
tion. First, fitting tooth motion distribution requires a simple
and precise condition to guide the training and sampling pro-
cess. This condition needs to accurately describe tooth po-
sition and posture while simultaneously characterizing the
different types of teeth. Second, the tooth motion process in-
volves collaboration between individual teeth. It is challeng-
ing to fit a tooth motion distribution that satisfies multi-tooth
collaboration and orthodontic medical requirements.

In light of these challenges, we propose a novel method
that synthesizes the tooth motion process via a conditional
diffusion model. Firstly, we propose a tooth latent represen-
tation method as a condition of the diffusion model, con-
taining the tooth frame and the shape latent code, which re-
duces network parameters compared to directly predicting
the tooth motion process using point clouds. The tooth frame
is constructed from tooth landmarks and axes (Wei et al.
2022; Yf et al. 2022), as shown in Fig. 2. The tooth frame
contains position and posture information. We also need to
characterize the shape of different types of teeth, which is
essential for multi-tooth interaction, so we obtain the tooth
shape latent code through a tooth point cloud auto-encoder.
Secondly, we propose a collaborative tooth motion diffusion
model. The diffusion model aims to fit the tooth motion dis-
tribution, and the multi-tooth collaboration is reflected in the
feature level and loss functions. Since the topological rela-
tionship among teeth is fixed, we introduce a multi-tooth in-
teraction module using the graph neural network to achieve
motion information interaction between teeth at the feature
level during the motion process. Meanwhile, we define a set
of loss functions as soft restrictions to help the fitted tooth
motion distribution obtain the most realistic results and con-
form to orthodontics requirements as much as possible.

The main contributions of this work are:
• We propose the first diffusion-based framework for tooth

motion generation under the given initial and target tooth
alignment states, which remodels the problem as a condi-
tional diffusion process. Our method enables concurrent
generation of all timesteps.

• We introduce a tooth latent representation method that
includes the tooth frame, representing the position and
posture of the tooth model, and the tooth latent shape
code, representing the geometric information. This ap-
proach enables the provision of more precise conditional
guidance.

• We design multiple constraints, the multi-tooth interac-
tion graph module and new loss functions, to provide
effective collaborative multi-tooth and supervision for
tooth motion generation while complying with orthodon-
tic medical requirements.

Figure 2: Tooth frame representation. The gray, green, and
red dots represent the centroid, facial axis point (FA), and
contact point (CO). The red, green, and blue arrows repre-
sent the i, j, and k (tooth long axis) axes.

Related Works
Tooth Feature Representation. Deep learning-based dental
tasks using the intraoral scan model include tooth segmenta-
tion (Cui et al. 2021; Qiu et al. 2022; Cui et al. 2022), tooth
classification (Ma et al. 2020), tooth landmark/axis detec-
tion (Wei et al. 2022; Yf et al. 2022), tooth alignment target
prediction (Wei et al. 2020; Yang et al. 2020; Wang et al.
2022), and so on (Song et al. 2021; Zhang et al. 2022). Most
of them first take the segmented point cloud of an intraoral
scan model as input and then utilize the point cloud feature
extraction network (Qi et al. 2017a,b; Wu, Qi, and Fuxin
2019; Wang et al. 2019) to extract tooth point cloud features
for downstream works. Although the extracted dental fea-
ture, in the high dimension level, contains tooth geometric
shape features, it does not represent the position and posture
information of the tooth concretely. In this paper, we pro-
pose a latent representation for teeth, enabling our network
to better focus on position, posture, and characterize shape
information.
Tooth and Human Motion Synthesis. Human motion
synthesis is a fundamental task in computer animation
(Tevet et al. 2022). It aims to generate human motion
through the human skeleton. Motion in-betweening is de-
rived from the motion prediction problem, where the re-
sulting motion is constrained on some given past and fu-
ture keyframes (Qin, Zheng, and Zhou 2022). Most works
rely on a two-branch, including autoregressive-based and
non-autoregressive-based. The autoregressive-based meth-
ods (Harvey et al. 2020; Tang et al. 2022) predicted the
intermediate motions step by step. The non-autoregressive-
based methods (Kaufmann et al. 2020; Qin, Zheng, and
Zhou 2022; Kim et al. 2022) can generate the whole interme-
diate motions simultaneously. While human and tooth mo-
tion generation shares similarities, there are notable applica-
tion gaps in the following areas: (a) Current human motion
generation methods focus on single (Tevet et al. 2022; Raab
et al. 2023) or several persons (Guo et al. 2022; Xu, Wang,
and Gui 2023; Shafir et al. 2023). (b) Significant distinctions
exist in the representation of human and tooth characteris-
tics. To fill this gap, we propose a multi-tooth collaborative
diffusion framework for tooth motion generation.
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Motion Diffusion Models. Diffusion Generative Models
have succeeded dramatically in many research areas, includ-
ing image generation (Nichol et al. 2022; Rombach et al.
2022), 3D Vision (Lyu et al. 2022), video modeling (Ho et al.
2022), and medical imaging (Wyatt et al. 2022). Besides,
diffusion models also achieved competitive results in plan-
ning and motion generation tasks, including path planning
(Janner et al. 2022), trajectory prediction (Gu et al. 2022;
Jiang et al. 2023), human motion generation (Li, Liu, and
Wu 2023; Tevet et al. 2022; Chen et al. 2023), and procedure
planning in instructional videos (Wang et al. 2023). Instead
of step-by-step prediction, it can generate all timesteps of
planning, trajectory, and motion. Unlike the human motion
generation method (MDM) (Tevet et al. 2022) regarding mo-
tion in-betweening as an image inpainting problem (Kauf-
mann et al. 2020) by unconditional diffusion model and only
considering a single agent, we utilize conditional diffusion
to generate the whole tooth motion process for multi-tooth.

Methodology
In this section, we present the details of our multi-tooth col-
laborative diffusion model for tooth motion generation. We
first introduce the setup for this problem and overview. Then,
we introduce the framework which contains two parts: the
tooth latent representation and the multi-tooth collaboration
diffusion model. Finally, we show the design of multiple
constraints. An overview of the collaborative tooth motion
diffusion model is illustrated in Fig. 3.

Problem Notation and Formulation
Each tooth alignment T contains three types of information
T = {Pv, Fv,Zv|Pv ⊆ RM×3, Fv = {o; i, j,k},Zv ⊆
Rz, v ∈ V}, where V denotes the set of tooth labels. Pv de-
notes the point cloud of the v-th tooth, which contains M
points in R3. Fv is the v-th tooth frame, which consists of
four elements: o, i, j, k denote the centroid, i-axis, j-axis,
and k-axis by a three-dimension vector respectively. Zv rep-
resents the tooth shape latent code. A complete tooth align-
ment comprises 28 teeth. The tooth labels are assigned as
V = {11− 17, 21− 27, 31− 37, 41− 47} according to the
Federation Dentaire Internationale teeth representation.

Given the initial tooth alignment Tinitial and the target
alignment Ttarget, our goal is to plan a motion process X to
transform the tooth alignment from Tinitial to Ttarget, even-
tually obtaining all an intermediate tooth motion process.
The X = {x1:L

v |v ∈ V} represents a set of single tooth
motion xv with the motion process length L and xl

v ∈ R6

denotes a 6 DoF (6 degrees of freedom) transformation pa-
rameter (rx, ry, rz, tx, ty, tz). The core idea is to train a dif-
fusion model to learn the tooth motion distribution by the
proposed tooth latent representation as the condition, and
then sample from the learned motion distribution at the in-
ference phase.

First, the tooth latent representation aims to encode the
position and posture of given tooth alignments by using the
tooth frame F and shape latent code Z . Then, the diffusion
model aims to approximate a multi-tooth motion distribution
p(x1:L) for realizing the transformation from the Tinitial
state to Ttarget state.

Tooth Latent Representation
To address the complex tooth motion generation problem,
we propose a tooth latent representation to provide more pre-
cise conditional guidance both for the training and sampling
process. This method consists of two encoders: one for en-
coding the tooth frame to accurately describe the tooth po-
sition and posture, and the other for encoding tooth shape
to capture the diverse geometric morphology of the tooth
model. The former focuses on the global feature of the teeth
during the motion process, while the latter focuses on the
local feature acting on the collaboration between multiple
teeth. This approach avoids the computational complexity
of using tooth point cloud or mesh data directly.
Tooth Frame Encoder. To provide a more precise descrip-
tion of tooth position and posture, we propose a tooth frame
encoder similar to TAD-Net (Yf et al. 2022) which is a point
cloud-based learning method for automatic tooth axes detec-
tion. Unlike various tooth axes that are mutually indepen-
dent, the three axes of the tooth frame exhibit pairwise or-
thogonality. To meet this characteristic, we treat three axes
in the tooth frame as a whole and encode it as a quaternion.
Then, we employ a point-wise rotation transformation pre-
diction network based on point cloud learning to abstract the
tooth frame from the tooth point cloud. In other words, the
tooth frame F = Eframe(P ) can be considered the skeleton
of the tooth model.
Tooth Shape Encoder. The tooth shape information is an es-
sential factor affecting multi-tooth motion generation. Since
the tooth geometric morphology is implied in the tooth point
cloud data, we propose a tooth shape encoder to abstract
complex tooth shape information from the tooth point cloud
P . In particular, we use an AutoEncoder to construct the
tooth point cloud reconstruction network, which consists
of a PointNet encoder Ez and a decoder D with a multi-
layer perceptron (MLP) to learn a representative and low-
dimensional latent space Z = Ez(P ) for diverse teeth.

Multi-tooth Collaborative Diffusion
It is challenging to generate tooth motions while consider-
ing the collaboration among teeth. We propose a multi-tooth
collaborative diffusion model to overcome this. Firstly, the
model learns the motion distribution of each tooth through a
single-tooth conditional diffusion model. Subsequently, the
multi-tooth interaction module enables inter-tooth motion
interaction at the feature level.
Single Tooth Conditional Diffusion Models. Diffusion
probabilistic models (Ho, Jain, and Abbeel 2020) as a kind
of generative model that can gradually anneal the noise from
a Gaussian distribution to a data distribution p(x) by learn-
ing the noise prediction from a N length Markov noising
process, given {xn}Nn=1. For tooth motion generation, we
introduce the single tooth conditional diffuser pθ(x1:L

0,v |cv)
for each tooth Tv to generate tooth motion x̂1:L

0,v through it-
erative denoising. x1:L

0,v is drawn from the data distribution
of the v-th tooth motion transformation. The condition c of
each tooth diffuser contains four parts: the initial Finitial

and target Ftarget tooth frames represent the tooth motion
initial and target states, and the offset Foffset information
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Figure 3: Overview of tooth motion generation via a conditional diffusion model. The input consists of point clouds representing
initial Tinitial and target Ttarget tooth alignments. The network initially obtains condition c by encoding the tooth point cloud
into frame and shape codes. Subsequently, we iteratively perform the denoising process. During each denoising step, we predict
the original distribution using the trained denoiser pθ. After N denoising steps, the motion distribution X̂0 is acquired. Finally,
we apply the learned X̂0 to Tinitial to obtain the intermediate tooth motion process.

captures the relative distance to the target frame. The con-
dition cv is obtained by concatenating three encoded tooth
frame features with shape latent code for the v-th tooth
cv = {Finitial, Foffset, Ftarget,Z}.

Different from the previous UNet-based architecture on
the 2D image, we build a simple GRU-based (Cho et al.
2014) denoising model on the tooth motion space, which is
more suitable for the simplicity of the tooth motion features
and more effective in capturing the sequential dependence of
tooth motion with fewer parameters. The forward diffusion
process gradually adds Gaussian noises to the original data
x1:L
0,v ∼ q(x1:L

0,v ), as shown in Eq.(1):

q(x1:L
n,v|x1:L

n−1,v) := N (x1:L
n,v;

√
αnx

1:L
n−1,v, (1− αn)I) (1)

where n is the diffusion step, the αn ∈ (0, 1) is a hyper-
parameter. There is no training in the noise-adding process.

To generate a whole intermediate motion process under
cv , we need to reverse the diffusion process. The denois-
ing process can be approximated as a Markov chain with a
learned mean and fixed variance in each step:
pθ(x

1:L
n−1,v|x1:L

n,v, cv) := N (x1:L
n−1,v;µθ(x

1:L
n,v, n, cv), σ

2
nI) (2)

where θ represents the parameters of a neural network, and
cv is a known condition. Learning the mean µθ(x

1:L
n,v , n, cv)

can be reparameterized as learning to predict the original
data x1:L

0,v :

µθ =

√
αn(1− ᾱn−1)x

1:L
n,v +

√
ᾱn−1(1− αn)x̂θ(x

1:L
n,v, n, cv)

1− ᾱn
(3)

where αt =
∏n

i=1 αi. x̂θ is the denoiser to predict x1:L
0,v . The

training loss is defined as a reconstruction loss of x1:L
0,v :

Lsimple = Ex(0,v),n∥x
1:L
0,v − x̂θ(x

1:L
n,v, n, cv)∥22 (4)

We choose the initial input x1:L
0,v as our learning objective

(Song, Meng, and Ermon 2020) for two main reasons: 1) In-
corporating constraints for better tooth motion generation.

2) Providing a strong anchor for denoising learning, ensur-
ing accurate predictions, and avoiding deviations from the
correct direction.
Multi-tooth Interaction. The multi-tooth interaction mod-
ule aims to learn the relationships among teeth for each tooth
at each time step. The motion of each tooth at each step is
not independent, as they can be viewed as part of an inter-
connected multi-rigid-body system X0 = {x1:L

0,v |v ∈ V}. It
requires considering interactions among teeth, including ad-
jacency, symmetry, and occlusal relationships. Forecasting
the tooth motion process while comprehensively accounting
for these factors constitutes a notably intricate endeavor. The
graph neural networks are well-suited for this task. Inspired
by TANet (Wei et al. 2020), we construct a multi-tooth in-
teraction graph:

G = (Xl,E) (5)

where X l represents tooth node features on motion step
l. E contains three types of edges, representing adjacency,
symmetry, and occlusal relationships of teeth, respectively.
Meanwhile, we employ the Gated Graph Neural Network
(Li et al. 2015) to abstract and aggregate the interaction in-
formation between teeth during multi-tooth motion from dif-
ferent feature levels at tooth alignment (local, relative global,
and global) via three types of edges.

Loss Function
In this section, we design multiple loss functions with two
major components. One part is specifically designed for the
tooth encoding module. The other part is the complementary
soft constraints for the motion distribution.

Tooth Model Encoding Loss The tooth model encoding
loss includes tooth frame encoding and tooth shape encod-
ing.

Lencoding = λ1Lfe + λ2Lcd (6)

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

1682



where λ1 and λ2 are balance factors.
Tooth Frame Encoding Loss. Given the point cloud of the
tooth model Pv , we utilize the cosine similarity as the loss
function to calculate the quaternion regression error in a
point-wise prediction way as follows:

Lfe =
1

|V|M
∑
v∈V

M∑
j=0

(1− cos(qv,j , q̂v,j)) (7)

where q̂v,j is the predicted quaternion vector of the point
pv ∈ Pv and qv,j is the ground truth.
Tooth Shape Encoding Loss. To better capture the tooth
shape latent code, we utilize the chamfer distance (CD) loss
(Yuan et al. 2018) in the tooth shape encoder module. The
loss function measures the difference between the decoder
output P̂v and the ground truth Pv . This loss is computed as:

Lcd =
∑
v∈V

(
∑
p∈Pv

min
p̂∈P̂v

||p− p̂||22 +
∑
p̂∈P̂v

min
p∈Pv

||p̂− p||22) (8)

Multi-tooth Motion Collaborative Constraints In ad-
dition to Lsimple, we introduce multi-tooth collaborative
constraints at two levels: frame-level and point-cloud-level.
These constraints apply the predicted motion (r̂, t̂) learned
by the denoiser to tooth frames and point clouds, with direct
supervision on both. Overall, our motion loss is:

Lmotion = λ3Lsimple + λ4Lframe + λ5Lpc + λ6Lcol (9)

where λ3 to λ6 are balance factors. Lsimple is the recon-
struction loss, and Lframe, Lpc, and Lcollision are the con-
straint losses.
Frame Constraint Loss. Lframe constrains the posture and
position of the tooth model to help the network learn tooth
motion in spatial space. This is defined as:

Lframe =
1

|V|(L− 1)

∑
v∈V

L−1∑
l=1

(
∥∥q̂l

v − ql
v

∥∥
2
+
∥∥ôl

v − ol
v

∥∥
2
)

(10)
where ql

v is the ground truth quaternion representation of
three axes (i, j,k) in Fv at the motion step l. The ôl

v =

ol−1
v + t̂lv and the q̂l

v = R̂l
vq̂

l−1
v , where R̂l

v = er̂
l
v by Ro-

drigues’ formula (Gray 1980). Since the Finitial is known,
q̂l−1 and ol−1 can be obtained.
Tooth and Jaw Constraint Loss. The tooth point cloud in-
formation can provide finer data to constrain the occlusal re-
lationships between teeth. We introduce the chamfer vector
loss between point cloud sets using smooth L1 loss:

Lpc =
∑

(a,b)∈κ

L−1∑
l=1

∥V l
P̂a,P̂b

− V l
Pa,Pb

∥S (11)

where V l
Pa,Pb

is the chamfer vector between two ground
truth point sets Pa and Pb in step l, which defined follow
(Wei et al. 2020). The κ represents the set pairs, including
the pairs of adjacent teeth and all points in the upper and
lower jaw. P̂ l = R̂l(P̂ l−1 − ol−1) + ol−1 + t̂l represents
the predicted tooth point cloud.

Collision Avoiding Loss. The Lennard-Jones potential
(Hansen and Verlet 1969) is a model that describes the in-
teractions between atoms with the property of close repul-
sion and distant alienation. Inspired by it, Lcol is introduced
to control the distance between the adjacent tooth to make
teeth collision-free and as close as possible. It is defined as:

Lcol =
∑

(a,b)∈κ

L−1∑
l=1

((
1

1 + dl/sl

)12

− 2

(
1

1 + dl/sl

)6
)
(12)

where dl = dlnp + δ, dlnp represents the nearest point pair
distance between predicted P̂ l

a and P̂ l
b . To avoid errors due

to P̂ l
a and P̂ l

b overlap, we add δ to constrain dlnp ensuring
a minimum non-overlapping distance between them. δ is
the empirical parameter. s is the distance between their cen-
troids.

Experiments
In this section, we show quantitative comparisons and illus-
trate our qualitative results. We also conduct ablation studies
to analyze the performance of our method, as well as the de-
sign choices in our model.

Dataset and Implementation Details
Our dataset consists of 1050 dental cases. Each dental case
includes a group of models before and after alignment, the
corresponding whole tooth motion process, and the tooth
frames. These data are collected from hospitals and la-
beled by professional dentists. The labeling of the tooth mo-
tion process includes generating intermediate tooth frames
through interpolation based on initial and target tooth frames
using an auxiliary labeling system. The dentist then manu-
ally adjusts tooth position and posture at each step. The max
motion generation step is L = 20. We randomly divided the
data into three parts for network training: 787 for training,
105 for validation, and 158 for testing. Our model is trained
with N = 100 noising steps and a cosine noise schedule. All
of them are trained on a single NVIDIA RTX 4090 GPU. We
use zero padding to deal with the missing teeth and down-
sample M = 400 points for each tooth point cloud from
the intraoral scan model by farthest point sampling. The di-
mension of the tooth latent shape code Z is z = 16. The
denoising network is a GRU with four hidden layers and a
latent dimension 256. The empirical parameter δ is 0.1. We
weigh our loss terms by λ1 = 1, λ2 = 1, λ3 = 10, λ4 = 1,
λ5 = 0.1, and λ6 = 0.1. The framework is trained in two
stages. The encoding part was trained first, and then its out-
put was used as input for training the motion generation part.

Evaluation Metrics
To evaluate the performance of our method, we modify three
evaluation metrics to make it suitable for tooth motion pro-
cess prediction. We use Rerror and Terror (Sattler et al.
2018) to evaluate the average error of rotation and transla-
tion of each tooth in all motion steps, respectively. These are
calculated by:

Rerror =
1

|V|
1

L

∑
v∈V

L∑
l=1

(Tr((Rl
v)

−1R̂l
v)− 1) (13)
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Figure 4: Visualization of the results of our network. (a)-(d) Four cases from our test dataset. In each case, six columns represent
the input initial alignment (blue), the output motion process of our network (orange), and the target alignment (blue). The four
rows from top to bottom are the front view, side view, upper and lower view.

Terror =
1

|V|
1

L

∑
v∈V

L∑
l=1

∥∥∥t̂lv − tlv

∥∥∥
2

(14)

AUCpoint (Wei et al. 2020) represents the point reconstruc-
tion error of each tooth per step. It means the area under the
PCT curve of ADD which calculates the mean point-wise
distance between the predicted point cloud and ground truth
(Hinterstoisser et al. 2013).

Qualitative Results
Fig. 4 shows our method can generate excellent motion
processes under different malocclusion problems. The blue,
green, red, and orange rectangular boxes (solid) focus on
the misalignment of initial teeth caused by dental crowd-
ing, missing teeth, overbite, and underbite problems, respec-
tively. The rectangular boxes (dotted) focus on the abnormal
changes in the target alignment after the whole intermediate
motion process. We can also handle the middle line that is
not aligned in Fig. 4a, the overjet in Fig. 4b, and the dental
arch narrowing in Fig. 4c. We refer to the website for related
demo results: https://yeyingstudy.github.io/.
Variable-length motion. Our model enables concurrently
generating the motion process of all timesteps. The step of
motion generation is determined by the size of the input
x1:L ∼ N (0, I) that initializes the denoising process, al-
lowing for the variable-length motion process (Janner et al.
2022). x1:L can be viewed as the seed process.
Inference time. We adopted Denoising Diffusion Implicit
Models (DDIM) (Song, Meng, and Ermon 2020) and used
the proposed tooth representation to accelerate sampling.
For a tooth alignment taking 20 motion steps for example,
the inference time requires 10.25 seconds on average.

Rerror ↓ Terror ↓ AUCpoint ↑

Lengths 5 20 5 20 5 20
Interp 0.36 0.29 0.128 0.074 81.95 84.95
TANet 3.24 - 3.709 - 75.89 -
Regression 0.58 0.44 0.072 0.043 84.63 86.53
MDM 0.78 0.46 0.092 0.067 83.23 75.39
Our 0.36 0.18 0.069 0.039 90.05 93.06

Table 1: Results comparison of different methods. The coor-
dinate unit is mm for Terror, degree for Rerror.

Comparisons
To the best of our knowledge, we are the first to generate
tooth motions in a learning-based manner. To verify the ef-
fectiveness of our method, we chose and designed four com-
parative experiments. Interpolation (Chapuis et al. 2022):
uses linear and quaternion spherical interpolation for tooth
position and posture. TANet (Wei et al. 2020): predicts the
tooth motion step by step by a shared-parameter point cloud
network. Regression: we use the initial tooth frame concate-
nated with the target frame as input for our denoiser network
to regress tooth motion directly. MDM (Tevet et al. 2022):
we apply the same image-inpainting strategy for our task.

Tab. 1 shows our network could achieve the highest ac-
curacy in three metrics. The interpolation method can only
create smooth transitions without many motion details. The
experimental results indicate that TANet allows for predict-
ing up to 5 steps. In contrast, we can predict 20 steps based
on our proposed tooth representation and network method.
The MDM strategy is not as good as our performance re-
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Figure 5: Qualitative comparison with the other methods.
The blue represents the known alignment, the orange repre-
sents the output motion process of these methods, and the
gray represents the ground truth. The red boxes denote the
compare areas.

sults and has a serious collision due to the lack of relevant
constraint restrictions. It’s worth noting that the regression
method validates the tooth frames’ capability to represent
tooth position and posture information. Fig. 5 shows that our
method generates a more accurate tooth motion process.

Ablation Study
To validate the effects of our network components, we con-
ducted ablation experiments by augmenting the base net-
work. The base network represents the network trained only
with Lsimple. The results are shown in Tab.2.
Effect of Tooth Latent Representation. We explore the ef-
fect of two key components in tooth latent representation.
1) To verify the effectiveness of the tooth frame in repre-
senting the tooth posture and position, we remove the tooth
frame from the base network. The accuracy is greatly re-
duced compared to the base network (the first row). As the
network learned only the intermediate motion process with-
out knowledge of the transformation condition, removing
the tooth frame from the base network results in its degra-
dation into unconditional diffusion. 2) The result shows that
the tooth shape latent code can improve the accuracy of the
base network (the third row). The shape code succinctly cap-
tures the tooth point cloud morphology, reducing computa-
tions and introducing inter-tooth constraint adjustments in
multi-tooth motion for aiding network learning.
Effect of Multi-tooth Collaboration. We augment the base
network with the interaction module and loss constraints to
validate the effect of the multi-tooth collaboration. The re-
sults in Tab.2 indicate that each constraint contributes to en-
hancing our base network. 1) That is because, through the
multi-tooth interaction module, our network can better cap-
ture adjacency, symmetry, and occlusal information among
teeth at the feature level. 2) The multi-tooth loss function can
act as a kind of soft constraint to guide the generated motion
distribution to adhere to the correct posture and position of
Lframe, the occlusal relationship of Lpc, and the distance
control between teeth of Lcol.

Method Rerror ↓ Terror ↓ AUCpoint ↑

w/o Frame 0.456 0.0941 65.1907

Base 0.198 0.0497 90.9010

Base + Shape Code 0.181 0.0403 92.2750

Base + Interaction 0.184 0.0415 92.1020

Base + Lframe 0.186 0.0445 92.7169

Base + Lpc 0.191 0.0403 92.6158

Base + Lcol 0.183 0.0408 92.0803

Our 0.178 0.0399 93.0670

Our* 0.178 0.0386 93.2190

Table 2: Ablation study of tooth latent representation and
multi-tooth collaboration. Our* represents the result perfor-
mance of post-processing. Taking L = 20 as an example.

Figure 6: The circle focus on the post processing region. Left
and right show the output of our network and the results after
post processing.

Post Processing
The neural network learning uses a soft constraint, which
leads to the possibility that its outputs may still have a slight
collision. In post-processing, we address teeth collisions by
using detailed distance controls to ensure no collisions com-
pletely as shown in Fig. 6. Specifically, the goal is to mini-
mize the energy function Ecol. The Ecol has the same form
as Lcol. The difference is that s is the summarization of
max SDF values of Ta and Tb, and d = dSDF is the low-
est signed distance value between the surface of Ta and Tb.
Compared to dnp, dSDF offers a more accurate distance
with the signed, effectively avoiding the problem caused by
the tooth point cloud overlap. Therefore, we use dSDF in the
output result of our network to enhance our results further.

Conclusion
In this paper, we present the first diffusion-based approach
for tooth motion generation, treating it as a multi-tooth
motion distribution fitting problem. Our tooth latent repre-
sentation effectively captures tooth position, posture, and
shape features and acts as conditional guidance. The pro-
posed multi-tooth interaction module and multiple con-
straint losses establish the motion collaboration among
teeth. Our work demonstrates that modeling a multi-tooth
motion process as a motion distribution is an effective solu-
tion for tooth motion generation results.
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