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Abstract

Cross-modal retrieval relies on well-matched large-scale
datasets that are laborious in practice. Recently, to allevi-
ate expensive data collection, co-occurring pairs from the
Internet are automatically harvested for training. However,
it inevitably includes mismatched pairs, i.e., noisy corre-
spondences, undermining supervision reliability and degrad-
ing performance. Current methods leverage deep neural net-
works’ memorization effect to address noisy correspon-
dences, which overconfidently focus on similarity-guided
training with hard negatives and suffer from self-reinforcing
errors. In light of above, we introduce a novel noisy cor-
respondence learning framework, namely Self-Reinforcing
Errors Mitigation (SREM). Specifically, by viewing sample
matching as classification tasks within the batch, we gener-
ate classification logits for the given sample. Instead of a sin-
gle similarity score, we refine sample filtration through en-
ergy uncertainty and estimate model’s sensitivity of selected
clean samples using swapped classification entropy, in view
of the overall prediction distribution. Additionally, we pro-
pose cross-modal biased complementary learning to lever-
age negative matches overlooked in hard-negative training,
further improving model optimization stability and curbing
self-reinforcing errors. Extensive experiments on challenging
benchmarks affirm the efficacy and efficiency of SREM.

Introduction

Cross-modal matching, a key research area, focuses on re-
trieving relevant samples across various modalities. Con-
temporary methods achieve semantic alignment using
modal-specific encoders (Diao et al. 2021; Li et al. 2021).
They project data into a unified feature space, where
matched data from different modalities are drawn together,
while mismatched ones are pushed apart. To alleviate the
laborious collection of well-matched data, recent datasets
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(a) shows self-reinforcing errors in the training procedure of the
state-of-the-art MSCN (Han et al. 2023) on Flickr30K with 60%
synthetic noise. As training progresses, noisy samples are gradually
included and consequently degrade model performance.
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(b) illustrates that hinge-based ranking loss, by solely focusing on
query’s positive and hard negative sample, yields sub-optimal re-
sults as the query inadvertently becomes closer to other negatives.

Figure 1: Drawback illustrations of previous methods.

(Sharma et al. 2018) automatically collect co-occurring sam-
ple pairs from the Internet for training. However, they con-
tain around 20% mismatched pairs(Sharma et al. 2018;
Huang et al. 2021), namely noisy correspondences. Encour-
aging these mismatched pairs to be similar will significantly
degrade the matching performance.

Recent advancements (Yang et al. 2023) have tackled
noisy correspondences through neural network’s memoriza-
tion, which enables clean samples to exhibit higher similar-
ities than noisy ones after the initial few epochs (Yao et al.
2020). Specifically, after warmup, these methods further re-



The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

fine similarity prediction with the following alternate steps:
1) Using similarity scores to identify clean samples. 2) De-
riving soft margins proportional to similarity scores for ro-
bust matching of selected clean samples. The soft margins
are employed in a hinge-based ranking loss, where a larger
margin intensifies the model’s sensitivity towards differen-
tiating the given sample from its negatives. However, Fig-
ure 1(a) shows that such an approach is susceptible to self-
reinforcing errors. The primary vulnerability arises from that
clean sample selection and corresponding sensitivity estima-
tion rely heavily on model’s similarity prediction. This leads
to a critical issue where confident but incorrect similarity
predictions are amplified during subsequent training, form-
ing a loop of self-reinforcing errors (Chen et al. 2023; Yang
et al. 2023). Furthermore, hinge-based ranking loss solely
focuses on query’s positive and hard negative sample, over-
looking numerous negative information. Figure 1(b) shows
that this narrow focus results in suboptimal model optimiza-
tion, potentially aggravating self-reinforcing errors.

In light of above, we propose a novel noisy correspon-
dence learning framework, namely SREM, with three core
modules: 1) We introduce a novel energy-guided approach
to complement conventional similarity-based sample filtra-
tion. We first produce classification logits for a sample by
viewing sample matching as a classification task within the
batch. We then use energy scores derived from classifica-
tion logits to gauge the model’s uncertainty during sam-
ple selection. As a result, this strategy ensures the selected
clean samples maintain both high similarity and low uncer-
tainty, paving the way for more precise data division. 2)
We propose a Swapped Gradient Weighting (SGW) strat-
egy. SGW assesses the model’s sensitivity towards individ-
ual samples by leveraging swapped classification entropy for
robust matching. Samples with lower entropy suggest higher
prediction confidence, thus the model should be more sen-
sitive to them and let them contribute more to optimization
(Iscen et al. 2019). In contrast to a single similarity score,
SGW considers the model’s prediction distribution over
both clean and negative samples, ensuring robustness. 3)
We introduce a novel Cross-Modal Biased Complementary
Learning (CMBCL) objective for leveraging negative sam-
ples overlooked in the hinge-based ranking loss. We perceive
these overlooked negative matches as “complementary la-
bels” that essentially signal non-matching samples, guiding
the model to distance positive samples from all negatives
and thus circumventing potential self-reinforcing errors.

Extensive experiments highlight that SREM surpasses
state-of-the-art by more than 1% in average recall and re-
duces training time by more than 40%. Morever, we theoret-
ically prove CMBCL’s efficacy, as it converges to an optimal
classifier equivalent to one trained with true labels. We also
highlight its generality by encompassing the strong competi-
tor RCL (Hu et al. 2023) as a special case.

Related Work

Cross Modal Retrieval

Cross-modal matching (Radford et al. 2021; Chen et al.
2021; Diao et al. 2021; Lee et al. 2018) aims to project im-
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ages and texts into a unified space where matched multi-
modal pairs are similar while mismatched are dissimilar.

Contrary to previous approaches that presuppose well-
matched training data, the prohibitive collection costs have
fostered the emergence of new paradigms like noisy cor-
respondences, a prevalent issue in domains such as person
re-id (Yang et al. 2022a), graph matching (Lin et al. 2023),
and multi-view learning (Yang et al. 2022b, 2021). Current
methods in cross-modal matching (Yang et al. 2023; Han
et al. 2023; Huang et al. 2021) primarily employ multi-step
frameworks: They first estimate the distribution of instance-
level loss/similarity across the entire dataset. Then they com-
pute the posterior probability as the pseudo-label for each
sample, which is further filtered by a threshold and clean
samples are used for training. To eliminate additional com-
putation overhead caused by similarity distribution estima-
tion, DECL (Qin et al. 2022) uses similarity with eviden-
tial learning to dynamically filter out noisy correspondences
within each batch. However, similarity-guided training in
previous methods lead to self-reinforcing errors. In contrast,
our SREM addresses overconfidence in similarity scores
through overall prediction distributions, effectively mitigat-
ing such errors and notably enhancing performance.

Complementary Label Learning

Unlike conventional classification tasks, samples in comple-
mentary label learning (CLL) are assigned complementary
labels that indicate classes they do not belong to. To effec-
tively use these weak supervisions, (Ishida et al. 2017, 2019)
assume the uniform distribution of complementary labels
and prove an optimal classifier can be learned with mere
complementary labels. Differently, some works (Yu et al.
2018; Gao and Zhang 2021; Xu et al. 2020) consider the un-
known distribution of complementary labels. By estimating
label transition probabilities, they inferred the distribution
of complementary labels and subsequently refined them for
training. In noisy correspondence learning, RCL (Hu et al.
2023) extends CLL to introduce a novel contrastive learning
framework that exclusively leverages negative information,
mitigating the potential negative effects of mismatched sam-
ples. However, the neglect of powerful positive supervision
leads to suboptimal results for RCL. On the contrary, be-
yond using positive supervision in ranking loss, we addition-
ally leverage the dissimilarity of negative samples to utilize
negative information more effectively, therefore achieving a
more robust training regime against noisy correspondence.

Methodology
Problem Definition

Following previous works, we use image-text retrieval as a
proxy task to explore noisy correspondence in cross-modal
matching, consisting of two sub-tasks: image-to-text (i2t)
and text-to-image (t2i) retrieval. Let D = {(I;, T;,m;)} ¥,
denote a training dataset, where N is the data size and
(I;, T;) is the i-th image-text pair with label m; € {0,1} in-
dicating whether they are matched. In noisy correspondence,
an unknown portion of pairs in D is mismatched, i.e., the im-
age and text are not matched but with matched labels.
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Model Overview

In this section, we detailly present our SREM with an
overview shown in Figure 2. For simplicity, we take image-
to-text retrieval as a showcase to introduce the pipeline of
SREM, while text-to-image retrieval is conducted symmet-
rically. Initially, the feature encoder generates similarity log-
its from the input pair. Then, we employ three elaborately-
designed modules to mitigate the self-reinforcing errors dur-
ing training. Given the disparities in prediction distribution,
we utilize energy uncertainty to segregate clean samples,
denoted as D jeqn, from noisy correspondences, Dyoisy-
To enhance SREM’s robustness, we introduce the swapped
gradient weighting and cross-modal biased complemen-
tary learning framework. The former proposes a gradient-
rescaled ranking loss L,,, while the latter effectively lever-
ages the overlooked negative matches D,,¢4 in L,, as com-
plementary labels. We will detail each component and cor-
responding optimization objective in what follows.

Feature Encoder

Initially, the feature encoder projects both visual and tex-
tual data into a unified feature space using model-specific
encoders f and g, respectively. Within the unified feature
space, a function h computes the similarity logit as F;; =
h(f(L;),9(T;)) (h(I;, T;) for short ), where the correspond-
ing similarity score is defined as S;; = o(F;;). Here, o()
denotes the sigmoid activation function.

Energy-Guided Sample Filtration

Our objective is to circumvent the pitfalls of previous meth-
ods that overconfidently divide samples with similarity pre-
diction, thereby introducing potential sample selection risk.
Take the similarity scores [0.85, 0.80, 0.82] as an example:
the first score represents the given sample pair, while the
others correspond to its negative samples. Even though the
given sample pair exhibits a high similarity score, it is not
significantly different from the negative samples, suggesting
a possible mismatch. Hence, selecting such a sample pair as
“clean” based solely on similarity can be risky.

To this issue, by considering the overall prediction dis-
tribution, we aim to explore sample selection uncertainty
to complement similarity-based sample filtration. Given a
batchsize B, we first generate the classification logits F; of
the visual input I; by viewing sample matching as a clas-
sification task within the batch. Fj is formulated as F; =
{Fi1, -+, F;p} with a corresponding label y; = 7. Due
to DNN’s memorization effect, the model initially becomes
adept at recognizing clean samples, leading to an unimodal
distribution at y;. In contrast, model struggles to differenti-
ate noisy correspondences from their negatives, also giving
rise to a more uniform distribution.

In view of such difference, we turn to energy uncertainty
in logits space, which is a widely acceptable metric in the
literature of uncertainty learning (Liu et al. 2020; Xie et al.
2022). Specifically, the energy uncertainty corresponding to
the visual input I; can be calculated by:

Energy (I;) = —log ZleeF’ib. @)

Energy-Guided Sample Filtration Robust NCL
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Figure 2: Illustration of the proposed SREM.

Intuitively, more uniformly distributed prediction (i.e., noisy
correspondence) leads to higher estimated energy uncer-
tainty (Zhang et al. 2023). Therefore we select the clean
samples by applying a threshold 7 and the maximum sim-
ilarity constraint (Qin et al. 2022), i.e.,

Detean = {¢ | Energy(I;) < 7 and y; = argmax; F;;}, (2)

while Dy,sy refers to mismatched samples. In this sense,
the selected samples maintain both low uncertainty and high
similarity, paving the way for more precise sample division.

Moreover, we conceive an energy-bounded loss LZ to re-
duce the energy uncertainty of clean samples while enhanc-
ing that of noisy samples for enlarged margins, i.e.,

Ll =Eip,., [0,Energy(I;) — miean] . 3)
+ EiNDnoisy [07 Mnoisy — EnergY(Ii)]iﬂ

where [z]; = max(x,0); Meiean and Mpoisy are separate

margins that penalize the clean (noisy) samples with energy
uncertainty higher (lower) than the given margin.

Swapped Gradient Weighting

After sample filtration, it is risky to directly train the model
on D as it potentially contains some false positives
(Huang et al. 2021; Yang et al. 2023). To ensure robust train-
ing, it’s crucial to devise strategies that allow the model to
adaptively maintain varied sensitivities to samples within
Delean- Instead of overconfident single similarity score, we
introduce classification entropy to estimate sensitivity of
each clean sample. Visual input I;’s classification distribu-
tion is defined as P; = softmax(F;), and the corresponding
normalized classification entropy e(F;) is formulated as:

B
> =1 (Pijlog Pyj)
log B '

Here log B is the maximum entropy to scale e(F;) into [0, 1]
for numerical stability. In this sense, low e( P;) highlights the
model’s ability to recognize matched samples, while sup-
pressing similarity scores to other negative samples. Con-
sequently, model should be more sensitive to samples with
lower e(P;) in optimization (Iscen et al. 2019).

e(P) =— “4)
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In light of above, let w! denote the entropy-based model’s
sensitivity to visual input I; in i2t retrieval, formulated by:

w! =1—e(P)1(a— Sii + o(h(1i, Tyi)))), (S

where o > 0 is the expected margin between positive and
negative match; ¢(i) = argmax;.;(Fi;) and Tj;) is the
hard negative text of I;, i.e., the negative text most similar to
I; within the batch. Moreover, we employ indicator function
1(+) to evaluate whether a sample and its hard negative have
expected discrimination «. This design avoids unnecessary
gradients on samples exhibiting satisfactory discrimination,
reducing the risk of overfitting. Besides, we further employ
swapped prediction strategy on calculated e(P;), which is
widely used in cross-modal tasks for improving robustness
(Andonian, Chen, and Hamid 2022). Its key idea is to use the
weights derived from one modality for the other modality,
promoting cross-modal consistency in the learning process.
For example, we use w;f derived from t2i classification en-
tropy for i2t retrieval training, and vice-versa. Specifically,

we apply w! with hinge-based ranking loss, defined as:
Ly = Einpye o — w] Sii + o (Wi, Ty(i)))] 4. (6)

As a result, the derivative of L2! with respect to model pa-
oL, _ OLy" 9s

rameters ¢ is given by the chain rule =% S4— 57 with
T . .
dL2t Wi, o J=1
—Ses =L i=el) )
ij 0, otherwise

Equation (7) implies that clean samples exhibiting more cer-
tain distributions will retain larger gradients, consequently
to which model is more sensitive. Compared to sample-
reweighting methods (Wei et al. 2021; Wang et al. 2019), our
SGW strategy further suppresses similarity scores to hard

i2t
9Sie(i)
tively adjust model’s sensitivity of different samples in opti-
mization, enhancing matching robustness.

negatives as —

= —1. Thus, Equation (6) can effec-

Cross-Modal Biased Complementary Learning

Evidently, Equation (7) highlights that L‘** overlooks nu-
merous negative similarities defined as:

Dhpeg = {S” | J #1; and if ¢ € Dejean, Jj # (b(l)} ®)

These overlooked negative similarities maintain zero gra-
dients and are ignored in model optimization. However, in
classification, these overlooked similarities indicate the sam-
ples that do not match the given sample, i.e., complemen-
tary labels. As shown in Figure 2, harnessing these comple-
mentary labels can enhance the stability of the model op-
timization. In this sense, we construct an auxiliary dataset
Dyeg = {(i, Vi) }2 | within each batch. Here i is the index
of given image I; within batch, )J; is corresponding comple-
mentary labels formulated as:

Furthermore, we explore non-uniformly distributed comple-
mentary labels to improve model’s generality, due to the fol-
lowing facts: 1) Ideal uniformly distributed complementary
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labels do not necessarily hold in real-world data, particularly
in instance-level classification. 2) Non-uniform complemen-
tary labels permit model to focus more on the harder nega-
tives, thereby preventing informative supervision from being
overwhelmed by redundant negative samples.

Inspired by (Yu et al. 2018; Gao and Zhang 2021), we pre-
fer to choose negative with higher similarity as the comple-
mentary label, enabling model to focus more on challenging
and informative negative counterparts. Notably, we directly
use similarity to estimate the selection probability of com-
plementary labels, as they are leveraged to suppress nega-
tive information and do not involve self-reinforcing errors.
Specifically, we employ MS (Wang et al. 2019) to gauge the
likelihood of selecting T as I;’s complementary label, con-
sidering both self and relative similarities as:

pi2t P57
U T Y ey, PR

where [ and b are two hyperparameters of Binomial de-
viance (Hastie et al. 2009), controlling the smoothness of
selection distribution. Note that selected hard negatives from
Delean have already been considered in L,’u?t, we exclude
these samples to prevent their over-representation in the
model training process, which is formulated by:

ity - an
We then rectify complementary labels using the overall se-
lection probability (Yu et al. 2018), i.e.,

S’ = softmax(P**)T'S. (12)

Ultimately, the cross-modal biased complementary learning
objective L’ft on D4 is formulated as:

L?t = _E(i,ji,;)NDnegEijii [log(l - S;])]
Moreover, we provide theoretical evidence to better elu-
cidate CMBCL’s efficacy in Theorem 1.

Theorem 1. Given sufficient data with complementary la-
bels, minimizing Equation (13) can yield the optimal classi-
fier equivalent to that trained with the true labels.

(10)

—00, Vi€ Dclean-

(13)

Model Optimization

To ensure consistent performance across modalities, we em-
ploy SREM for bidirectional matching, encompassing both
image-to-text and text-to-image tasks, formulated by:

min L = 0.5(Li" + L) +-Aa (L + L)+ de( L2 + L),

where LT, L2 and L'?* represent objectives when sym-
metrically applying energy-guided sample filtration, SGW,
and CMBCL for text-to-image retrieval. Ay, A2 € [0, 1] are
hyperparameters to adjust the effect of energy uncertainty
estimation and negative information utilization.

Experiments
Experiments Setting

Datasets Following previous works (Han et al. 2023), we
evaluate SREM using three image-text retrieval datasets, in-
cluding COCO (Lin et al. 2014), Flickr30K (Young et al.
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Flickr30K MS-COCO
Image— Text Text—Image Image— Text Text—:Image

Noise | Methods | R@1 R@5 R@l10 | R@l R@5 R@10 | Sum | R@l R@5 R@10 | R@l R@5 R@10 | Sum
SCAN 585 81.0  90.8 355 650 752 | 406.0 | 622 90.0  96.1 46.2  80.8 89.2 | 464.5
VSRN 334 595 71.3 250 476 586 | 2954 | 618 873 92.9 50.0 80.3 88.3 | 460.6
IMRAM | 22.7 540 678 16.6  41.8 541 | 2570 | 699 936 974 559 844 89.6 | 490.8

SAF 62.8 88.7 93.9 49.7 736 78.0 | 4467 | 71.5 940 975 57.8 864 919 | 499.1

20% SGR 559 815 88.9 402 66.8 753 | 408.6 | 25.7 58.8 75.1 235 589 751 | 317.1
NCR 735 932 96.6 569 824 885 | 491.1 | 766 956 982 60.8  88.8 95.0 | 515.0
DECL 715 938 97.0 56.1  81.8 88.5 | 4947 | 775 959 98.4 61.7 893 954 | 5182
BiCrot 78.1 944 975 604 84.4 89.9 | 504.7 | 78.8 96.1 98.6 63.7 90.3 95.7 | 523.2
MSCNT | 774 949 976 59.6 832 89.2 | 502.1 | 781 97.2 9838 643 904 958 | 524.6
RCL 759 945 97.3 579 826 88.6 | 4968 | 789 96.0 984 628 899 954 | 5214

Ours 795 942 97.9 61.2 848 90.2 | 507.8 | 785 96.8 98.8 63.8 904 958 | 524.1
SCAN 260 574 718 17.8  40.5 514 | 2649 | 429 746 85.1 242 526 63.8 | 343.2
VSRN 2.6 10.3 14.8 3.0 9.3 15.0 55.0 | 298 621 76.6 17.1  46.1 60.3 | 292.0
IMRAM 53 254 376 5.0 13.5 19.6 | 106.4 | 51.8 824 909 384 703 78.9 | 412.7
SAF 7.4 19.6 26.7 44 12.2 17.0 87.3 13.5 438 482 16.0 39.0 50.8 | 211.3

40% SGR 4.1 16.6 24.1 4.1 13.2 19.7 81.8 1.3 3.7 6.3 0.5 25 4.1 18.4
NCR 68.1 89.6 94.8 514 784 84.8 | 467.1 | 747 94,6  98.0 59.6  88.1 94.7 | 509.7
DECL 727 923 95.4 534 794 86.4 | 479.6 | 75.6 955 98.3 595 883 94.8 | 512.0

BiCrof 746 927 96.2 555 811 87.4 | 4875 | 77.0 959 98.3 61.8 892 949 | 517.1
MSCN*t | 71.9  92.0 954 55.1  80.2 86.8 | 4813 | 77.1  95.7 98.4 61.2 88.6 948 | 515.7

RCL 727 927 96.1 54.8  80.0 87.1 | 4834 | 77.0 955 98.3 61.2 885 94.8 | 5153
Ours 765 939 963 575 827 885 | 4954 | 772 960 985 62.1 893 953 | 5184
SCAN 13.6  36.5 50.3 4.8 13.6 19.8 | 1386 | 299 60.9 74.8 0.9 2.4 4.1 173.0
VSRN 0.8 2.5 53 1.2 4.2 6.9 209 | 11.6 340 475 4.6 16.4 259 | 140.0
IMRAM 1.5 8.9 17.4 1.9 5.0 7.8 425 182 51.6  68.0 179  43.6 54.6 | 2539

SAF 0.1 1.5 2.8 0.4 1.2 2.3 8.3 0.1 0.5 0.7 0.8 35 6.3 11.9

60% SGR 1.5 6.6 9.6 0.3 23 4.2 24.5 0.1 0.6 1.0 0.1 0.5 1.1 3.4
NCR 139 377 50.5 11.0 30.1 414 | 1846 | 0.1 0.3 0.4 0.1 0.5 1.0 2.4

DECL 652 884 940 46.8 74.0 822 | 4506 | 73.0 942 979 570 86.6  93.8 | 502.5

BiCrot 67.6  90.8 94.4 512 776 84.7 | 4663 | 739 944 978 583 872 939 | 5055
MSCN*1 | 67.5 884  93.1 48.7  76.1 823 | 456.1 | 741 944  97.6 575 864 934 | 5034

RCL 67.7 89.1 93.6 48.0 749 83.3 | 456.6 | 740 943 97.5 576 864 935 | 5033
Ours 71.0 921 96.1 540 80.1 87.0 | 4803 | 745 945 97.9 58.7 875 939 | 506.9

Table 1: Image-Text Retrieval on Flickr30K and MS-COCO 1K. Results marked with ‘*’ are reproduced results from their
official code, while ‘{’ signifies methods that incorporate additional priors.

2014) and CC152K (Huang et al. 2021). The first two are
well-annotated, while CC152K is harvested from the in-
ternet. Specifically, COCO and Flickr30K contain 123287
and 31783 images with 5 corresponding captions per im-
age, respectively. Following (Huang et al. 2021), we main-
tain SK/5K and SK/5K image-text pairs for validation/test,
leaving the remainder for training. CC152K contains 152K
image-text pairs, 150K pairs for training, 1K for validation
and another 1K for testing.

Evaluation Metrics Following previous work (Han et al.
2023), we evaluate SREM with the recall rate at K (R@K)
that measures the proportion of relevant items found within
the top K results of a ranked list. By querying both images
and texts, we report corresponding results of R@1, R@5
and R@10, which are further summed to evaluate the overall
performance, i.e., R_sum.

Implementation Details As a plug-and-play module, our
SREM can be seamlessly applied in various image-text re-
trieval methods to improve their robustness against noisy
correspondences. Here, we adopt the same backbone,
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SGRAF (Diao et al. 2021), with the same training settings
as (Huang et al. 2021) for fair comparisons. Specifically,
we warm up the model for 5 epochs with L' and L% to
achieve initial convergence, followed by a 50 epochs train-
ing process. We employ a batch size of 128 and an Adam
(Kingma and Ba 2014) optimizer with a learning rate of 2e-
4 that will be decayed by 0.1 after 25 epochs.

Comparison with State-Of-The-Art

We compare the proposed SREM against current state-of-
the-art (SOTA) methods to demonstrate its effectiveness, in-
cluding general image-text retrieval methods SCAN (Lee
et al. 2018), VSRN (Li et al. 2019), IMRAM (Chen et al.
2020), SGR, SAF(Diao et al. 2021), and noisy correspon-
dence robust methods NCR (Huang et al. 2021), DECL (Qin
et al. 2022), MSCN (Han et al. 2023), BiCro (Yang et al.
2023) and RCL (Hu et al. 2023).

Results on Synthetic Noise of Flickr30K and MS-COCO
As in previous works, we emulate noisy correspondences
by randomly shuffling the training images and captions for
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Image—Text | Text—Image

Methods R@1/5/10 R@1/5/10 Sum
VSRN | 32.6/61.3/70.5 | 32.5/59.4/70.4 | 326.7
IMRAM | 33.1/57.6/68.1 | 29.0/56.8/67.4 | 312.0
SAF 31.7/59.3/68.2 | 31.9/59.0/67.9 | 318.0
NCR 39.5/64.5/73.5 | 40.3/64.6/73.2 | 355.6
DECL | 39.0/66.1/75.5 | 40.7/66.3/76.7 | 364.3
BiCro | 40.8/67.2/76.1 | 42.1/67.6/76.4 | 370.2
MSCN | 40.1/65.7/76.6 | 40.6/67.4/76.3 | 366.7
Ours 40.9/67.5/77.1 | 41.5/68.2/77.0 | 372.2

Table 2: Image-Text Retrieval on CC152K.

specific noise ratios. We report results with noise ratio 20%,
40%, 60% for comprehensive comparison with current SO-
TAs, such as MSCN and BiCro.

Table 1 details the results of Flickr30K and MS-COCO
on different noise ratios, where the results of MS-COCO
are averaged on 5 folds of 1K test images as in previous
works. We find that the strong noise-robust competitors,
i.e., MSCN and BiCro, achieve markedly better results than
general image-text retrieval methods, highlighting the ne-
cessity of designing models that can effectively withstand
noise. However, they introduce strong priors, e.g., 3% addi-
tional clean samples for MSCN and extra model ensemble
for BiCro, resulting in costly data collection and computa-
tion overhead, respectively. More troublingly, as the noise
ratio increases, the performance of these methods deterio-
rates drastically due to self-reinforcing errors. In contrast,
our SREM, devoid of any such priors, is more effective and
stable, improving R_sum by more than 1% on average.

Results on Real-World Noise of CC152K CC152K, au-
tomatically harvested from the Internet, inherently contains
approximately 20% noisy correspondences.It thereby can
be used to evaluate SREM’s ability in handling real-world
noise. We train and evaluate SREM without introducing any
additional synthetic noise. Table 2 shows that SREM per-
forms commendably even without any priors. Specifically,
it outperforms the strongest competitors MSCN and BiCro
by an average of 1% in R_sum. Besides, SREM consistently
and significantly triumphs over all baselines in all results,
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(d) Epoch 50

Methods

Image— Text

Text—Image

L, L, L} L.

R@1/5/10

R@1/5/10

v

AENENEN
SNENEN

v

32.5/59.5/70.0
37.3/63.7/73.1
40.2/63.2/74.2
40.5/67.3/75.8
40.9/67.5/77.1

32.5/60.7/68.7
36.9/64.8/74.1
37.7/65.3/74.9
42.5/67.9/76.2
41.5/68.2/77.0

Table 3: Component Analyses on CC152K with real-world
noise. L} denotes conventional complementary learning
without considering the complementary label distribution.

except for R@1 of retrieving images. These results demon-
strate SREM’s appealing efficacy in real-world scenarios.

Ablation Studies

Component Analyses Table 3 shows that vanilla trained
model exhibits suboptimal performance, illustrating its sus-
ceptibility to disturbances caused by noisy correspondences.
The energy-guided sample filtration significantly enhances
the performance by more than 10% on R@1. When us-
ing swapped gradient weighting, we observe performance
boosts in all results, except R@5 for text retrieving. Further-
more, with consideration of label distributions, leveraging
unused negative information as biased complementary la-
bels considerably improves performance, evidenced by an
increase of more than 1% in R_sum. These results underline
the significant role of complementary labels in fortifying re-
trieval robustness. The best performance is achieved with all
proposed components, demonstrating their efficacy.

Visualization on Energy Uncertainty Figure 3 visual-
izes energy uncertainty during training. As training pro-
gresses, the energy uncertainty of clean samples becomes
lower while that of noisy correspondences increases, mani-
festing a clear polarizing trend. These observations validate
the efficacy of energy uncertainty estimation for noisy cor-
respondences. Therefore, the energy uncertainty from the
overall prediction distribution can naturally be used to dif-
ferentiate between noisy and clean pairs, further boosting
the robustness against noisy correspondences.
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talking on hands put a steak of meat the industry curlers will play for
the mobile phone (-0.17) ona (-0.12) fountain (-0.91) (-0.68) different teams (-0.39)
Figure 4: Real-world noisy examples detected by our SREM, with the setting of mcjean = —4 and my0isy = 0, whose energy

uncertainty are shown in brackets. We highlight the matched words in green and the mismatched words in red.
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Figure 5: Comparing performance (solid) and noise gradient
ratio (dashed) on 60% noise Flickr30K as training proceeds.

Visualization on Self-Reinforcing Errors We track the
training progress to validate the efficacy of our SREM in
alleviating self-reinforcing errors. Specifically, we measure
the performance of each epoch, as well as noisy gradients
ratio relative to all positive gradients (the proportion of false
positive gradients created by enhancing mismatched sam-
ples’ similarity in L,,). We also provide the results of MSCN
and BiCro for more comprehensive and fair comparisons.
As shown in Figure 5, since CMBCL during warmup avoids
self-reinforcing errors, SREM starts with the lowest noisy
gradient ratio. While in training, with its carefully designed
components, SREM effectively suppresses self-reinforcing
errors, exhibiting a significantly lower and stable noise gra-
dient ratio, i.e., less than 7%. In contrast, MSCN and BiCro
start with higher noise gradient ratios that rapidly increase in
training due to their similarity-based training with hard neg-
atives. As a result, SREM achieves better performance with
stable optimization, while MSCN and BiCro exhibit unsat-
isfactory results, whose performance gradually drops with
noisy gradient ratio increasing. These results highlight the
efficacy of SREM in alleviating self-reinforcing errors.

Efficiency Analyses We report the training overhead per
epoch on CC152K using an NVIDIA Tesla A40 48G in Ta-
ble 4. The training time of MSCN and BiCro contains two
parts as they first pre-compute similarity across the entire
dataset and then conduct sample filtration before training.
These steps incur additional computation and storage over-
head. Moreover, MSCN computes meta gradients for model
optimization and BiCro rectifies soft correspondences via
numerous anchor samples, both of which are computation-
ally expensive and thus further diminishing efficiency. Dif-

1469

Methods \ Filtration (S) Training (S) GPU (MB)
MSCN 365 6344 21367
BiCro 358 3093 14543
Ours 0 1506 13022

Table 4: Comparison of time cost and graphics memory in
training, with reported time being the average of 50 epochs.

ferently, our SREM not only eliminates the pre-computation
but also employs computationally efficient techniques, i.e.,
energy uncertainty, entropy and complementary learning.
Consequently, SREM reduces the training time by more than
40%, highlighting its efficiency and potential applicability to
large-scale datasets.

Detected Noisy Real-World Correspondences Figure 4
shows some real-world noisy correspondences in CC152K
detected by our SREM with their corresponding energy un-
certainty. Specifically, SREM is not limited to recognizing
only obvious noisy pairs containing completely irrelevant
information. It also can identify hard mismatched pairs with
subtle semantic misalignment, e.g., the missing elements of
the phone, hands, steak and fountain, ezc., as well as the in-
congruence between concepts like “building” and “indus-
try”. These results qualitatively demonstrate SREM’s effi-
cacy for handling real-world applications.

Conclusion

This paper presents a novel framework, SREM, to address
the challenges of noisy correspondences in cross-modal
matching. Using per-sample classification logits, SREM in-
geniously employs energy uncertainty to filter out the noisy
correspondences, paving the way for more precise data divi-
sion. It then applies SGW to recalibrate gradients, offering
a more nuanced approach to assessing model’s sensitivity in
sample matching. Moreover, the CMBCL framework within
SREM harnesses previously overlooked negative informa-
tion, ensuring stable model optimization. Both theoretical
evidence and extensive experiments on challenging bench-
marks corroborate SREM’s superiority in efficacy, efficiency
and generality. We hope our SREM will drive improvements
in both the efficacy and efficiency of noisy correspondence
learning, providing new insights into building more robust
cross-modal information retrieval systems.



The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Acknowledgments

This work is supported by the National Key Research and
Development Program of China (No. 2022YFB3102600),
National Nature Science Foundation of China (No.
62192781, No. 62272374, No. 62202367, No. 62250009,
No. 62137002), Project of China Knowledge Center for
Engineering Science and Technology, Project of Chinese
academy of engineering “The Online and Offline Mixed Ed-
ucational Service System for ‘The Belt and Road’ Training
in MOOC China”, and the K. C. Wong Education Founda-
tion.

References

Andonian, A.; Chen, S.; and Hamid, R. 2022. Robust
cross-modal representation learning with progressive self-
distillation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 16430-16441.

Chen, H.; Ding, G.; Liu, X.; Lin, Z.; Liu, J.; and Han, J.
2020. Imram: Iterative matching with recurrent attention
memory for cross-modal image-text retrieval. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, 12655-12663.

Chen, J.; Hu, H.; Wu, H.; Jiang, Y.; and Wang, C. 2021.
Learning the best pooling strategy for visual semantic em-
bedding. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 15789-15798.

Chen, M.; Cheng, H.; Du, Y.; Xu, M.; Jiang, W.; and Wang,
C. 2023. Two wrongs don’t make a right: Combating confir-
mation bias in learning with label noise. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 37,
14765-14773.

Diao, H.; Zhang, Y.; Ma, L.; and Lu, H. 2021. Similarity
reasoning and filtration for image-text matching. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 35, 1218-1226.

Gao, Y.; and Zhang, M.-L. 2021. Discriminative
complementary-label learning with weighted loss. In In-
ternational Conference on Machine Learning, 3587-3597.
PMLR.

Han, H.; Miao, K.; Zheng, Q.; and Luo, M. 2023. Noisy
Correspondence Learning with Meta Similarity Correction.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 71517-7526.

Hastie, T.; Tibshirani, R.; Friedman, J. H.; and Friedman,
J. H.2009. The elements of statistical learning: data mining,
inference, and prediction, volume 2. Springer.

Hu, P.; Huang, Z.; Peng, D.; Wang, X.; and Peng, X.
2023. Cross-Modal Retrieval with Partially Mismatched
Pairs. IEEE Transactions on Pattern Analysis and Machine
Intelligence.

Huang, Z.; Niu, G.; Liu, X.; Ding, W.; Xiao, X.; Wu, H.;
and Peng, X. 2021. Learning with noisy correspondence

for cross-modal matching. Advances in Neural Information
Processing Systems, 34: 29406-29419.

1470

Iscen, A.; Tolias, G.; Avrithis, Y.; and Chum, O. 2019. Label
propagation for deep semi-supervised learning. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, 5070-5079.

Ishida, T.; Niu, G.; Hu, W.; and Sugiyama, M. 2017. Learn-
ing from complementary labels. Advances in neural infor-
mation processing systems, 30.

Ishida, T.; Niu, G.; Menon, A.; and Sugiyama, M. 2019.
Complementary-label learning for arbitrary losses and mod-

els. In International Conference on Machine Learning,
2971-2980. PMLR.

Kingma, D. P;; and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.

Lee, K.-H.; Chen, X.; Hua, G.; Hu, H.; and He, X. 2018.
Stacked cross attention for image-text matching. In Pro-
ceedings of the European conference on computer vision
(ECCV), 201-216.

Li, J.; Selvaraju, R.; Gotmare, A.; Joty, S.; Xiong, C.; and
Hoi, S. C. H. 2021. Align before fuse: Vision and language
representation learning with momentum distillation. Ad-
vances in neural information processing systems, 34: 9694—

9705.

Li, K.; Zhang, Y.; Li, K.; Li, Y.; and Fu, Y. 2019. Visual
semantic reasoning for image-text matching. In Proceed-
ings of the IEEE/CVF international conference on computer
vision, 4654-4662.

Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ra-
manan, D.; Dollér, P.; and Zitnick, C. L. 2014. Microsoft
coco: Common objects in context. In Computer Vision—
ECCV 2014: 13th European Conference, Zurich, Switzer-
land, September 6-12, 2014, Proceedings, Part V 13, 740-
755. Springer.

Lin, Y.; Yang, M.; Yu, J.; Hu, P.; Zhang, C.; and Peng, X.
2023. Graph matching with bi-level noisy correspondence.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, 23362-23371.

Liu, W.; Wang, X.; Owens, J.; and Li, Y. 2020. Energy-based
out-of-distribution detection. Advances in neural informa-
tion processing systems, 33: 21464-21475.

Qin, Y.; Peng, D.; Peng, X.; Wang, X.; and Hu, P. 2022.
Deep evidential learning with noisy correspondence for
cross-modal retrieval. In Proceedings of the 30th ACM In-
ternational Conference on Multimedia, 4948—4956.

Radford, A.; Kim, J. W.; Hallacy, C.; Ramesh, A.; Goh, G.;
Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.;
et al. 2021. Learning transferable visual models from nat-

ural language supervision. In International conference on
machine learning, 8748-8763. PMLR.

Sharma, P.; Ding, N.; Goodman, S.; and Soricut, R. 2018.
Conceptual captions: A cleaned, hypernymed, image alt-text
dataset for automatic image captioning. In Proceedings of
the 56th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), 2556-2565.

Wang, X.; Han, X.; Huang, W.; Dong, D.; and Scott, M. R.
2019. Multi-similarity loss with general pair weighting for



The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

deep metric learning. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, 5022—
5030.

Wei, J.; Yang, Y.; Xu, X.; Zhu, X.; and Shen, H. T. 2021.
Universal weighting metric learning for cross-modal re-
trieval. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44(10): 6534-6545.

Xie, B.; Yuan, L.; Li, S.; Liu, C. H.; Cheng, X.; and Wang,
G. 2022. Active learning for domain adaptation: An energy-
based approach. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, 8708-8716.

Xu, Y.; Gong, M.; Chen, J.; Liu, T.; Zhang, K.; and Bat-
manghelich, K. 2020. Generative-discriminative comple-
mentary learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, 6526-6533.

Yang, M.; Huang, Z.; Hu, P; Li, T.; Lv, J.; and Peng, X.
2022a. Learning with twin noisy labels for visible-infrared
person re-identification. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
14308-14317.

Yang, M.; Li, Y.; Hu, P;; Bai, J.; Lv, J.; and Peng, X. 2022b.
Robust multi-view clustering with incomplete information.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 45(1): 1055-1069.

Yang, M.; Li, Y.; Huang, Z.; Liu, Z.; Hu, P; and Peng,
X. 2021. Partially view-aligned representation learning
with noise-robust contrastive loss. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, 1134—1143.

Yang, S.; Xu, Z.; Wang, K.; You, Y.; Yao, H.; Liu, T.; and
Xu, M. 2023. BiCro: Noisy Correspondence Rectifica-
tion for Multi-modality Data via Bi-directional Cross-modal
Similarity Consistency. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
19883-19892.

Yao, Q.; Yang, H.; Han, B.; Niu, G.; and Kwok, J. T.-Y.
2020. Searching to exploit memorization effect in learning

with noisy labels. In International Conference on Machine
Learning, 10789-10798. PMLR.

Young, P; Lai, A.; Hodosh, M.; and Hockenmaier, J. 2014.
From image descriptions to visual denotations: New simi-
larity metrics for semantic inference over event descriptions.
Transactions of the Association for Computational Linguis-
tics, 2: 67-78.

Yu, X.; Liu, T.; Gong, M.; and Tao, D. 2018. Learning with
biased complementary labels. In Proceedings of the Euro-
pean conference on computer vision (ECCV), 68-83.
Zhang, Q.; Wu, H.; Zhang, C.; Hu, Q.; Fu, H.; Zhou, J. T;
and Peng, X. 2023. Provable Dynamic Fusion for Low-
Quality Multimodal Data. arXiv preprint arXiv:2306.02050.

1471



