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Abstract

Self-supervised approaches for video have shown impressive
results in video understanding tasks. However, unlike early
works that leverage temporal self-supervision, current state-
of-the-art methods primarily rely on tasks from the image do-
main (e.g., contrastive learning) that do not explicitly pro-
mote the learning of temporal features. We identify two fac-
tors that limit existing temporal self-supervision: 1) tasks are
too simple, resulting in saturated training performance, and
2) we uncover shortcuts based on local appearance statis-
tics that hinder the learning of high-level features. To address
these issues, we propose 1) a more challenging reformula-
tion of temporal self-supervision as frame-level (rather than
clip-level) recognition tasks and 2) an effective augmentation
strategy to mitigate shortcuts. Our model extends a represen-
tation of single video frames, pre-trained through contrastive
learning, with a transformer that we train through tempo-
ral self-supervision. We demonstrate experimentally that our
more challenging frame-level task formulations and the re-
moval of shortcuts drastically improve the quality of features
learned through temporal self-supervision. Our extensive ex-
periments show state-of-the-art performance across 10 video
understanding datasets, illustrating the generalization ability
and robustness of our learned video representations. Project
Page: https://daveishan.github.io/nms-webpage.

Introduction
Self-supervised learning (SSL) has unlocked the potential of
large amounts of unlabelled data for large-scale pre-training
of image (Zhou et al. 2022a; Li et al. 2022; He et al. 2022;
Chen, Xie, and He 2021; Chen et al. 2020) and, more re-
cently, video representations (Tong et al. 2022; Pan et al.
2021; Feichtenhofer et al. 2021; Dave et al. 2022; Feicht-
enhofer et al. 2022). The potential benefits of SSL methods
on video are even greater than on images due to their larger
dimensionality and much greater cost of comprehensive hu-
man labeling.

Video understanding tasks, such as action recognition, de-
pend on representations that capture both the static scene ap-
pearance (e.g., object textures, pose, and layout) and scene
dynamics (e.g., the change in pose and relative dynamics of
objects). Human activity recognition, in particular, crucially
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Figure 1: Breaking Shortcuts in Temporal SSL Tasks. We il-
lustrate an example of our pretext task where the model has
to localize out-of-order frames. In the first row, the input se-
quence has identical augmentations applied to each frame,
whereas the second row shows our proposed independent
frame-wise augmentations. We observe that the task can be
solved by observing only a local image patch (highlighted
circle) when identical augmentations are used. As a result,
the task does not require learning higher-level features, e.g.,
object dynamics. In contrast, when applying the proposed
frame-wise augmentations (second row), a local observation
(highlighted circle) is insufficient, and the model must con-
sider the global scene context.

depends on accurate representations of the human pose and
how it deforms over time as a person performs an action.

However, to what extent current video SSL approaches
capture both static and temporal features in videos is unclear.
Indeed, we observe that many of the current methods rely on
contrastive objectives (Qian et al. 2021b; Feichtenhofer et al.
2021; Pan et al. 2021; Yang et al. 2020), which encourage
spatial and temporal invariance and thus do not promote the
learning of temporal features. While several works demon-
strated the benefits of including additional objectives that
encourage the learning of temporal features, e.g., through
pretext tasks (Jenni, Meishvili, and Favaro 2020; Xu et al.
2019; Bai et al. 2020; Misra, Zitnick, and Hebert 2016), it
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is unclear whether these methods truly capture changes in
object dynamics or are rather hindered by relying on lower-
level local motion features.

Such “shortcuts” are common in self-supervised task
formulations (Doersch, Gupta, and Efros 2015; Jenni and
Favaro 2018) and prevent the learning of higher-level fea-
tures. Indeed, we observe as one of our key insights, that
existing temporal learning tasks, i.e., those recognizing tem-
poral transformations (Misra, Zitnick, and Hebert 2016; Be-
naim et al. 2020; Jenni, Meishvili, and Favaro 2020), can
be solved by relying on only local appearance statistics (see
Figure 1 for an illustration and Table 1 for additional empir-
ical evidence). These low-level solutions hinder the learning
of temporal features that capture the global object dynamics.
Furthermore, existing temporal pretext tasks are often lim-
ited by near-perfect training performance, suggesting that
the task difficulty is not sufficient.

To address these issues, we make two technical contri-
butions. First, to address the newly identified shortcuts in
temporal self-supervision, we propose an effective frame-
independent augmentation strategy. In contrast to best prac-
tice in (self-supervised) video representation learning with
3D-CNNs (Qian et al. 2021b), where temporally consistent
augmentations are the norm, we demonstrate that an inde-
pendent per-frame jittering is hugely beneficial for temporal
pretext tasks. As can be seen in Figure 1, such frame-wise
augmentations force the model to consider global features
(e.g., pose) rather than local low-level shortcuts. This in-
creases the difficulty of the task and promotes better feature
learning.

As our second contribution and to further increase the dif-
ficulty of the pretext tasks, we propose to reformulate tem-
poral self-supervision as a frame-level time-varying recog-
nition task instead of the typical formulation as a clip-level
classification task (Misra, Zitnick, and Hebert 2016; Be-
naim et al. 2020; Jenni, Meishvili, and Favaro 2020; Wang,
Jiao, and Liu 2020; Jenni and Jin 2021). Concretely, in-
spired by prior pretext tasks about the temporal ordering
and playback speed of whole video clips (Misra, Zitnick,
and Hebert 2016; Benaim et al. 2020), we pose the follow-
ing time-varying tasks: 1) Out-of-order Frame Localization
(OFL) and 2) Time-varying Skiprate Prediction (TSP). In
OFL, the model has to identify a subset of the frames that
are out-of-order, i.e., do not match the natural temporal or-
der of most of the frames. For TSP, the network needs to
predict the playback rate at each frame, which we artificially
vary over time. Both these tasks require an accurate classi-
fication of each frame in the sequence, making them more
challenging than prior clip-level formulations. We realize
these learning tasks with a video transformer architecture
(Neimark et al. 2021), wherein a frame encoder (pre-trained
through image contrastive learning) is extended with a tem-
poral transformer (trained through our temporal SSL tasks).
This model thus effectively fuses the benefits of contrastive
and temporal self-supervision.

Finally, we perform a very comprehensive evaluation of
the learned video representations on a large number of
downstream video understanding tasks to assess their gen-
eralization ability and robustness. While most prior video

SSL studies focussed primarily on action recognition bench-
marks (e.g., UCF101, HMDB51, Kinetics400, Something-
SomethingV2, NTU60, Charades), we additionally evaluate
our representations and compare to the prior state-of-the-art
on a variety of other aspects, including holistic video un-
derstanding (HVU), temporal correspondence tasks (DAVIS
and JHMDB), and gait recognition (CASIA-B). We also
evaluate the robustness of the video retrieval task to input
video perturbations, following (Schiappa et al. 2023).
Contributions. Our contributions can be summarized as fol-
lows: 1) We identify shortcuts in temporal SSL based on
local patch similarity. To mitigate these shortcuts, we pro-
pose a frame-independent augmentation strategy, 2) We pro-
pose frame-wise and time-varying reformulations of tempo-
ral pretext tasks instead of the typical clip-level formulations
to increase the difficulty of the learning tasks, 3) We vali-
date our contributions in extensive ablation experiments and
comprehensively evaluate the learned video representations’
generalization ability, including action-related tasks, holistic
video understanding, temporal correspondence, and robust-
ness to input perturbations. Our results demonstrate state-of-
the-art performance across numerous benchmarks.

Prior Work
Prior work in self-supervised video representation learning
is based on a variety of learning objectives. These include
contrastive learning (Qian et al. 2021b; Yang et al. 2020;
Dave et al. 2022, 2023), pretext tasks (Misra, Zitnick, and
Hebert 2016; Benaim et al. 2020; Wei et al. 2018), masked
video modeling (Tong et al. 2022; Feichtenhofer et al. 2022),
and hybrid approaches combining multiple objectives (Bai
et al. 2020; Jenni and Jin 2021; Yao et al. 2020). We compare
our results with all these approaches in the experiments but
focus the following discussion on related works also relying
on temporal self-supervision, which is most relevant to our
approach.
Temporal Pretext Tasks. These methods are based on rec-
ognizing different distortions of the natural temporal evo-
lution of videos. Several works have explored temporal or-
dering tasks, which mainly deal with verifying or predicting
the temporal order of video frames or short clips. For ex-
ample, (Misra, Zitnick, and Hebert 2016; Yao et al. 2020;
Bai et al. 2020) posed frame order verification as a predic-
tion task of whether a sequence of 3-frames is in order or
not. Other works posed temporal ordering as a sorting task,
e.g., of 3-frame sequences (Lee et al. 2017) or a set of short
video clips (Xu et al. 2019; Hu et al. 2021). Other tem-
poral learning signals in videos can be found in the play-
back direction (Wei et al. 2018) (forward vs. backward play-
back) and the playback speed of the video. For example,
several works proposed the classification of different artifi-
cial playback speeds applied to a video for learning (Benaim
et al. 2020; Wang, Jiao, and Liu 2020), or additionally recog-
nizing non-uniformly warped videos (Jenni, Meishvili, and
Favaro 2020).

How do our task formulations for OFL and TSP differ
from prior work? Prior temporal pretext tasks are primarily
formulated at the sequence level, e.g., identifying whether
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Figure 2: Model Overview. We utilize a Video Transformer Network (Neimark et al. 2021) architecture, which extends an image
encoder F with a transformer E that takes frame embeddings as input tokens. To train such a model on unlabelled videos, we
optimize a self-supervised objective consisting of two novel temporal pretext tasks: Out-of-order Frame Localization (OFL),
and Time-Varying Skiprate Prediction (TSP). Details of each objective can be found in the Method section.

the whole sequence of frames is in correct order (Misra, Zit-
nick, and Hebert 2016) or exhibits a normal playback speed
(Benaim et al. 2020). In contrast, our formulation is posed
as a frame-wise prediction task, where each frame in the se-
quence is assigned a different label indicating if the frame is
in order (OFL) or at what skip rate is applied to it (TSP). As
our experiments show (Table 3), our more challenging per-
frame formulations result in significantly better-performing
features.
Shortcuts in Self-Supervised Learning. Many self-
supervised learning tasks suffer from trivial solutions ex-
ploiting low-level cues in the data to solve the task (short-
cuts). This hinders the learning of high-level generalizable
features. For example, chromatic aberration cues were iden-
tified as shortcuts in image-based pretext tasks (Doersch,
Gupta, and Efros 2015) and codec artifacts in video (Wei
et al. 2018). Likewise, contrastive learning approaches rely
on strong data augmentation to prevent trivial solutions
(Chen et al. 2020). To our best knowledge, we are the first to
identify and prevent shortcuts in temporal-pretext tasks due
to local patch appearances (see Figure 1). As we demon-
strate in Table 1 and 2, our frame-wise augmentation strat-
egy is effective at preventing this shortcut and considerably
improves downstream feature performance.

Method
Let {x1, . . . ,xn} be set of unlabeled videos where each
video consists of a sequence of frames, i.e., xi =
[x1i , . . . , x

ni
i ] and ni defines the number of frames in video

xi. Let further xi[I] = [xji ]j∈I denote a sequence of video
frames based on frame indices I ⊂ {1, . . . , ni}. In our
model, we first extract frame feature vectors f ji = F (xji ) ∈
Rd with an image encoder f for each frame of the sequence,
i.e., F (xi[I]) = [f ji ]j∈I . These feature vectors are then
considered as frame-tokens and fed as input to a transformer
network E along with learnable position encodings. Con-
cretely, the full model is given by E

(
F (xi[I]) + PE|I|

)
=

[e1i , . . . , e
|I|
i ], where PE|I| is a sequence of |I| learnable

position encodings, and eji denote the set of output tokens
after the transformer. We will now describe the various self-
supervised learning objectives in our framework.
Out-of-order Frame Localization. As a first temporal pre-
text task, we propose to train the frame token transformer
E to localize out-of-order frames. In this task, a subset of
the frames fed to the transformer are incorrectly placed, i.e.,
they have a random time shift applied to them. We then train
the networkE to predict whether each frame in the sequence
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Figure 3: Out-of-order Frame Localization (OFL). The
goal is to detect which frames are out of temporal or-
der. The task is posed as a binary classification problem,
where 0 indicates in-sequence frames and 1 indicates out-
of-order frames. Frame-IDs are shown in black, and the self-
supervised targets in red color.

Figure 4: Time-Varying Skiprate Prediction (TSP). The goal
is to predict the skiprate between the consecutive frames.
We pose the task as an M-way classification problem. In
this example, M=3 skiprate classes are used. The skiprate
label is shown in red color between consecutive frames.

is correctly placed. Since most frames will have a correct
placement, the transformer can leverage this global context
to infer the correct movement patterns in the sequence and
learn to detect frames that do not conform to them. We call
this pretext task Out-of-order Frame Localization (OFL).

To build example sequences for training, we manipulate
the frame sampling indices I. A correct sequence during
training is considered to be one where 1) all frames are in
correct temporal order and 2) there is a constant offset be-
tween consecutive frames. Concretely, for a video xi we
sample correct frame indices as I = [t, t+∆, . . . , t+ (p−
1)∆], where p denotes the number of frames, ∆ is the fixed
frame offset, and t is the starting frame, which is randomly
sampled from t ∼ U({1, . . . , ni − (p − 1)∆}). To build
inputs and targets for OFL training, we then sample and re-
place a random subset of the frame indices with other in-
dices. Concretely, let M ∈ {0, 1}p be a randomly sampled
binary sequence indicating for each index in I whether it
should be changed (Mi = 1) or kept (Mi = 0). The ratio
of changed indices ρ = 1

p

∑
Mi is randomly sampled from

the interval [0, 0.5] during training. Finally, the transformed
indices are constructed as Î = (1 − M) ⊗ I + M ⊗ S ,
where ⊗ denotes element-wise multiplication and S ⊂
{1, . . . , ni} is a random sequence of other frame indices. In
our best setting, we restrict the sampling of S to {min(I)−
∆, . . . ,min(I−1)}∪{max(I)+1, . . . ,max(I)+∆}, i.e.,
sampling frames before or after I with a maximum distance
of ∆.

Finally, the OFL objective LOFL is given by a standard
binary cross-entropy loss, i.e.,

LOFL = −
∑

eji∈E(F(xi[Î]))

Mj log σ(e
j
i )+(1−Mj) log

(
1− σ(eji )

)
,

(1)
where σ indicates a linear layer followed by a sigmoid ac-
tivation function. An example input sequence and out-of-
order frame are shown in Figure 3. We extensively study the
design choices of this task in the Ablation section.
Time-varying Skiprate Prediction. As a second tempo-
ral pretext task, we propose the recognition of time-varying
playback speeds (skiprate). For this task, we modify the
frame indices for sampling model inputs to Is = [t, t +
s1, . . . , t +

∑p
i=1 s

i], where si ∼ U({1, 4, 8}) are indepen-
dently sampled skiprates between frames i and i + 1. The

task is then to predict the sequence of time-varying skiprates
si from the input sequence xi[Is]. Concretely, we model the
probability of observing the three different skiprate classes
as ŝi = ψ(ei+1 − ei) ∈ R3, where ψ is a linear layer fol-
lowed by a softmax activation acting on temporal differences
of token embeddings. The TSP loss LTSP is then given by a
standard 3-way classification loss between the predicted and
ground-truth skiprate classes ŝi and si. Example inputs and
target outputs are provided in Figure 4. TSP design choices
are studied in the Ablation section.
Contrastive Loss We utilize two types of frame contrastive
losses in our model training. The first one is a cross-clip
term, wherein positive pairs for learning are built from
frames of the same clip (or an augmented version of it), and
negative pairs are built with frames belonging to different
videos. Concretely, given a training batch B of the frame
features f ji , the cross-clip loss is given by

LC1 =
∑

F (xi[I])∈B

∑
j,k∈I

log

 d
(
f ji , f̂

k
i

)
∑

fk
l ∈B 1{i ̸= l}d

(
f ji , f̂

k
l

)
 ,

(2)
where f ji and f̂ ji denote features of two differently aug-
mented views of xji and

d(u1, u2) := exp

(
1

λ

ϕ(u1)
⊺
ϕ(u2)

∥ϕ(u1)∥2∥ϕ(u2)∥2

)
, (3)

is a measure of similarity between the feature vectors u1 and
u2, and ϕ is a projection implemented via a multilayer per-
ceptron (MLP).

As a second frame-wise loss, we consider within-clip
terms, where positive pairs are built solely through different
image augmentations of the same frame, and negative pairs
are constructed with two different frames from the same clip.
Formally, this loss term is given by

LC2 =
∑

F (xi[I])∈B

log

 d
(
f ji , f̂

j
i

)
∑

fk
i ∈F (xi[I]) d

(
f ji , f̂

k
i

)
 . (4)

Combined Training Objective. Finally, we combine our
frame-level temporal pretext tasks with the contrastive loss
LC (LC1 + LC2). To summarize, we optimize

LSSL = λOLOFL + λTLTSP + λCLC , (5)
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Scale Framewise
Augment?

Pretext Task Accuracies
OFL (mAP) TSP (Top-1)

Full (224 x 224) No 87.6 57.9
Patch (32 x 32) 78.2 (-10.7%) 52.3 (-9.6%)
Full (224 x 224) Yes 84.1 56.8
Patch (32 x 32) 26.1 (-68.9%) 33.1 (-41.5%)

Table 1: Evidence for Shortcuts in Temporal Pretext Tasks.
We show the pretext task performance of models trained on
the full scene (224×224) or on only local patches (32×32),
with and without our frame-wise augmentation strategy. We
observe that a local patch model can achieve high accu-
racy when consistent augmentations are used, indicating that
global features are not necessary. In contrast, only the model
with the full scene context is able to achieve non-trivial per-
formance when frame-wise augmentations are used. The rel-
ative drop in accuracy is shown in red.

where λO, λT , and λC are loss weights. The model archi-
tecture and training objectives are illustrated in Figure 2.
Avoiding Shortcuts in Temporal Pretext Tasks. The
recognition of wrongly placed frames in our OFL task
should encourage the learning of motion features, e.g., tem-
poral patterns of object deformations. Such patterns are cru-
cial for video understanding tasks, e.g., for human action
recognition. However, we observe that the OFL task can of-
ten be solved by comparing the appearance of spatially lo-
cal image patches in neighboring frames (see Figure 1 and
experimental evidence in Table 1). Such low-level task solu-
tions that only consider local spatio-temporal pixel statistics
could hamper the learning of higher-level video features that
capture the more important changes in object dynamics. As
a solution to this problem, we propose to process the train-
ing frame sequences xi[Î] with spatial jittering applied inde-
pendently to each frame in the sequence. Concretely, when
augmenting a frame sequence, we first apply a standard aug-
mentation strategy for contrastive learning τc (e.g., color
jittering, horizontal flipping, etc.), which is applied consis-
tently to all frames and contains only weak spatial cropping.
We then independently apply additional spatial augmenta-
tions τi (e.g., random resizing and cropping) to each frame.
The proposed augmentation for an example xi can be ex-
pressed as

x̂i = [τ1 ◦ τc(x1i ), . . . , τni
◦ τc(xni

i )]. (6)

Such frame-wise augmentations introduce large differences
in the local frame patch appearances and force the model to
consider more global spatio-temporal features (e.g., object
dynamics) to solve the task.

Experiments
In this section, we first provide details about datasets, im-
plementation, and experimental setup. We perform abla-
tion studies and evaluate our SSL representation on various
downstream tasks.
Datasets. We use the following set of established video
benchmarks in our experiments:

UCF101 (Soomro, Zamir, and Shah 2012) is human action
dataset containing 101 classes of indoor and outdoor actions.
HMDB51 (Kuehne et al. 2011) is a relatively small-scale
dataset of 51 action classes with high intra-class diversity.
Kinetics400 (Carreira and Zisserman 2017) is a large-scale
action dataset containing 400 human activity classes col-
lected from YouTube.
Something-Something V2 (SSv2) (Goyal et al. 2017) con-
sists of over 174 action classes, providing a challenging and
diverse set of actions and environmental contexts.
NTU60 (Shahroudy et al. 2016) is a large-scale benchmark
for human action recognition, containing over 56,000 action
samples with 60 diverse action classes performed by multi-
ple subjects in real-world indoor and outdoor environments.
Charades (Sigurdsson et al. 2018) is a multi-label ac-
tion dataset containing 157 daily-life indoor actions in
untrimmed videos.
Holistic Video Understanding (HVU) (Diba et al. 2020) is
a large-scale benchmark addressing multi-label and multi-
task video understanding of multiple semantic aspects, in-
cluding scenes, objects, actions, attributes, and concepts.
DAVIS-2017 (Pont-Tuset et al. 2017) provides object-level
pixel-wise annotations. The evaluation set contains 57 dif-
ferent objects.
CASIA-B (Yu, Tan, and Tan 2006) is a gait-recognition
dataset for indoor walking videos of 124 subjects with 11
views from each.
JHMDB Pose (Jhuang et al. 2013) provides 31,838 anno-
tated frames with 13 joints (shoulder, elbow, knee, etc.).

Implementation Details. Our framework is built on the
Video Transformer Network (VTN) (Neimark et al. 2021)
architecture. In our default experimental setting, we utilize a
Vision Transformer (ViT) (Dosovitskiy et al. 2020) network
as our image encoder F (·). We perform our self-supervised
pertaining on unlabelled videos of Kinetics400. As inputs
to our network, we feed 8 frames of resolution 224 × 224.
During training, we use the common set of geometric aug-
mentations (random crop, resize, flipping) and color jittering
(random grayscale, color jittering, random erasing).
Experimental Setup. We focus our experiments on fixed-
feature evaluation, i.e., we keep the learned video repre-
sentations fixed and evaluate features via retrieval and lin-
ear probing experiments. This focus is motivated by 1) the
relevance to downstream video search applications, 2) the
more direct probing of properties in the learned features,
and 3) the better scalability of this approach to large-scale
video processing. While we acknowledge that superior per-
formance can often be achieved through a full finetuning of
the network, it is often infeasible to fine-tune networks and
reprocess massive amounts of high-dimensional video data
in practice. In contrast, training and inference with a shal-
low model (e.g., a linear classifier) on pre-extracted video
features are considerably more scalable.

Ablations
We perform extensive ablations to verify our frame-wise
pretext task formulation and illustrate the importance of
shortcut removal for temporal self-supervision. All ablations
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OFL TSP Framewise
Augment

UCF101 HMDB51
LOFL LTSP R@1 Lin R@1 Lin

init ✗ ✗ ✗ 79.20 85.11 41.44 50.20
(a) ✗ ✗ ✓ 80.15 85.31 43.35 52.42
(b) ✗ ✓ ✓ 82.73 88.12 46.14 54.22
(c) ✓ ✗ ✓ 83.90 89.29 48.98 58.28
(d) ✓ ✓ ✗ 82.50 87.80 46.51 55.60
(e) ✓ ✓ ✓ 84.68 89.90 50.20 58.70

Table 2: SSL Objectives Ablation Experiments. We per-
formed experiments to investigate the effect of the various
loss terms in our model (a-d) and the frame-wise augmenta-
tion strategy to remove shortcuts (e).

are performed with UCF101 pretraining, and we report
results with linear probing and nearest-neighbor retrieval.

Influence of No-Shortcuts Temporal SSL. In Table 2, we
analyze the influence of the temporal pretext tasks LOFL

and LTSP and illustrate the importance of avoiding short-
cuts in temporal SSL through our frame-wise augmenta-
tion strategy. We also report the performance when using
the image SSL pre-trained backbone only (init) and when
using contrastive learning on videos only (a). We observe
only minor improvements from further contrastive train-
ing on videos in (a). In contrast, both our temporal pre-
text tasks (LOFL and LTSP ) (b)-(c) contribute significantly
to downstream performance, increasing accuracy by 4-7%
across downstream tasks over the contrastive baselines. This
highlights the importance of capturing temporal features for
video representation learning. Finally, in (d), we see that
removing the framewise augmentation strategy reduces the
performance by a significant 2-4%. This illustrates our key
insight that temporal SSL methods have been plagued by
shortcuts and did not achieve their full potential.

Method UCF101 HMDB51
R@1 Lin R@1 Lin

Clip-level 80.85 86.42 44.85 54.54
OFL 83.90 (↑4%) 89.29 (↑3%) 48.98 (↑9%) 58.28 (↑7%)
Clip-level 81.35 86.71 44.85 52.47
TSP 82.73 (↑2%) 88.12 (↑2%) 46.14 (↑3%) 54.22 (↑3%)

Table 3: Comparison with clip-level temporal tasks

Comparing Clip-Level vs. Frame-Level Pretext Tasks. In
this study, we compare our frame-wise reformulation of tem-
poral pretext tasks with traditional global (i.e., clip-level)
task formulations. The first two rows of Table 3 compare
clip-level frame verification vs. our frame-level OFL task.
We can see clear performance gains across all downstream
protocols going from a clip-level task to a frame-level task.
The last two rows of Table 3 suggest similar conclusions
clip-level vs. frame-level skip rate prediction task. We find
that transitioning from clip-level to frame-level tasks sig-
nificantly raises the difficulty of pretext task, as indicated
by respective pretext accuracies of 99% vs. 87% order-
verification, and 96% vs. 55% the skip-prediction (numbers
not shown in Table 3).

Out-of-order Frame Localization. OFL has two main de-
sign parameters to explore: (1) the percentage of out-of-
order frames in the frame sequence, and (2) from where
in the video to sample out-of-order frames (i.e., how far
from the correct position). We also report pretext task per-
formance in terms of mAP to indicate the difficulty of OFL.
In Table 4, we compare fixed outlier rates (b)-(c) to sam-
pling outlier rates from a given interval at random (d)-(e).
We find that randomizing the outlier rate provides clear ben-
efits. Note the negative correlation between SSL and down-
stream performance, which validates our aim to increase the
difficulty of temporal SSL. We use unrestricted sampling
(i.e., Table 5 (a)) in this experiment.

Probability of
outlier token

OFL
Task

UCF101 HMDB51
R@1 Lin R@1 Lin

(a) 0.0 - 82.73 88.12 46.14 54.22
(b) 0.25 87.39 83.40 88.89 47.30 55.91
(c) 0.50 79.88 83.10 88.40 46.80 55.10
(d) U([0.0, 0.25]) 81.15 83.70 89.14 47.90 56.19
(e) U([0.0, 0.50]) 76.76 84.01 89.49 48.76 57.87

Table 4: Ablations of outlier token probability in OFL task.

In Table 5, we explore the sampling position of outlier
frames. We find that both a too-simple (b) and a too-difficult
and potentially ambiguous OFL task (c) result in poor down-
stream performance. The best results are achieved by sam-
pling the out-of-order frames within 64 frames of the in-
order position.

Out of Order frame
Sampling Restriction

OFL
Task

UCF101 HMDB51
R@1 Lin R@1 Lin

(a) Unrestricted 76.76 84.01 89.49 48.76 57.87
(b) Min. Distance = 8 81.26 83.27 87.67 47.52 56.50
(c) Max. Distance = 8 61.21 83.79 88.41 47.93 56.68
(d) Max. Distance = 64 74.37 84.68 89.90 50.20 58.70

Table 5: Abl of replacement frame sampling in OFL task.

Time-varying Skiprate Prediction. We explore the design
of TSP in Table 6, by using different subsets of {1, 2, 4, 8} as
skip rates for TSP. We observe that going from 2-way clas-
sification (b)-(c) to 3-way classification (d)-(e) consistently
improves performance. This again suggests that challenging
pretext task formulations help across downstream tasks.

Playback
Set

TSP
Task Acc.

UCF101 HMDB51
R@1 Lin R@1 Lin

(a) Φ - 83.09 88.05 47.58 56.70
(b) {1,4} 72.10 83.62 88.64 48.30 57.43
(c) {2,4} 71.55 83.53 88.76 48.30 57.55
(d) {1,4,8} 55.14 84.01 89.49 48.76 57.87
(e) {2,4,8} 54.66 84.00 89.23 48.81 57.92

Table 6: Ablations of various skip rates in TSP task.

Different Frame-wise Augmentations. We proposed using
frame-wise augmentation to break the local patch similarity-
based shortcuts in temporal pretext tasks. In this study, we
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Spatial
Cropping

Color
Jittering

Horizontal
Flipping

UCF101 HMDB51
R@1 Lin R@1 Lin

✓ ✗ ✗ 84.68 89.90 50.20 58.70
✓ ✓ ✗ 84.24 89.30 49.50 57.81
✓ ✗ ✓ 84.04 88.97 48.08 56.61

Table 7: Ablation for frame-wise augmentations

compare the performance of various frame-wise augmenta-
tions. From Table 7, we can observe that adding color jit-
tering to the random cropping decreases the performance by
a small margin, however, adding the frame-wise horizontal
flipping reduces the performance noticeably by 1-2%. In our
default setting, we only use frame-wise cropping.
Static and Temporal Feature Analysis. Since our model
learns and disentangles static and temporal features, we ex-
plore the influence of temporal features on our fused video
representation in Table 8 (Kinetics400 pretraining). While
static appearance features achieve a strong baseline perfor-
mance, temporal features lead to consistent and significant
improvements.

Features UCF101 HMDB51
R@1 Lin R@1 Lin

Static only 84.53 89.11 50.91 55.90
Static + Temporal 86.22 91.50 52.61 62.50

Table 8: Influence of temporal features.

Different Backbones and Initializations. Following the
prior work (Ranasinghe et al. 2022; Yao et al. 2020; Li et al.
2021), we use self-supervised weights learned on ImageNet-
1k (Deng et al. 2009) as initialization for the image encoder.
We compare various image encoders and their initialization
methods in Table 9.(a) In our default setting, we report re-
sults with ViT-L initialized with MUGS (Zhou et al. 2022b)
pre-training on ImageNet-1k.(b) We get similar/slightly bet-
ter results using iBOT (Zhou et al. 2022a) pre-training.(c)
Our results improve by 2-4% by using the iBOT pre-training
on ImageNet-21k, which shows the advantage of our method
to leverage the improvement in the image self-supervised
methods.(d,e) show our results with ViT-B backbone initial-
ized by MUGS (Zhou et al. 2022b) and DINO (Caron et al.
2021) pre-training on Imagenet-1k. Lastly, in(f), we show
similar results to our default setting with computationally
efficient SWIN-B backbone initialized with EsViT (Li et al.
2022) pre-training.

Arch. Pretraining
Method

UCF101 HMDB51
R@1 Lin R@1 Lin

(a) ViT-L MUGS 84.68 89.90 50.20 58.70
(b) ViT-L iBOT 84.52 89.81 51.21 59.45
(c) ViT-L iBOT (21k) 86.40 91.60 54.37 63.30
(d) ViT-B MUGS 84.08 89.33 48.43 58.20
(e) ViT-B DINO 84.90 90.71 45.81 57.97
(f) SWIN-B EsViT 84.25 89.64 46.73 58.11

Table 9: Different initialization and backbone

Downstream Tasks
We compare our SSL representations learned on Kinet-
ics400 to prior video SSL approaches on numerous video
understanding benchmarks. Note that, while prior methods
differ widely in terms of network architecture (among other
factors), our results with ViT-B are directly comparable with
the prior state-of-the-art approaches SVT, and VideoMAE.
Video Retrieval on UCF101 and HMDB51. We perform
action retrieval experiments to demonstrate the suitability of
our features for semantic video similarity search. Following
prior works (Han, Xie, and Zisserman 2020a; Dave et al.
2022; Diba et al. 2021), the test set of each dataset is used as
a query-set, and the training set is considered as a search-
set. We report Top-1 and Top-5 retrieval accuracy in Ta-
ble 10. Our method outperforms all prior works and achieves
3.3% and 8.2% absolute improvement of Top-1 accuracy on
UCF101 and HMDB51.
Action Recognition on UCF, HMDB, and Kinetics. We re-
port top-1 accuracies of linear probes and finetuning in Ta-
ble 10. The results demonstrate that our method is highly
competitive and outperforms most previous works on these
standard benchmarks. This highlights its potential to achieve
excellent results on videos found on the web.
Action Recognition on SSv2 and NTU60. Since these
datasets are captured in controlled and shared settings, they
exhibit less scene bias than datasets such as UCF, HMDB,
and Kinetics and require a stronger temporal understanding
to accurately classify actions. Our method outperforms the
best previous methods in linear probing by an absolute mar-
gin of 3.2% and 1.5% on SSv2 and NTU60, respectively,
demonstrating its suitability for action datasets captured in
controlled, real-world settings.
Multi-Label Action Recognition on Charades. We follow
the protocol of (Thoker et al. 2022), where the video-level
multi-label prediction task is considered. We report linear
multi-label classification performance in terms of mean av-
erage precision (mAP) in Table 10. Our method achieves an
absolute improvement of 1.3% over the previous state-of-
the-art method, demonstrating its effectiveness in real-world
multi-label and untrimmed videos.
Holistic Video Downstream on HVU. We perform lin-
ear classification on various semantic categories, including
scenes, objects, events, attributes, and concepts, along with
actions. As all semantics are in multi-label format, we report
the performance in terms of mean average precision (mAP),
as shown in Table 11. Our method consistently outperforms
the prior state-of-the-art methods and achieves the best over-
all score for holistic video understanding.
Video Object Segmentation (VOS) on DAVIS. We follow
the semi-supervised protocol of DAVIS-2017 (Pont-Tuset
et al. 2017), where the object masks of the first frame of
a video are given, and the task is to predict the masks in the
rest of the frames. Table 12 shows a comparison with the
prior works in the same protocol. All video SSL methods
use a ViT-B architecture and are pre-trained on Kinetics400.
Our method outperforms other video SSL methods. Some
qualitative results are shown in Figure 5.
Human Pose Propagation We use validation videos of JH-
MDB and follow the evaluation protocol of (Li et al. 2019).
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Method
Action Linear Classification Action Finetuning Video Retrieval

U101 H51 K400 SSv2 NTU60 Charades UCF101 HMDB51 UCF101 HMDB51
Top-1 Top-1 Top-1 Top-1 Top-1 mAP (%) Top-1 Top-1 R@1 R@5 R@1 R@5

He et al. 2020 65.4 - 34.5 7.4 16.0 8.1 83.5 - - - - -
Xu et al. 2019 - - - - - - 64.9 29.5 14.1 30.3 - -
Wang, Jiao, and Liu 2020 - - - - - - 68.0 36.6 25.6 42.7 12.9 31.6
Asano et al. 2020 51.2 - 24.1 4.5 15.7 8.2 84.9 - 52.0 68.6 24.8 47.6
Han, Xie, and Zisserman 2020b 74.5 46.1 - - - - 87.9 54.6 53.3 69.4 23.2 43.2
Wang et al. 2021b - - - - - - 70.3 40.5 16.8 33.4 8.2 25.9
Yao et al. 2020 79.6 42.2 61.9 - - - 88.3 55.6 - - - -
Chen and He 2021 - - - - - - - - 39.0 53.1 17.1 37.3
Qian et al. 2021b 89.8 58.3 66.1 - - - 92.9 67.9 - - - -
Feichtenhofer et al. 2021 90.1 61.1 68.3 24.5 51.2 18.1 94.2 72.1 76.8 87.1 39.6 64.1
Pan et al. 2021 66.3 - 31.0 19.5 51.6 10.5 78.7 49.2 - - - -
Hu et al. 2021 90.2 58.7 66.6 - - - 93.5 - - - - -
Qian et al. 2021a 63.2 33.4 - - - - 79.1 47.6 39.6 57.6 18.8 39.2
Jenni and Jin 2021 74.1 47.5 - - - - 83.7 60.8 64.3 80.9 29.5 55.8
Diba et al. 2021 75.4 47.3 63.4 - - - 89.1 55.7 55.4 70.9 24.6 45.1
Li et al. 2021 79.9 - - - - - 90.5 63.5 67.0 80.8 26.7 52.5
Wang et al. 2021a 37.9 - 7.6 12.2 22.6 9.6 88.4 61.7 29.0 47.3 11.8 30.1
Patrick et al. 2021 (+A) 75.7 - 38.6 11.9 38.2 8.5 89.3 60.0 62.8 79.0 26.1 51.7
Liang et al. 2022 - - - - - - 83.8 57.1 35.3 49.9 14.0 32.8
Dave et al. 2022 69.9 - 19.9 10.9 33.5 11.1 84.1 53.6 56.9 72.2 24.1 45.8
Duan et al. 2022 (+D) - - - - - 89.6 63.5 54.0 71.8 25.5 52.3
Khorasgani, Chen, and Shkurti 2022 72.3 41.8 - - - - 83.2 52.2 66.7 77.3 25.3 49.8
Ranasinghe et al. 2022 90.8 57.8 68.1 18.3 50.8 18.8 93.7 67.2 82.9 88.0 44.4 67.4
Ni et al. 2022 (+F) 88.7 56.5 - - - - 91.5 62.8 65.6 80.3 28.9 56.2
Xiao, Tighe, and Modolo 2022 (+F) 91.5 63.0 - - - - 94.0 67.4 73.4 - -
Tong et al. 2022 84.6 60.5 61.2 23.1 51.2 15.6 96.1 73.3 64.0 81.0 32.5 58.9
Jenni, Black, and Collomosse 2023 (+A) 88.0 58.2 - - - - 91.8 71.2 70.7 - 40.5 -
Thoker, Doughty, and Snoek 2023 - - - - - 10.3 91.0 64.1 - - - -
Ours (ViT-B) 91.0 60.8 68.2 27.0 52.3 20.1 94.2 64.1 85.1 93.1 49.4 74.0
Ours (ViT-L) 91.5 62.5 68.3 27.7 53.1 20.4 94.3 64.3 86.2 93.4 52.6 75.1

Table 10: Comparison with state-of-the-art methods on Action-related tasks. We report results for linear probing, full fine-
tuning, and video retrieval. Methods are sorted chronologically. Methods using additional modality over RGB videos are shown
with parenthesis, where A = audio, D = frame differences, and F = optical flow. R@1 and R@5 indicate video retrieval accuracy
in Top-1 and Top-5 nearest neighbors, respectively. Best results are shown in bold, and second-best in italics.

Method Action Obj. Scene Event Attr. Concept Overall
SVT 38.48 30.35 30.97 37.87 28.20 35.64 33.58
ρBYOL 33.20 25.82 28.40 35.50 24.16 33.21 30.05
VideoMAE 27.49 23.36 24.56 29.78 21.04 28.75 25.83
Ours(ViT-B) 38.65 33.46 34.24 40.23 30.99 38.38 35.99

Table 11: Downstream on HVU dataset (Diba et al. 2020)

In this protocol, the key points of the human pose are given
for the first frame, and the task is to predict the location of
those key points in the subsequent frames. We employ our
Kinetics400 pre-trained video SSL model without any fur-
ther tuning. The performance is measured as the percent-
age of correct key points (PCK@X), where X is a distance
threshold from the ground-truth joint position. The results
in Table 13 show the superior performance of our method
compared to prior video SSL methods. Qualitative results
are shown in Figure 6.
Human Gait Recognition. We evaluate our model on the
CASIA-B gait recognition dataset with the standard split.
The test set includes 50 subjects each with 10 sequences.

Figure 5: Qualitative Results on Video Object Segmentation
(DAVIS-17): Uniformly sampled frames from sequences
(top to bottom) dog and car-shadow and blackswan.

The test set is divided into two splits: gallery and probe set,
and the goal is to retrieve the probe set. Ours and prior video
SSL methods are pre-trained on Kinetics400, and no further
learning is performed for gait recognition. We report rank-1
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Pretraining J&F-Mean J-Mean F-Mean
Feichtenhofer et al. 2022 53.5 52.6 54.4
VideoMAE (Tong et al. 2022) 53.8 53.2 54.4
Yang et al. 2022 56.8 55.8 57.8
SVT (Ranasinghe et al. 2022) 48.5 46.8 50.1
Ours (ViT-B) 62.1 60.5 63.6

Table 12: Video Object Segmentation on DAVIS-2017.

Figure 6: Qualitative results on JHMDB Pose Propagation.

accuracy for each split in Table 14. Our method outperforms
prior works by a considerable margin.

Method NM BG CL Mean
ρBYOL 90.65 80.51 28.59 66.58
VideoMAE 65.30 57.21 21.40 47.97
Ours 98.60 92.57 28.66 73.28

Table 14: Gait Recognition on CASIA-B dataset.

Robustness to input perturbations Following (Schiappa
et al. 2023), we adopt the robustness protocol for the video
retrieval task on HMDB51, where, query-set and search-
set videos are corrupted using random frame-independent
perturbations like translation, Gaussian noise, or random
JPEG compression. We report Top-1 retrieval accuracy for
clean and perturbed videos for recent methods in Table 15,
where our method achieves the smallest drop in performance
across various perturbations. This superior robustness can
be attributed to our model’s capacity to learn and maintain
the temporal correspondence between frames, even when
they are independently perturbed. These qualities make our
method highly suitable for robust video retrieval scenarios,
where noise and perturbations are common challenges.

Conclusion
We have introduced a self-supervised approach for video
representation learning. Our model extends a representation
of static video frames with a transformer, which we train
through self-supervision to capture temporal features. Im-
portantly, we identified and addressed shortcuts in learning
through temporal self-supervision and reformulated time-
related learning tasks as more challenging frame-wise pre-
diction tasks. We demonstrated the effectiveness of our ap-
proach on a wide variety of video understanding tasks for
both generalization and robustness of the learned represen-
tations. We believe that our advancements in temporal self-
supervision could inspire future work in other temporal data
modalities (i.e., time-series data) or multi-modal video un-
derstanding, e.g., in combination with audio or language.

Pretraining PCK0.1 PCK0.2 PCK0.3 PCK0.4 PCK0.5

SVT 35.3 62.66 77.6 87.26 91.94
VideoMAE 36.5 62.1 76.7 88.1 91.5
Ours (ViT-B) 43.1 69.7 81.6 88.3 92.7

Table 13: Pose Propagation on JHMDB dataset.

Method Clean Translation Gaussian JPEG
SVT 44.40 43.21 (↓2.7) 41.80 (↓5.9) 41.52 (↓6.5)
ρBYOL 39.60 35.84 (↓9.6) 33.31 (↓15.9) 36.23 (↓8.5)
VideoMAE 32.50 26.72 (↓17.8) 26.22 (↓19.3) 26.61 (↓18.1)
Ours (ViT-B) 49.40 48.43 (↓2) 47.10 (↓4.7) 47.21 (↓4.4)
Ours (ViT-L) 52.60 51.50 (↓2.1) 50.06 (↓4.8) 50.46 (↓4.1)

Table 15: Action Retrieval with perturbation. (↓n) shows
relative drop in % compare to clean video retrieval.
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