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Abstract

In the field of vanishing point detection, previous works com-
monly relied on extracting and clustering straight lines or
classifying candidate points as vanishing points. This pa-
per proposes a novel end-to-end framework, called VPDETR
(Vanishing Point DEtection TRansformer), that views van-
ishing point detection as a set prediction problem, applica-
ble to both Manhattan and non-Manhattan world datasets. By
using the positional embedding of anchor points as queries
in Transformer decoders and dynamically updating them
layer by layer, our method is able to directly input images
and output their vanishing points without the need for ex-
plicit straight line extraction and candidate points sampling.
Additionally, we introduce an orthogonal loss and a cross-
prediction loss to improve accuracy on the Manhattan world
datasets. Experimental results demonstrate that VPDETR
achieves competitive performance compared to state-of-the-
art methods, without requiring post-processing.

Introduction
Vanishing points are intersection points of parallel lines in
the 3D world projected onto the 2D image under the pin-
hole camera model. Vanishing point detection is a funda-
mental problem in 3D vision. An accurate vanishing point
detection algorithm can benefit many tasks, such as camera
calibration (Cipolla, Drummond, and Robertson 1999; An-
tone and Teller 2000; Grammatikopoulos, Karras, and Petsa
2007), wireframe parsing (Zhou et al. 2019b; Zhou, Qi, and
Ma 2019), 3D reconstruction (Guillou et al. 2000), photo
forensics (O’brien and Farid 2012), object detection (Hoiem,
Efros, and Hebert 2008), autonomous driving (Lee et al.
2017), and visual SLAM (Davison et al. 2007; Li et al.
2019a).

As shown in Figure 1, traditional vanishing point detec-
tion methods (Kogecka and Zhang 2002; Tardif 2009) gener-
ally include three steps: line/contour detection, line cluster-
ing/classification, and vanishing point regression. In recent
years, deep learning approaches (Borji 2016; Zhai, Work-
man, and Jacobs 2016; Chang, Zhao, and Itti 2018; Zhang
et al. 2018; Zhai, Workman, and Jacobs 2016; Kluger et al.
2017; Zhou et al. 2019a; Liu, Zhou, and Zhao 2021; Tong
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et al. 2022; Lin et al. 2022) have shown great potential in
this task. Some of the most recent state-of-the-art works suf-
fer from some problems. NeurVPS (Zhou et al. 2019a) and
Lin et al. (Lin et al. 2022) need to sample a large number of
candidate points in the Gaussian sphere and classify whether
they are vanishing points which is slow during inference.
TLC (Tong et al. 2022) uses Transformer to classify straight
lines into four categories, requiring additional line category
annotations. Post-processing is also required to enhance per-
formance. Although these works are capable of end-to-end
training, they still require additional post-processing steps
to produce the vanishing point as the final output. In other
words, they are not entirely end-to-end because the vanish-
ing point is not directly predicted when an image is inputted.

DETR (Carion et al. 2020) is a highly influential work in
the field of object detection. It uses a transformer encoder-
decoder architecture for end-to-end object detection. In
DETR, object queries are treated as learnable queries, al-
lowing the model to make predictions in a parallel manner,
which improves the efficiency. It also uses a set loss func-
tion to handle the problem of object permutation, thus elim-
inates many hand-designed components such as NMS (Non-
Maximum Suppression). Some follow-up works such as De-
formable DETR (Zhu et al. 2020) and DAB-DETR (Liu
et al. 2022) have been proposed to improve its convergence
and performance. There are also works on adapting DETR
for other applications (Xu et al. 2021; Misra, Girdhar, and
Joulin 2021; Prangemeier, Reich, and Koeppl 2020). Draw-
ing inspiration from these studies, we modified DETR and
its variations to address the problem of vanishing point de-
tection.

In this paper, we propose VPDETR, an end-to-end frame-
work for vanishing point detection. Our modification fo-
cuses on the decoder part, utilizing anchor vanishing point
positional encoding as queries and updating point coordi-
nates layer by layer. Our method is based on set predic-
tion, therefore overcomes the limitations of the Manhattan
world assumption, i.e. there are three orthogonal vanish-
ing points in each image, enabling it to predict vanishing
points for non-Manhattan world data as well. Specifically,
for Manhattan world data, we introduce cross-prediction
loss and orthogonal loss to improve the results. Moreover,
our method achieves fast inference speed of 16 FPS, outper-
forming state-of-the-art (SOTA) method (Zhou et al. 2019a)
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Figure 1: Pipeline comparison between: (a) Traditional vanishing point detection framework, (b) Our proposed Vanishing Point
DEtection TRansformers (VPDETR).

that rely on sampling candidate points and classifying them
one by one (0.5 FPS).

Our work presents the following contributions: (1) We in-
troduce VPDETR, a novel fully end-to-end framework for
vanishing point detection, which is capable of handling both
Manhattan and non-Manhattan world datasets by treating
vanishing point detection as a set prediction problem. (2)
For the Manhattan world assumption, we propose a cross-
prediction loss and orthogonal loss to improve accuracy.
(3) Our experiments demonstrate that VPDETR achieves a
good balance of accuracy and inference speed, comparable
to state-of-the-art models. And we provide ablation experi-
ments to showcase the effectiveness of the proposed compo-
nents.

Related Work
Vanishing Point Detection. Vanishing point detection is a
fundamental problem in computer vision that locates the
point of convergence of parallel lines in an image. The
problem was first introduced in (Barnard 1983), and has
since been tackled using various approaches. The domi-
nant approach for vanishing point detection is line-based,
which generally consist of three steps. Firstly, line detec-
tion (Canny 1986; Von Gioi et al. 2008) or contour de-
tection (Arbelaez et al. 2010) is performed. Secondly, the
parametric lines are clustered using various algorithms such
as RANSAC (Bolles and Fischler 1981; Wu et al. 2021),
Hough transform (Lutton, Maitre, and Lopez-Krahe 1994),
J-Linkage (Tardif 2009), EM (Kogecka and Zhang 2002;
Košecká and Zhang 2002), and dual space (Lezama et al.
2014). Finally, geometry is used to estimate the vanishing
point.

Recently, learning-based methods (Borji 2016; Chang,
Zhao, and Itti 2018; Zhang et al. 2018; Shi et al. 2019; Zhai,
Workman, and Jacobs 2016; Kluger et al. 2017; Li et al.
2021; Kluger et al. 2020) have been shown to be effective
for estimating the vanishing point in images with complex
backgrounds and cluttered scenes. NeurVPS (Zhou et al.
2019a) performs best, which introduces conic convolution
to enhance the detection accuracy, albeit at the expense of
slow inference speed. To address this issue, Liu et al.(Liu,
Zhou, and Zhao 2021) proposes an efficient conic convolu-

tion in VaPiD. Lin et al. (Lin et al. 2022) incorporates the
Hough transform and the Gaussian sphere into deep neural
networks to improve model generalization. TLC (Tong et al.
2022) is the first to apply Transformer (Vaswani et al. 2017)
to vanishing point detection, utilizing both the geometric and
contextual features of lines to improve the accuracy.

DETR and Its Variants. Carion et al. (Carion et al. 2020)
introduced DETR (DEtection TRansformer), a Transformer-
based end-to-end object detector that eliminates the need
for hand-designed components such as anchor design and
NMS. Several studies delve into a deeper understanding
of the decoder queries in DETR. Many papers associate
queries with spatial position from different angles. De-
formable DETR (Zhu et al. 2020) predicts 2D anchor points
and employs a deformable attention mechanism that focuses
on specific sampling points around a reference point. Effi-
cient DETR (Yao et al. 2021) selects the top K positions
from the dense prediction of the encoder to improve decoder
queries. DAB-DETR (Liu et al. 2022) extends the represen-
tation of queries from 2D anchor points to 4D anchor box
coordinates, and enabling dynamic updates of boxes in each
layer of the decoder. More recently, DN-DETR (Li et al.
2022) introduced a denoising training method to accelerate
DETR training. And DINO (Zhang et al. 2022) further in-
troduces three tricks to get better performance.

Meanwhile, there have also been studies exploring the
adaptation of DETR for other applications such as line
segment detection (Xu et al. 2021), 3D object detec-
tion (Prangemeier, Reich, and Koeppl 2020), and instance
segmentation (Prangemeier, Reich, and Koeppl 2020). In
this work, we have sensibly adapted DETR to make it appro-
priate for vanishing point detection tasks, resulting in precise
predictions and a truly end-to-end output.

Method
Overview
Our model includes a CNN backbone, Transformer encoders
and decoders, and multilayer perceptron (MLP) prediction
heads for vanishing points and confidence score. The main
improvement of our model is in the decoder part, as illus-
trated in Figure 2.
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Figure 2: From left to right: (a) Decoder framework of vanilla DETR, (b) Decoder framework of our proposed VPDETR.

Given an image, the features are extracted using a CNN
backbone and refined by the Transformer encoders. The de-
coder then employs dual queries, which consist of both posi-
tional queries (anchor points) and content queries (decoder
embeddings), to determine the vanishing points that corre-
spond to the anchor points. The dual queries are iteratively
refined across multiple layers, slowly approaching the tar-
get ground-truth vanishing points. Finally, the outputs of the
final decoder layer are utilized to predict confidence scores
and vanishing points through prediction heads. A bipartite
graph matching is then conducted to calculate the loss, fol-
lowing the procedure used in DETR.

Anchor Point Learning and Iterative Updating
Inspired by (Liu et al. 2022), we propose to directly learn
anchor points and derive positional queries from these an-
chors.

We use the Gaussian sphere representation of the vanish-
ing point, the details of which can be found in Section 3.2 of
NeurVPS (Zhou et al. 2019a). We denote Aq = (xq, yq, zq)
as the q-th anchor point, where xq, yq, zq ∈ R, take values
in [−1, 1]. The positional query (Meng et al. 2021; Liu et al.
2022) Pq associated with it can be obtained from

Pq = MLPp(Cat(PE(xq),PE(yq),PE(zq))) (1)

where Pq ∈ RD, Cat means concatenate, and PE means si-
nusoidal positional encoding:

PE(x)2i = sin
( x

T 2i/D

)
, PE(x)2i+1 = cos

( x

T 2i/D

)
(2)

where T is temperature, a hyper-parameter, and i denotes the
index in the vector. In our implementations, PE maps a float
to a vector with D/2 dimensions as PE : R → RD/2, and
MLPp projects a 3D/2 dimensional vector into D dimen-
sions MLPp : R3D/2 → RD. Following (Liu et al. 2022),
we learn a MLPs : RD → RD to obtain a scale vector
conditional on the content query Cq and multiply it with the

positional encoding element by element:

P̃q = Pq ·MLPs(Cq) (3)

In the self-attention module, queries, keys, and values are
formed as:

Qq = Cq + P̃q, Kq = Cq + P̃q, Vq = Cq (4)

after the self-attention operation, skip-connection and nor-
malization, we can get the new content information. Next,
we use the deformable attention module proposed in De-
formable DETR (Zhu et al. 2020) to perform cross-attention
operations, as illustrated in Figure 2. Finally, the learned em-
beddings El

i are fed into the score branch and the prediction
branch, i.e., two MLP, to obtain the confidence scores and
the residuals of vanishing points, where the subscript i take
values between 1 and number of queries, and the superscript
l means that the feature is output by the l-th decoder layer.

scoreli = MLPscore(El
i) (5)

(∆xl,∆yli,∆zli) = MLPpred(El
i) (6)

(xl
i, y

l
i, z

l
i) = (xl−1

i +∆xl, yl−1
i +∆yli, z

l−1
i +∆zli) (7)

where (xl
i, y

l
i, z

l
i) is the i-th prediction of the l-th decoder

layer, and for initialization, (xl
0, y

l
0, z

l
0) are randomly sam-

pled in (−1, 1). scoreli represents the prediction quality, the
smaller the angle between the prediction and the ground
truth, the higher the score.

Bipartite Matching
Our VPDETR predicts a set of N vanishing points{
V̂P

l

i = (xl
i, y

l
i, z

l
i); i = 1, . . . , N

}
in one pass through the

l-th decoder layer, with N set to 20 in this study. For sim-
plicity, we omit the superscript l. We conduct a set-based bi-
partite matching between the predicted vanishing points and
ground-truth targets to determine whether a prediction is as-
sociated with a real vanishing point and will be involved in
the calculation of the loss function during the training stage.
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Assume there are M target vanishing points
{VPj ; j = 1, . . . ,M}, we optimize a bipartite match-
ing objective on a permutation function σ(·) : Z+ → Z+

which maps prediction indices {1, . . . , N} to potential
target indices {1, . . . , N}, including {1, . . . ,M} for
matched predictions, and {M + 1, . . . , N} for unmatched
predictions:

Lmatch =
N∑
i=1

1{σ(i)≤M}

[
λ1d

(
V̂Pσ(i),VPi

)
+λ2a

(
V̂Pσ(i),VPi

)] (8)

σ∗ = argmin
σ

Lmatch (9)

where d(·, ·) represents L1 distance between vectors, and
a(·, ·) represents the angle between vectors. 1{·} is an in-
dicator function. The optimal permutation σ∗ is computed
using a Hungarian algorithm, mapping M positive predic-
tion indices to ground-truth indices {1, . . . ,M}.

Losses
We compute losses based on the optimal permutation σ∗

from the bipartite matching procedure introduced in Sec ,
in which {i;σ∗(i) ≤ M} represents positive predictions in-
dices.

Regression Loss. We use a simple L1 distance loss as a
baseline of regression loss:

Lreg =
M∑
i=1

d
(
V̂Pσ∗(i),VPi

)
(10)

where d(·, ·) represents L1 distance between vectors.

Cross-prediction loss. For datasets that fits the Manhattan
world assumption, we design a novel cross-prediction loss.
Denote the normalized predicted vanishing point V̂Pσ∗(i)

that matches the ground-truth VPi as ṼPi:

ṼPi =
V̂Pσ∗(i)

∥V̂Pσ∗(i)∥
(11)

then the cross-prediction loss is formulated as:

Lcross = dist
(
VP1, ṼP2 × ṼP3

)
+ dist

(
VP2, ṼP3 × ṼP1

)
+ dist

(
VP3, ṼP1 × ṼP2

) (12)

the intuition is that according to the orthogonality of the
vanishing points in Manhattan world assumption, any two
predicted vanishing points should be able to obtain another
vanishing point by cross product. The order of the two ele-
ments participating in the cross product will cause the result
to have different directions, therefore:

dist(a,b) = min(d(a,b), d(−a,b)) (13)

where a and b are two vectors. Eq. 13 solves the wrong
direction problem caused by cross product.

Orthogonal Loss. For datasets in the Manhattan world, we
additionally propose an orthogonal loss:

Lorth =
∣∣∣ṼP1 · ṼP2

∣∣∣+ ∣∣∣ṼP2 · ṼP3

∣∣∣+ ∣∣∣ṼP3 · ṼP1

∣∣∣
(14)

where · is inner-product. That is, the three predicted vanish-
ing points should be orthogonal, the larger the inner product,
the larger the loss value.

Classification Loss. The classification loss is based
on binary cross-entropy loss (BCE), the input logits
(scorei, conf i) are predicted in Eq. 5, and the target is de-
termined by the angle between predicted vanishing points
and the ground-truth. Denote the ground-truth value of the
minimum angle with the predicted vanishing point V̂Pi as
VPρ(i). The corresponding targets are designed as:

scoreti =

{
0.01 ∗ (degreei − 10◦)2 if degreei < 10◦

0 otherwise
(15)

where
degreei = a

(
VPρ(i), V̂Pi

)
(16)

The classification loss is formed as:

Lcls =

N∑
i=1

BCE
(
scorei, score

t
i

)
(17)

The final loss function is

Ltotal = λregLreg + λclsLcls (18)

as a baseline for general datasets, and

Ltotal = λcrossLcross+λorthLorth+λregLreg+λclsLcls (19)

for Manhattan world datasets.

Experiments
Datasets. Since our method is based on set predictions, it
can be applied both to datasets that following the Manhattan
world assumption such as SU3 (Zhou et al. 2019b), Scan-
Net (Dai et al. 2017), YUD (Denis, Elder, and Estrada 2008),
and SVVP (Tong et al. 2022), and to non-Manhattan world
dataset such as NYU Depth (Silberman et al. 2012). The
SU3 dataset comprises 23k synthetic outdoor images gener-
ated by a procedural photo-realistic building generator, with
vanishing points computed directly from the CAD models
of the generated buildings. The ScanNet dataset comprises
189,916 RGB-D images of real-world indoor scenes for
training and 53,193 for validation. Vanishing points in Scan-
Net are estimated from surface normals following (Zhou
et al. 2019a), which makes them less accurate than other
datasets. YUD (Denis, Elder, and Estrada 2008) contains
102 images of indoor and outdoor scenes. SVVP (Tong et al.
2022) is a real-world street view dataset that contains 500
images. We also evaluate our model on the non-Manhattan
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Method SU3 (Zhou et al. 2019b) ScanNet (Dai et al. 2017) End−
AA@3◦ AA@5◦ AA@10◦ AA@3◦ AA@5◦ AA@10◦ FPS to− End

J-linkage (Tardif 2009) 69.2 77.0 84.4 27.8 41.7 57.7 1.2 ×
Simon et al. (2018) 70.2 77.9 85.1 25.7 39.9 56.6 0.6 ×
Wu et al. (2021) 74.8 79.5 83.9 22.9 36.8 54.0 23 ×
Lu et al. (2017) 81.4 87.8 93.0 35.6 53.2 71.6 25 ×
Li et al. (2019b) 59.1 66.9 74.6 35.0 50.2 66.9 25 ×
CONSAC (Kluger et al. 2020) 77.9 85.2 91.0 31.1 46.1 62.4 2 ×
TLC (Tong et al. 2022) 91.3 94.6 97.1 36 .2 53.9 72.6 25 ×
NeurVPS (Zhou et al. 2019a) 94.4 96.5 98.2 36.1 54 .3 74 .9 0.5 ∗
Lin et al. (2022) 84.0 90.3 95.1 32.9 52.0 72.7 5.5 ∗
ours 92 .8 95 .7 97 .8 36.8 55.4 75.6 16 ✓
ours∗ 96.4 97.8 98.9 41.7 60.0 78.7 16 ✓

Table 1: Comparison with SOTA on SU3 and ScanNet. Bold is highest, underlined is second highest, italics is third highest. ∗ in
the column of ”End-to-End” represents end-to-end trainable, but needs candidate points to be classified in the inference stage.

Method SVVP (Tong et al. 2022) YUD (Denis, Elder, and Estrada 2008)
AA@3◦ AA@5◦ AA@10◦ AA@3◦ AA@5◦ AA@10◦ FPS

J-linkage (Tardif 2009) 32.8 45.7 60.2 40.2 50.5 64.1 1.2
Simon et al. (2018) 45.4 59.6 73.2 40.1 58.2 77.5 0.6
Wu et al. (2021) 39.1 52.4 67.9 44.3 61.4 77.4 23
Lu et al. (2017) 48 .5 64 .8 80 .0 58.0 73.2 86.2 25
Li et al. (2019b) 39.3 53.0 66.8 51.1 66.1 80.5 25
CONSAC (Kluger et al. 2020) 43.8 56.5 69.4 62 .1 73.7 84.1 2
TLC (Tong et al. 2022) 51.6 67.7 82.6 65.5 77.1 87.4 25
NeurVPS (Zhou et al. 2019a) 27.1 40.4 55.3 39.9 50.3 65.0 0.5
Lin et al. (2022) 32.9 52.0 72.7 60.7 74 .3 86 .3 5.5

ours 41.6 60.3 78.9 42.3 61.4 80.3 16
ours∗ 66.9 83.3 91.6 69.1 81.3 90.7 16

Table 2: Comparison with SOTA on YUD and SVVP. All learning-based models are pre-trained on SU3.

world dataset NYU Depth (Silberman et al. 2012), whose
vanishing points varies from 1 to 8 in each image. And there
are 1449 images in NYU Depth totally.

Evaluation. Following (Zhou et al. 2019a; Tong et al. 2022),
we use 500 images for evaluation on SU3 and ScanNet. And
on the SVVP and YUD datasets, since the number of images
are too small, we use the model pre-trained on SU3. On these
datasets, we calculate the percentage of predictions with an
angle difference smaller than a certain threshold and com-
pare the angle accuracy (AA) across different thresholds,
as done in previous works (Zhou et al. 2019a; Liu, Zhou,
and Zhao 2021; Tong et al. 2022; Lin et al. 2022). For the
NYU Depth dataset, we follow (Kluger et al. 2020; Lin et al.
2022), which rank the predicted vanishing points by confi-
dence and then use bipartite matching to compute angular
errors for the top-k predictions, then we generate the recall
curve and calculate the area under the curve (AUC) up to a
specified threshold, such as 10 degrees.

In the inference stage, we first normalize the output value.
For the general dataset, we select the prediction with confi-
dence greater than a certain threshold as the output. For the
Manhattan World dataset, we select the prediction with the
highest score among all predictions as the first result. And

as the score decreases, compare the predicted value with the
existing results, and select the inner product smaller than a
certain threshold such as 0.01 to add to the result until three
vanishing points are selected as the final output. In addition,
we provide ours∗ as the results of using 400 queries for pre-
diction and bipartite graph matching for selection.

Implementation details. We implement our model on
Nvidia RTX2080Ti for a fair comparison of inference speed.
λreg in Eq. 18 and λcross in Eq. 19 is set to 5, and λcls and
λorth is set to 1. ResNet-50 (He et al. 2016) pre-trained on
ImageNet (Deng et al. 2009) is used as the backbone. Specif-
ically, we use the C3 layer of the multi-scale feature map as
the input of the Transformer, which will be discussed in ab-
lation study. The number of queries is set as 20. By default,
models are trained for 220 epochs and the learning rate is
decayed at the 200-th epoch by a factor of 0.1. We trained
our model using AdamW (Loshchilov and Hutter 2017) with
base learning rate of 5× 10−5, and weight decay of 10−4.

Comparison with State-of-the-Arts
We compare our model with J-Linkage (Tardif 2009), Si-
mon et al. (Simon, Fond, and Berger 2018), Wu et al. (Wu
et al. 2021), Lu et al. (Lu et al. 2017), Li et al. (Li et al.
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Datasets NYU Depth (Silberman et al. 2012)
top-k=#gt top-k=#pred

AUC @5◦ @10◦ @5◦ @10◦

J-Linkage 49.30 61.28 54 .48 68.34
T-Linkage 43.38 58.05 47.48 64.59
CONSAC 49 .46 65.00 54.37 69 .89
CONSAC+DLSD 46.78 61.06 49.94 65.96
VaPiD − 69 .10 −
Lin et al. 55.92 69.57 57.19 71.62
Ours 54.56 72.32 65.52 80.81

Table 3: Non-Manhattan scenario. Here “top-k=#gt” indi-
cates the k most confident predictions are used for eval-
uation, where k in the number of ground-truth vanishing
points. For “top-k=#pred” all predictions are used for evalu-
ation.

2019b), CONSAC (Kluger et al. 2020), NeurVPS (Zhou
et al. 2019a), TLC (Tong et al. 2022), and Lin et al. (Lin
et al. 2022) on SU3, ScanNet, SVVP and YUD. And on
the non-Manhattan dataset NYU Depth, we compare with
J-Linkage (Tardif 2009), T-Linkage (Magri and Fusiello
2014), CONSAC (Kluger et al. 2020), VaPid (Liu, Zhou,
and Zhao 2021) and Lin et al. (Lin et al. 2022). Notice
among all these methods, J-Linkage, T-Linkage, Contrario-
VP, and Quasi-VP are not learning-based methods, and TLC
is learning-based method, these method relays on line seg-
ment detection (Von Gioi et al. 2008). CONSAC needs line
segments as inputs. NeurVPS and Lin et al. are end-to-end
trainable, but they rely on sampling candidate points hierar-
chically on the Gaussian sphere to obtain candidate points,
and then classify whether these candidate points are vanish-
ing points. Only our method is truly end-to-end, that is, after
entering the image, it can directly return its vanishing points.
The comparison results are listed in Table 1, Table 2, and Ta-
ble 3.

Comparison results show that our methods achieves
comparable or better performance than SOTA methods
on SU3 (Zhou et al. 2019b), ScanNet (Dai et al. 2017),
SVVP (Tong et al. 2022), and NYU Depth (Silberman
et al. 2012) benchmarks, and the inference speed is 16 FPS,
achieving a better balance of accuracy and speed. Further-
more, We also show the angle accuracy curves on SU3 and
ScanNet for detail comparison in Figure 3 and Figure 4.

architecture Lorth Lcross AA@3◦ AA@5◦

vanilla DETR 85.2 90.9
vanilla DETR ✓ 86.1 91.5
vanilla DETR ✓ ✓ 86.5 91.8

VPDETR 86.0 91.5
VPDETR ✓ 86.5 91.9
VPDETR ✓ ✓ 88.1 92.8

Table 4: Network structure and loss function ablation study,
using the last layer feature map of ResNet-50.
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Figure 3: Angle accuracy curves for different methods on
SU3.
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Figure 4: Angle accuracy curves for different methods on
ScanNet.

Ablation Study
To verify the effectiveness of our design, we conduct ex-
tensive ablation experiments on the SU3 dataset. As shown
in Table 4, our method outperforms vanilla DETR under
the same setting. Adding the orthogonal loss and the cross-
prediction loss can effectively improve the performance of
the model, which is effective for both vanilla DETR and our
VPDETR. And in Table 5, we tested the effect of using dif-
ferent levels of features on the model, and finally chose the
C3 level of features. As discussed by TLC (Tong et al. 2022),
predicting vanishing points requires both semantic and geo-
metric information, the C3 level achieves a better balance.
The resolution of C5 and C4 level is too low to lose too
much geometric information. And experiments prove that
using multi-scale features does not improve the accuracy.

Visualization
In order to study which regions of the input image our
method pays more attention to for giving the final predic-
tion, we draw the gradient norm of the final prediction with
respect to each pixel in the image. The gradient norm reflects
how much the result will change when a pixel is perturbed.
So it can show us which pixels the model relies more on to
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Figure 5: From top to bottom: (a) Original images, (b) The gradient norm of the final predictions with respect to each pixel
in input images (c) Visual examples of vanishing point detection results of our model, the ground truth vanishing points are
marked with ‘◦’, and the predicted ones are marked with ‘+’. The first two columns are from SVVP, the second two columns
are from SU3, and the third two columns are from ScanNet.

Feature level
C5 C4 C3 AA@3◦ AA@5◦ AA@10◦

✓ 88.1 92.8 96.4
✓ 92.2 95.3 97.6

✓ 92.8 95.7 97.8
✓ ✓ 89.7 93.8 96.9
✓ ✓ ✓ 92.5 95.5 97.7

Table 5: Feature level ablation study, C5 is the last layer fea-
ture map of ResNet-50, C4 is the penultimate layer, C3 is
the third to last layer. If more than one is checked, it means
using multi-scale features.

make the final prediction.
As shown in Figure 5, in order to predict vanishing points,

our model will pay more attention to places rich in straight
line information, such as road markings, edges of road tiles,
outlines of buildings, edges of furniture, corners, etc. This
is consistent with the focus of traditional methods, which
is to use the clues of the straight line to infer the vanish-
ing point, but our method does not need to explicitly extract
the straight line, but through training the model to automat-
ically focus on the area with rich straight line information.
Through observation, we found that our model may pay at-
tention to some information that we usually don’t notice,

such as the texture of the road surface and the table.
In addition, we also show the position relationship be-

tween the predicted vanishing point and the ground truth in
the Figure 5.

Conclusion

This paper proposes VPDETR, a novel end-to-end frame-
work for vanishing point detection that is capable of han-
dling both Manhattan and non-Manhattan world datasets. To
improve model accuracy for Manhattan world datasets, we
introduce an orthogonal loss and a cross-prediction loss. Our
method achieves a good balance of accuracy and inference
speed. Our method has limitations, such as the general per-
formance on the YUD dataset due to the domain gap prob-
lem. We hope that our method can serve as a new paradigm
of vanishing point detection, and inspire thinking about how
to infer vanishing points of an image end-to-end, accurately,
and quickly.
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