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Abstract
Low-level vision plays a crucial role in a wide range of imag-
ing quality and image recognition applications. However, the
limited size, quality, and diversity of datasets often pose sig-
nificant challenges for low-level tasks. Data augmentation is
the most effective and practical way of sample expansion,
but the commonly used augmentation methods in high-level
tasks have limited improvement in the low-level due to the
boundary effects or the non-realistic context information. In
this paper, we propose the Cut-and-Swap Frequency Com-
ponents (CutFreq) method for low-level vision, which aims
to preserve high-level representations with directionality and
improve image synthesis quality. Observing the significant
frequency domain differences between reconstructed images
and real ones, in CutFreq, we propose to transform the in-
put and real images separately in the frequency domain, then
define two stages for the model training process, and finally
swap the specified frequency bands respectively and inversely
transform to generate augmented samples. The experimen-
tal results show the superior performance of CutFreq on five
low-level vision tasks. Moreover, we demonstrate the effec-
tiveness of CutFreq in the low-data regime. Code is available
at https://github.com/DreamerCCC/CutFreq.

Introduction
Labeling data is a time-consuming and labor-intensive task,
especially in low-level vision tasks, which have the char-
acteristics of high overhead, low savings, and poor adapt-
ability (Devillers, Vidrascu, and Lamel 2005). Whereas data
augmentation (Yun et al. 2019; Zhang et al. 2017; Li et al.
2021; Yoo, Ahn, and Sohn 2020; Han et al. 2022) are tech-
niques used to increase the amount of data by adding slightly
modified copies of existing data or synthetic data newly
created from existing data. In mainstream tasks (Trabucco
et al. 2023; Liang, Liang, and Jia 2023; Zou et al. 2023),
the augmented samples are always strongly correlated with
the original samples. At the same time, data augmenta-
tion can bring regularization effects and reduce the struc-
tural risk of the model (Yun et al. 2019). In a certain way,
the model is more immersed in observing the general pat-
terns in the dataset, and some data irrelevant to the pat-
terns are suppressed. Recent approaches (DeVries and Tay-
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Figure 1: Frequency domain gaps between the generated
and the real images by the state-of-the-art models in low-
level vision tasks. Row 1: Restormer (Zamir et al. 2021)
on Rain100H (Yang et al. 2017). Row 2: Restormer on
LoL (Wei et al. 2018). Row 3: Restormer on SIDD (Abdel-
hamed, Lin, and Brown 2018). Row 4: LW-ISP (Chen and
Ma 2022) on Zurich (Ignatov, Van Gool, and Timofte 2020).

lor 2017; Yoo, Ahn, and Sohn 2020) have focused on al-
tering certain regions in an image to ensure that deep neu-
ral networks (DNNs) can emphasize more discriminative re-
gions used to generate predictions. However, these methods
are not always applicable to low-level vision, such as im-
age super-resolution (Chen et al. 2022) and image restora-
tion (e.g., image deblurring (Tao et al. 2018), image dehaz-
ing (Engin, Genç, and Kemal Ekenel 2018)). Extensive ex-
periments have shown that training with augmentation with
warped spatial properties results in poor algorithm perfor-
mance compared to simple data augmentation methods such
as flipping and rotating (Yoo, Ahn, and Sohn 2020; Han
et al. 2022). As of now, few data augmentation methods
can be used universally for low-level vision. From the per-
spective of low-level vision, for data augmentation methods
to increase samples and improve the model’s generalization
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ability through priors, on the one hand, such priors should
avoid introducing dissonances, such as additional blurring
and color blocks. On the other hand, it can bring meaning-
ful supervision to the model (Lee et al. 2021; Chen et al.
2021a), that is, directional changes in the high-dimensional
feature domain of the image or other representations. To de-
sign a more efficient augmentation method, we observe two
key points.

Observation 1: The successful application of instance
normalization (IN) (Ulyanov, Vedaldi, and Lempitsky 2016)
confirms the potential of instance-independent augmenta-
tion. This stands in contrast to the classic batch normal-
ization (BN) (Ioffe and Szegedy 2015), which normalizes
data within a mini-batch and is integral to recognition tasks
such as image classification and object detection. IN, on the
other hand, normalizes data exclusively across the height
and width dimensions (H×W) and is independent of other
data instances, thus offering a distinct advantage for image
generation tasks.

Observation 2: A significant frequency-domain gap still
exists between the reconstruction results of the current state-
of-the-art (SOTA) models (Chen and Ma 2022; Zamir et al.
2021) and the real images. We demonstrate that the differ-
ence between the reconstructed image of the SOTA models
of different tasks of low-level vision and the real image in
the frequency domain is still discernible (as shown in Fig-
ure 1), and whether it is high-frequency or low-frequency
components. It is reflected in different network structures,
including CNN and transformer.

From the above observations, we suppose that multi-
instance augmentation strategies, such as CutMix (Yun et al.
2019), Mixup (Zhang et al. 2017), and MoEx (Li et al.
2021), may not be the most suitable for low-level vision
tasks. Likewise, considering avoiding the introduction of
discordant pixels or features, we focus on single-instance
fine-grained augmentation of the input sample. In this pa-
per, we introduce Cut-and-Swap Frequency Components
(CutFreq) in low-level vision, a general data augmentation
method that provides directional information for model con-
vergence and representation learning. In order to guide the
model in learning the required frequency domain compo-
nent information during the training process, we start by pre-
senting and summarizing the convergence behavior of the
model on the frequency domain components for different
low-level vision tasks. Based on this analysis, we catego-
rize these tasks into two groups: those that exhibit sustained
convergence of high-frequency components and those that
exhibit fast convergence of high-frequency components (as
shown in Figure 4). CutFreq adopts the standard discrete
wavelet transform (Edwards 1991) to decompose the input
and the real image into frequency domain representation
(LL,HL,LL, and HH bands) to complete the “Cut” oper-
ation. Inspired by the frequency domain component conver-
gence experiment, CutFreq augments the input in two train-
ing stages to complete the “Swap” operation: (a) Fast con-
vergence. Swap the specified frequency components of the
real image with the input image so that the model can focus
on learning other components. (b) Performance approxima-
tion. The different frequency components of the real image

are exchanged with the input image respectively to realize
the biased learning of the input image. To the best of our
knowledge, CutFreq is the first augmentation method that
can be applied to different tasks in low-level vision.

Abundant experiments on five different low-level vi-
sion tasks demonstrate the effectiveness of our method
both quantitatively and qualitatively. Compared to main-
stream augmentation methods (Cutout (DeVries and Tay-
lor 2017), Cutmix (Yun et al. 2019), Mixup (Zhang et al.
2017), etc.) and existing methods in low-level vision (Cut-
blur (Yoo, Ahn, and Sohn 2020) and Copy-blend (Shyam
et al. 2021)), CutFreq achieves the best performance. In the
smart ISP task, our method brings about 0.17 dB gain. Cut-
Freq achieves new state-of-the-art results in image denois-
ing, deraining, deblurring, and enhancement tasks. More-
over, we validate the potential of our method in the low-data
regime.

To sum up, our contribution is three-fold:

1. We demonstrate the prevalence of frequency-domain
gaps in low-level vision (both qualitatively and quantita-
tively) and use frequency-band normalized L1 distance to
measure model convergence for different frequency com-
ponents.

2. We design the CutFreq augmentation method to guide the
model to learn the required frequency domain component
information during the training process.

3. Quantitative and qualitative experiment results on five
low-level vision tasks demonstrate the effectiveness of
our method. Furthermore, We investigate the superiority
of CutFreq in the low-data regime.

Related Work
High-level Augmentation
Data augmentation (DA) is an effective strategy for train-
ing neural networks. In recognition tasks, DA can increase
label information (such as Mixup (Zhang et al. 2017), Cut-
Mix (Yun et al. 2019)) or force the model to learn some
local details (such as Cutout (DeVries and Taylor 2017)).
PA-AUG (Choi, Song, and Kwak 2020) exploits the delicate
structure information of the point cloud, divides the objects
in the point cloud into multiple parts, and then randomly ap-
plies five existing augmentation methods. TransMix (Chen
et al. 2021a) is oriented toward the transformer structure and
mixes the labels according to the attention map of the vi-
sion transformer, thereby reducing the gap between the input
space and the label space caused by Mixup. MoEx (Li et al.
2021) adopts PONO normalization for feature enhancement
between different samples and is orthogonal to mainstream
methods such as Cutout and CutMix. YOCO (Han et al.
2022) cuts one image into two pieces and performs DA in-
dividually within each piece. DA-Fusion (Trabucco et al.
2023) edits images with a pre-trained diffusion model to
change their semantics, generating new images belonging to
other semantic attributes. In the context of adversarial train-
ing, CropShift (Li and Spratling 2023) has demonstrated that
an appropriate DA method can improve the accuracy and
robustness of adversarial training. Researchers have found
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Figure 2: The overview of CutFreq. “Cut”: Transform the input and real image into four frequency bands using discrete wavelet
transformation (Lth represents the number of decompositions). “Swap”: Define two training stages and design specific aug-
mentation strategies (Stage I: fast convergence. Stage II: performance approximation.). The Aug Input in the figure represents
the reconstruction guidance of LW-ISP (Chen and Ma 2022) in image denoising. Finally, the augmented samples are generated
by inverse wavelet transformation.

that even the optimal hyperparameters for regularization af-
ter DA can lead to catastrophic performance degradation for
minority classes (Balestriero, Bottou, and LeCun 2022).

Low-level Augmentation
In the low-level vision, Copy-blend (Shyam et al. 2021)
crops patches of different sizes and shapes from the ground
truth and adds them to the input so that the network can learn
the position and degree of pixel restoration. CutBlur (Yoo,
Ahn, and Sohn 2020) cuts low-resolution patches and pastes
them into the corresponding high-resolution regions, allow-
ing the model to adaptively decide how well to restore
the image. However, this strategy is only specific to super-
resolution tasks. CutDepth (Ishii and Yamashita 2021) per-
forms a mix of input and output for depth estimation tasks,
which is an extension of Mixup (Zhang et al. 2017) on depth
estimation. DAMix (Chang, Sung, and Lin 2021) generates
haze images via ground truth and a set of combined scales,
from the source domain to the target domain, to better adapt
to the domain shift. APA (Jiang et al. 2021a) encourages
fair competition between the generator and discriminator by
having the generator augment the real data distribution.

Frequency Domain Processing
When denoising or other low-level visual operations are per-
formed directly in the frequency domain, although the im-
age texture details can be easily protected, the smoothing
of the image edge information is also easy to occur(Knaus
and Zwicker 2013). Unlike style transfer, low-level augmen-
tation does not change the original RAW color point or the
color map of the RGB input to the desired output. StyleAug-
ment (Chun and Park 2021) changes the predefined style

samples to obtain styles of different samples in the mini-
batch instantly. Strategies to reconstruct the output with high
frequency details have emerged in image inpainting, but
only through super-resolution networks to change the input
size (Kim et al. 2020). There are already methods to utilize
frequency information to enhance the image generation in
image translation, and FDIT (Cai et al. 2021) introduces a
training function based on the frequency domain.
Considering that low-level tasks are not suitable for hard-
coded transformation, we aim to design a general augmen-
tation method suitable for low-level from the perspective of
the frequency domain.

Methodology
In this section, we first present a reformulation of the dis-
crete wavelet transformation and then demonstrate the con-
vergence process of the model for different frequency com-
ponents in low-level vision. Furthermore, we introduce our
proposed CutFreq for low-level vision, as shown in Figure 2.

Wavelet Analysis
In the realm of frequency analysis, wavelet transformation
distinguishes itself from other techniques, such as Fourier
analysis. This distinction arises from its ability to capture
not only frequency information but also spatial information
within a signal. This dual capability renders wavelet trans-
formation particularly effective in low-level vision, as em-
phasized by Stephane (Stephane 1999). The process begins
with a base function ψ and creates a set of dilations and
shifts of ψ known as X (ψ).

X (ψ) =
{
ψpq = 2−p/2ψ

(
2−px− q

)
| p, q ∈ Z

}
, (1)
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where ψ denotes the orthogonal wavelet. The Discrete
Wavelet Transformation (DWT) deconstructs images into
increasingly smaller and simpler segments. This decompo-
sition is instrumental in simplifying the analysis and ma-
nipulation of images. Utilizing DWT, an image is parti-
tioned into four frequency bands: LL representing the low-
frequency band and HL,LH, and HH signifying the high-
frequency bands. The LL band, obtained from the ini-
tial level of DWT decomposition, can be further subjected
to DWT to yield second-level sub-components, namely
LL2, HL2, LH2, HH2. If we denote DWT as Ψ(·), then
the high and low-frequency bands for an image x are ex-
pressed as ΨHL(x), ΨLH(x), ΨHH(x), and ΨLL(x), respec-
tively. The inverse process of DWT, known as IDWT (Graps
1995), is defined as follows:

Wφ[j, k] =hφ[−n] ∗Wφ[j + 1, n]

+ hθ[−n] ∗Wθ[j + 1, n] | n= k
2 ,k≤0.

(2)

The Choice of Wavelet Basis Functions. Unlike in the
case of the discrete Fourier transform (DFT), there are sev-
eral sets of basis functions used in the DWT. When ap-
plied to computer vision, the Haar and Daubechies (db) ba-
sis functions are the most commonly used. In general, the
selection of wavelet bases depends on properties such as
support length, symmetry, and regularity. In wavelet anal-
ysis, the Haar wavelet is the most commonly used orthog-
onal wavelet function with compact support. On the other
hand, Daubechies wavelet has reasonable regularity and can
achieve better frequency band division, but it has a weaker
time domain support and significantly increases the com-
putational complexity. Furthermore, except for N + 1, the
Daubechies wavelet is asymmetric, which can lead to phase
distortion. For CutFreq, which requires discrete wavelet and
inverse transform operations, the symmetry of the wavelet
function is crucial. Therefore, the Haar basis function is the
preferred choice.

Preliminary Analysis
As stated in Sec. Introduction, we propose the frequency-
band normalized L1 distance (FBND) to measure model
convergence for different frequency components. Given a set
of training samples X = {x1, x2, . . . , xn} and their corre-
sponding real images J (x1, x2, . . . , xn). On the task of low-
level vision, since the prediction result f (xi) is the value
of pixels instead of the categorical probability distribution,
FBND can be conveniently used to judge the convergence
state of frequency components, which can be formulated as:

FBND =
1

n

n∑
i

∥∥Ψt ◦ f (xi)−Ψt ◦ J (xi)
∥∥
1
,

t ∈ LL,HL,LH,HH.

(3)

Different tasks exhibit unique frequency patterns. By
computing and averaging the frequency domain differences
between degraded images and their ground truth across the
dataset, we illustrate the distinct frequency domain patterns
for various tasks in Figure 3. We observe that this reflects
the general frequency features to be learned within the task

Image EnhancementDerainingDeblurringSmart ISP Denoising

Figure 3: Frequency patterns of low-level vision tasks. Dif-
ferent degraded tasks correspond to a specific frequency na-
ture and have obvious discrimination.

datasets. For instance, low-frequency information emerges
as a crucial frequency component that the task focuses on in
low-light image enhancement.

The convergence behavior of frequency components is
closely related to the specific task. Figure 4 presents the
quantitative results of LW-ISP (Chen and Ma 2022) on im-
age denoising (SIDD (Abdelhamed, Lin, and Brown 2018))
and image enhancement (LoL (Wei et al. 2018)). We ob-
serve the following: (a) By combining the information from
Figure 1 and Figure 4, we can see that the distance between
the reconstructed image of the current model and the real
image in the frequency domain is still distinct, and can be
quantified by our FBND. (b) Image denoising models do not
learn high-frequency components as much as low-frequency
components, although high-frequency bands are inherently
sparse. In contrast, learning low frequencies in image en-
hancement is a significant characteristic in the latter half of
model training.

Upon computing the FBND after each epoch of standard
training, we derive two insights across five low-level vision
tasks: (1) Different tasks demonstrate varied convergence
trends in frequency components. (2) These reconstruction
tasks can be broadly categorized into two groups: high-
frequency sustained convergence (image denoising, image
deblurring, and image deraining) and high-frequency fast
convergence (smart ISP, image enhancement). For instance,
in image enhancement, the model rapidly learns high-
frequency components primarily during the initial phase of
the training.

CutFreq: Cut-and-Swap Frequency Components
High-level augmentation methods encourage underlying al-
gorithms to focus on multiple discriminative features. How-
ever, as these techniques destroy the spatial relationship with
neighboring regions, performance can deteriorate when used
for low-level tasks, where textural consistency between re-
covered and its neighboring regions is vital to ensure effec-
tive performance. To this end, we introduced CutFreq by
defining two operations.

Definition 1: Cut. Given a training sample I , the ground
truth can be denoted as J . Each input can be decomposed
into four bands (ΨLL(I), ΨHL(I), ΨLH(I) and ΨHH(I)) by
discrete wavelet transformation Ψ(·). The LL band can be
further degraded into four corresponding bands by Ψ(·).

As defined above, CutFreq adopts the standard discrete
wavelet transform (Edwards 1991) to decompose the input
and the real image into frequency domain representation.
Inspired by the frequency component convergence experi-
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Figure 4: Convergence process of each frequency band. (Left panel) Performance curves of LW-ISP (Chen and Ma 2022) during
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LL,LH,HL, and HH . Only HL is placed due to limited space, measured by our FBND. X-axis: epochs. Y-axis: averaged
frequency distance value. (Right panel) The same experiment on the image enhancement.

ment, CutFreq augments the input in two stages.
Definition 2: Swap. Given a training process P , fast

convergence Pe and performance approximation Pl are de-
fined as two learning stages of the model. In Pe, the opera-
tion is selected based on the specific task: replacing either
the high frequency (ΨHL,LH,HH(J) → ΨHL,LH,HH(I)) or
low frequency (ΨLL(J) → ΨLL(I)) bands of J with the
corresponding frequency bands from I . In Pl, select a fre-
quency band t from J to replace the corresponding band
(t ∈ LL,HL,LH,HH , and NULL). Finally, perform the
IDWT Ψ̂(·).

Inspired by the analysis in Sec. Preliminary Analysis, we
customize augmentation strategies for the two types of re-
construction tasks identified. The essence lies in swapping
frequency bands of varying granularities. Stage I-Fast con-
vergence: This stage focuses on guiding the model to more
efficiently learn key features by adjusting specific frequency
bands of the input image. Stage II-Performance approxi-
mation: Different frequency bands of the real image are
alternately exchanged with the input image. Note that the
exchange of NULL bands (band discarding) should avoid
involving low-frequency components, as the image recon-
struction process fundamentally relies on the integrity of the
image’s information. Moreover, during the real bands ex-
change, selective fusion with the original input is advisable,
as this facilitates the introduction of a suitable amount of
detail and texture information while preserving the primary
structure of the image.

Experiment
Experiment Setup
We evaluate the proposed CutFreq on benchmark datasets
and experimental settings for five low-level vision tasks: (a)
smart ISP, (b) image denoising, (c) image deraining, (d) im-
age deblurring, and (e) image enhancement. For smart ISP,
we evaluate our method on Zurich RAW to RGB (Ignatov,
Van Gool, and Timofte 2020) (Zurich for short) dataset. In
tables, the best and the second-best quality scores of the
evaluated methods are highlighted and underlined.

Baselines and Evaluation. We use three low-level vision
models: LW-ISP (Chen and Ma 2022), HINet (Chen et al.
2021b) and Restormer (Zamir et al. 2021). These models

have varying numbers of parameters and network structures
(CNN and transformer). For fair comparisons, every model
is trained from scratch using the authors’ official code unless
mentioned otherwise. Please note that we do not use multi-
stage algorithms, such as heterogeneous knowledge distilla-
tion, to ensure fairness.

Implementation Details. The experiments are imple-
mented with PyTorch 1.2.0 on RTX NVIDIA 2080Ti and
PH402 SKU 200 with 12G memory GPUs. In experiments,
PSNR (Huynh-Thu and Ghanbari 2008) and SSIM (Wang
et al. 2004) are used to evaluate the image quality.

Study on Different Augmentation Methods
Considering the difference in the output form of the genera-
tion tasks and the recognition tasks, the previous high-level
methods cannot achieve satisfying results in the low-level
vision. (a) High-level visual methods: Mixing by combin-
ing different image content information changes the color
and structural information of the image (CutMix, Mixup,
CutMixup). Cropping the selected area of the sample will
result in the loss of spatial information (Cutout). (b) Tra-
ditional methods: such as RGB permutation and blend, do
not cause severe spatial distortion but bring about the effect
of a sharp transformation of the structure. (c) Low-level vi-
sion methods: CutBlur is more suitable for super-resolution
tasks, requiring more urgent modeling of local and global
relationships between pixels. We choose LW-ISP (Chen and
Ma 2022) to compare augmentation methods in smart ISP
and image denoising. Table 1 and Table 2 show the substan-
tial improvement of our CutFreq and demonstrate the feasi-
bility of data augmentation in the frequency domain.

Study on Different Low-level Tasks
Smart ISP. The ISP pipeline derives the smart
ISP (Schwartz, Giryes, and Bronstein 2018; Ratnasingam
2019; Ignatov, Van Gool, and Timofte 2020) from the
existing DL-based methods. Although LW-ISP achieves
superior performance, it suffers from color distortion and
local details missing. The results of our method (+0.17 dB,
Table 1) are more in line with the real characteristics and
can generate better details.

Image Denoising and Image Deblurring. We train
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Method PSNR (dB) MSSSIM

baseline 21.37 0.8591
Mixup (Zhang et al. 2017) 21.36 (-0.01) 0.8605
CutMix (Yun et al. 2019) 21.38 (+0.01) 0.8628
CutMixup (Yoo, Ahn, and Sohn 2020) 21.45 (+0.08) 0.8614
Cutout (DeVries and Taylor 2017) 21.36 (-0.01) 0.8601
CutBlur (Yoo, Ahn, and Sohn 2020) 19.87 (-1.50) 0.8461
Copy-blend (Shyam et al. 2021) 19.87 (-1.50) 0.8442
Blend (Prados Gutiérrez et al. 2013) 20.89 (-0.48) 0.8557
RGB perm. (Lee, Hwang, and Shin 2020) 21.01 (-0.36) 0.8557
CutFreq 21.54 (+0.17) 0.8624

Table 1: Smart ISP: Comparison of different augmentation
methods on Zurich (Ignatov, Van Gool, and Timofte 2020).
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Figure 5: Image denoising results on DND (Plotz and Roth
2017). We apply CutFreq on Restormer (Zamir et al. 2021).
The frequency map of the clipped region is also shown.

HINet (Chen et al. 2021b) and Restormer (Zamir et al. 2021)
on the training set of SIDD (Abdelhamed, Lin, and Brown
2018) and directly evaluate it on the test images of both
SIDD and DND (Plotz and Roth 2017) datasets. Notably,
on the SIDD dataset, our CutFreq obtains PSNR gains of
0.09 dB and 0.06 dB over the previous CNN method HINet
and transformer model Restormer, respectively. As shown in
Figure 5, our method generates denoised images that are nat-
ural and vivid in appearance and have better global and lo-
cal contrast. We evaluate image deblurring on GoPro (Nah,
Hyun Kim, and Mu Lee 2017) and HIDE (Shen et al. 2019).
When averaged across all datasets, our method obtains a per-
formance boost of 0.11 dB over the Restormer.

Image Deraining and Image Enhancement. CutFreq
achieves consistent performance gain on five derain-
ing datasets (Test100, Rain100H, Rain100L, Test2800,
Test1200). Compared to Restormer (Zamir et al. 2021), Cut-
Freq achieves 0.06 dB improvement when average across
all datasets. We also achieve quite competitive results on the
low-light LoL dataset (Wei et al. 2018). On the basis of LW-
ISP, CutFreq can improve the PSNR by 0.13 dB.

Method PSNR (dB) SSIM

baseline 39.1966 0.9162
Mixup (Zhang et al. 2017) 39.2180 (+0.021)0.9162
CutMix (Yun et al. 2019) 39.1445 (-0.052) 0.9153
CutMixup (Yoo, Ahn, and Sohn 2020) 39.1492 (-0.047) 0.9153
Cutout (DeVries and Taylor 2017) 39.2440 (+0.047)0.9164
CutBlur (Yoo, Ahn, and Sohn 2020) 38.9014 (-0.295) 0.9133
Copy-blend (Shyam et al. 2021) 39.1977 (+0.001)0.9163
Blend (Prados Gutiérrez et al. 2013) 37.2671 (-1.930) 0.8949
RGB perm. (Lee, Hwang, and Shin 2020) 39.0681 (-0.129) 0.9146
CutFreq 39.2904 (+0.094)0.9168

Table 2: Image Denoising: Comparison of augmentation
methods on SIDD (Abdelhamed, Lin, and Brown 2018).

Ablation Study
Augmentation Setup. We consider that for data augmenta-
tion in low-level vision, the training objectives have already
reached pixel-level complexity, and it may not be necessary
to augment every single sample. By comparing the complete
augmentation after 5 epochs (-0.044 dB), the complete aug-
mentation after half training (-0.050 dB), and the probability
augmentation (+0.0214 dB1), we find that the performance
of probability augmentation is the best, and other methods
may even affect the normal training process.

Augmentation Strategies. Our method involves stage-
wise swapping of frequency bands between the input and
ground truth images in the frequency domain. The con-
vergence trends of the model on different tasks inspired
fine-grained adjustments to CutFreq. To comprehensively
demonstrate the learning bias of the reconstructed model to
frequency bands during training, we conduct ablation exper-
iments using a range of frequency bands (LW-ISP on de-
noising). (a) The frequency information of different decom-
position times (denoted as Jn) is used as the cutting stan-
dard instead of different frequency bands. We package the
remaining high-frequency information (LL,LH and HH)
after each decomposition into a group as the content of
“Swap”. The results prove that this strategy is slightly worse
than band swapping (J2: -0.02 dB, J3: -0.01 dB). (b) Under
the strategy of maintaining the first stage, we replace another
frequency band every certain number of training epochs (10
epochs and 20 epochs). Experiments show that this strategy
does not allow the model to concentrate on learning the un-
replaced frequency bands (-0.12 dB, -0.07 dB). The distinc-
tion between LH,HL and HH frequency bands is not ob-
vious. (c) What are the implications if we overlook the set-
tings of the two stages? Focusing solely on replacing either
low-frequency components or high-frequency components
throughout the training cycle (J3) yields distinct results: for
the former, we achieve 39.23 dB (+0.04 dB), and for the lat-
ter, we record 39.08 dB (-0.11 dB). This observation is in
line with the typical characteristics of image denoising. It
suggests that the model tends to reach better convergence
when provided with more targeted and precise information.

1Taking Mixup on image denoising as an example, baseline:
39.1966 dB.
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(a) Low-data Regime (Denoising - SIDD) (b) Frequency Band Distances (FBND) (Smart ISP - Zurich)
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Figure 6: Study on the low-data regime and demonstration of frequency convergence trends. (a) X-axis: the percentage of
training data. Y-axis: PSNR/SSIM values. (b) X-axis: epochs. Y-axis: the frequency-band normalized L1 distance (FBND).

(d) During “Swap”, we incorporate a NULL option, signify-
ing the discarding of specific frequency components in input
samples. Randomly dropping certain high-frequency bands
during training aids in better convergence on high-frequency
components, resulting in performance improvements of 0.08
dB and 0.03 dB in smart ISP and image enhancement, re-
spectively, compared to the baseline. The frequency discrep-
ancies are depicted in Figure 6.

Hyperparameters. In developing CutFreq, we observe
that model performance is affected by hyper-parameters.
Specifically: (a) Decomposition times. In the image denois-
ing of LW-ISP, for example, CutFreq with J2 (+0.06 dB) and
J4 (+0.03 dB) slightly outperforms J1 (-0.10 dB). (b) Basis
function. Our ablation studies on DWT’s basis functions re-
veal the Haar basis functions’ superiority over Daubechies.
Using Daubechies, performance consistently remains below
the baseline, be it J1 (-0.11 dB), J2 (-0.03 dB), or J3 (+0.01
dB). We speculate this might stem from the asymmetry of
Daubechies wavelets, potentially introducing noise that de-
viates from the original distribution in the enhanced image.

High-low Frequency Decomposition. Traditional fre-
quency decomposition methods, like the discrete Fourier
transform (DFT), are adept at segregating high-frequency
and low-frequency components. They primarily aim to re-
duce image distortion originating from impurity components
by converting the image from the spatial to the frequency
domain. However, DWT stands out as it concurrently cap-
tures spatial and frequency information. We conduct abla-
tion study replacing DWT with DFT in our CutFreq. Under
the LW-ISP setting, DFT performs 0.10 dB worse than DWT
in image enhancement (0.03 dB higher than baseline).

Discussion
To begin with, we discuss the interpretation of our CutFreq.
Regarding the understanding of the frequency domain, our
method is suitable for observing the convergence trend of
the model for different components. By using “Cut” and
“Swap”, the model can identify the general pattern of data
in a specific frequency component, which can provide a cer-
tain degree of regularization.

Low-data Regime. It is generally known that a large
model benefits more from augmentation than a small model
does (Yoo, Ahn, and Sohn 2020). Meanwhile, in order to
verify the superiority of our method in the low-data regime,
we choose the lightweight model (LW-ISP) to verify the gain

effect of CutFreq. Figure 6 demonstrates the consistent su-
periority of our method under the different sizes of train-
ing data. We investigate the model performance while de-
creasing the data size (100%, 75%, 50%, 25%, 10%, 5%)
for training. With the reduction, the performance differential
between the baseline and our approach remains consistent.

Spectral Loss. In our exploration of spectral loss as a
method to foster convergence in the frequency domain, we
explore an initial evaluation of established frequency super-
vision approaches. This includes the focal frequency loss
(FFL)(Jiang et al. 2021b) and the wavelet loss (WL)(Zhang
et al. 2022). In our LW-ISP experiments tailored for im-
age denoising, the PSNR values achieved by FFL and WL
are recorded as 39.2028 dB (+0.0062) and 39.2411 dB
(+0.0445), respectively. Similarly, for smart ISP, FFL yields
a PSNR of 21.304 dB (-0.066), while WL registers 21.208
dB (-0.162). The integration of our observations from Fig-
ure 3 and Figure 4 with the conceptualization of spectral loss
is a direction we believe merits future exploration.

Limitations and Future Work. In the realm of low-level
vision, we propose CutFreq as an augmentation strategy.
However, its effectiveness may not be universally optimal,
given that deep neural networks typically do not learn fre-
quency domain information explicitly. This limitation opens
up intriguing possibilities for explicitly incorporating fre-
quency signal learning through approaches like contrastive
learning or tailored loss design. These approaches are poised
to assist models in discerning when and learning which fre-
quency components are crucial for reconstructing samples.

Conclusion

Inspired by the characteristic difference between BN and IN,
we perform single-sample fine-grained augmentation. In this
paper, we validate the prevalence of frequency-domain gaps
in low-level vision qualitatively and quantitatively and use
frequency-band normalized L1 distance to measure model
convergence for different frequency components. Further-
more, We introduce the CutFreq for low-level vision, which
aims to preserve high-level representations with direction-
ality and improve image synthesis quality. Experiments on
five low-level vision tasks demonstrate the effectiveness of
our method. We also demonstrate the superior performance
of the method in the low-data regime.
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