
Sketch and Refine: Towards Fast and Accurate Lane Detection

Chao Chen, Jie Liu*, Chang Zhou, Jie Tang, Gangshan Wu
State Key Laboratory for Novel Software Technology, Nanjing University, China
{chenchao, zhouchang}@smail.nju.edu.cn, {liujie,tangjie,gswu}@nju.edu.cn

Abstract

Lane detection is to determine the precise location and shape
of lanes on the road. Despite efforts made by current meth-
ods, it remains a challenging task due to the complexity of
real-world scenarios. Existing approaches, whether proposal-
based or keypoint-based, suffer from depicting lanes effec-
tively and efficiently. Proposal-based methods detect lanes
by distinguishing and regressing a collection of proposals
in a streamlined top-down way, yet lack sufficient flexibil-
ity in lane representation. Keypoint-based methods, on the
other hand, construct lanes flexibly from local descriptors,
which typically entail complicated post-processing. In this
paper, we present a “Sketch-and-Refine” paradigm that uti-
lizes the merits of both keypoint-based and proposal-based
methods. The motivation is that local directions of lanes are
semantically simple and clear. At the “Sketch” stage, lo-
cal directions of keypoints can be easily estimated by fast
convolutional layers. Then we can build a set of lane pro-
posals accordingly with moderate accuracy. At the “Refine”
stage, we further optimize these proposals via a novel Lane
Segment Association Module (LSAM), which allows adap-
tive lane segment adjustment. Last but not least, we propose
multi-level feature integration to enrich lane feature repre-
sentations more efficiently. Based on the proposed “Sketch-
and-Refine” paradigm, we propose a fast yet effective lane
detector dubbed “SRLane”. Experiments show that our SR-
Lane can run at a fast speed (i.e., 278 FPS) while yield-
ing an F1 score of 78.9%. The source code is available at:
https://github.com/passerer/SRLane.

Introduction
Lane detection is a core part of an autonomous driving sys-
tem that aims to depict the exact shape of each lane on the
road. It has advanced thanks to the prosperity of convolu-
tional neural networks (CNN) (Pan et al. 2018; Li et al.
2019). Prevailing solutions for lane detection can be broadly
divided into two streams: keypoint-based methods (Qu et al.
2021; Wang et al. 2022) and proposal-based methods (Feng
et al. 2022; Tabelini et al. 2021a). Keypoint-based meth-
ods reduce lane detection into two steps: discrete keypoints
detection and association. That is, keypoints on lanes are
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located first and then heuristically integrated into continu-
ous lane instances via local descriptors. Local descriptors
are compact representations of local image characteristics,
including semantic ones like deep feature embedding (Ko
et al. 2021), and geometric ones like spatial offsets to adja-
cent keypoints (Qu et al. 2021) (See Fig. 1(a)). Despite their
flexibility to describe a variety of lane shapes, the integration
procedure complicates the pipeline and causes additive er-
rors. Besides, these methods face difficulty predicting more
lane-level attributes, such as lane type.

Alternatively, proposal-based methods rely on proposals
to aggregate relevant features and model global geometry di-
rectly. Proposals here refer to a group of class-agnostic can-
didates likely to be lanes. Taking proposals as input, there
is usually a classifier to distinguish between positive and
negative samples and a locator to predict shapes. Benefit-
ing from the end-to-end pipeline, these methods are sim-
pler to design and implement. However, the demand for
high-quality proposals leaves them in a dilemma between
efficiency and adaptability. Typically, sparse proposals are
computationally efficient but have limited fitting ability,
while dense proposals offer better fitting ability but can be
more computationally expensive (Qin, Zhang, and Li 2022).
Some anchor-based methods (Li et al. 2019; Tabelini et al.
2021a) introduce anchors as references to build proposals
(See Fig. 1(b)). To guarantee the detection qualities, they
preset hundreds of thousands of anchors to cover underly-
ing lanes, which results in high redundancy and complex-
ity and hinders their applications on resource-constrained
hardware. For a trade-off between performance and infer-
ence speed, some methods (Qin, Wang, and Li 2020) arrange
varying amounts of anchors to different datasets, which in-
volves more laborious processes, while the inherent problem
remains untouched.

In this paper, we seek to develop an efficient and effec-
tive lane detector by incorporating the characteristics of both
paradigms. As demonstrated in (Qu et al. 2021), local lane
markers are easier to predict than global lanes because of
their limited geometric variations and spatial coverage. This
raises a question: can we leverage cheap local descriptors
to build complex global lane proposals? We empirically ob-
serve that lanes in the front view exhibit certain geometric
consistency, e.g., limited variation in lane slope within a
local region. It implies that keypoints of a lane are likely
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Figure 1: Illustrations of lane detection methods. (a) An ex-
ample of keypoint-based methods, where local keypoints are
grouped based on their offsets (orange colored arrow) from
each other to reconstruct the whole lane. (b) An example of
anchor-based methods which use pre-defined line anchors
(cyan colored line) to match and predict lanes. (c) The pro-
posed paradigm first sketches local directions for a set of
keypoints. Then it extends the estimated local directions to
build lane proposals. (d) Refinement of lane segments via
the proposed Segment Association Module (i.e., the dashed
line segment is replaced to better fit the ground truth).

to lie on or near the extension line of the lane segment.
Therefore, we are motivated to propose SRLane, where lane
shapes are quickly Sketched (i.e., roughly depicted) using
local geometry descriptors and then Refined for higher ac-
curacy. Specifically, our paradigm first predicts a local di-
rection map, wherein the value of each point indicates the
approximate direction of the closet lane segment. Then we
build the corresponding proposal of each point along its di-
rection (See Fig. 1(c)). As a result, we can locate lanes fast
and fairly accurately. For example, the sketched lanes can
reach a detection accuracy of 93% on Tusimple dataset.

To fit lanes with large curvature variations, a Lane Seg-
ment Association Module (LSAM) is developed to adjust
non-fitting segments of lane proposals (See Fig. 1(d)). It
is implemented by emphasizing foreground segment fea-
tures based on the semantic relationships between segments.
Moreover, we propose multi-level feature integration tai-
lored for lane detection. It directly samples multiple features
from different levels of features, which endows a holistic
view of lanes.

Such “Sketch-and-Refine” paradigm enables us to detect
lanes efficiently and effectively. Extensive experiments on
benchmarks demonstrate that our SRLane could obtain re-
markable performance with breakneck speed. For example,
SRLane can achieve 278 FPS with an F1 score of 78.9%

on CULane test set. We hope SRLane can serve as a new
baseline for proposal-based methods and advance the devel-
opment of real-time lane detection.

Related Work
Initially, lane detection research mainly focused on detect-
ing hand-crafted low-level features and fitting a spline to
localize lanes (Borkar, Hayes, and Smith 2009; Chiu and
Lin 2005; Ghazali, Xiao, and Ma 2012). Compared to deep
learning methods, such methods perform worse in complex
scenes. Prevailing attempts of deep learning in lane detection
can be classified into two categories: keypoint-based meth-
ods and proposal-based methods. Following that, we provide
a succinct description of the representative work for both of
these categories.

Keypoint-based lane detection. The core difference of
the keypoint-based method is how the keypoint-wise group-
ing is carried out. PINet (Ko et al. 2021) uses a confidence
branch, offset branch, and the embedding branch to cluster
keypoints on the lane. FOLOLane (Qu et al. 2021) deploys
a confidence head and regression head. The regression head
estimates the horizontal offsets of each pixel to three neigh-
boring keypoints with fixed vertical intervals. The lane in-
stance takes form by correlating adjacent keypoints. GANet
(Wang et al. 2022) predicts all possible keypoints as well, but
finds the corresponding lane by adding the coordinate with
the offset to the lane line start points. Drawing on the idea of
Relay Chain, RCLane (Xu et al. 2022) creates a transfer map
and recovers lane instances sequentially in a chain mode.

Though making use of local descriptors like keypoint-
based methods, our proposed SRLane is rooted in the
proposal-based method, which gets rid of complicated post-
clustering procedure.

Proposal-based lane detection. Proposal-based meth-
ods can be further categorized into two subgroups, e.g.,
anchor-free methods and anchor-based methods. Among the
anchor-free methods, PolyLaneNet (Tabelini et al. 2021b)
outputs a small number of proposals from simple fully-
connected layers, each of which embraces polynomial co-
efficients and the confidence score of a lane. BézierLane
(Feng et al. 2022) uses a sparse set of proposals derived
from simple column-wise Pooling to predict Bézier curves.
Due to simple architecture design and few proposals, Poly-
LaneNet and BézierLane both run fast. Nevertheless, their
performance lags far behind the latest anchor-based meth-
ods, which can be attributed in part to the indistinguishable
proposal features produced by rough sampling schemes.

As for anchor-based methods, Line-CNN (Li et al. 2019)
is the pioneering work that puts forward to classify and
regress lanes via line anchors. To avoid redundant anchors,
SGNet (Su et al. 2021) restricts the anchor generation do-
main to pixels around the vanishing point. To fully uti-
lize line anchors, LaneATT (Tabelini et al. 2021a) deploys
anchor-based pooling for local feature sampling and anchor-
based attention for global information fusion. Subsequently,
CLRNet (Zheng et al. 2022) refines lane priors hierarchi-
cally starting from line anchors, which further boosts perfor-
mance. Instead of directly regressing coordinates of lanes,
another kind of methods (Liu et al. 2021; Qin, Wang, and Li
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Figure 2: Overall pipeline of SRLane, which can be decomposed into two stages: lane sketch and refinement. In the sketch stage,
the last feature map from backbone is encoded to create a local direction map, where a set of lane proposals are initialized.
In the refinement stage, features of proposals are adaptively sampled from multi-scale feature maps and then enhanced by the
Lane Segment Association Module. After that, they are fed into the classification and regression branch to produce final results.

2020) get lane locations through row-wise or column-wise
ordinal classification. However, the performance of above
methods is largely affected by the anchor setting. To acquire
satisfied detection qualities, they usually drop plenty of an-
chors, and only a small portion of them become proposals
of interest that contribute to the detection results. In con-
trast, our method de-emphasizes the number of proposals
and achieves higher efficiency.

Methodology
Overall Pipeline
As Fig. 2 shows, the proposed SRLane breaks down the lane
detection process into two stages: lane sketch for fast local-
ization of potential lanes and lane refinement for more ac-
curate results. At the sketch stage, SRLane creates a local
direction map to initialize lane proposals, which serves as
the input to the next stage. At the refinement stage, features
of the proposals are dynamically sampled across multiple
levels and processed by the Lane Segment Association Mod-
ule (LSAM) to strengthen segment-level interaction. The re-
fined features are then fed into the classification and regres-
sion branches to generate final results.

All of the parameters in SRLane are trained in an end-to-
end supervised manner. By treating the refinement stage as
an RoI head in two-stage detectors (Ren et al. 2015), SR-
Lane can be easily incorporated into other detection frame-
works for multi-task detection. In the subsequent sections,
we go into the details of these two stages.

Lane Sketch
To provide good proposal initialization in the first stage,
we figure out three possible schemes for lane sketch:
(a) Pre-defining a collection of line anchors like (Tabelini
et al. 2021a), which is inflexible to fit lines with differ-
ent curvatures. More importantly, the initial status of an-

chors is irrelevant to the input image, which deviates from
the purpose of the lane sketch. (b) Plugging an interme-
diate lane proposal network to generate proposals, whose
structure can refer to (Liu et al. 2021). However, capturing
lanes’ diverse shapes and distribution requires considerable
network complexity. Also, the generation process is unin-
terpretable, which is a barrier to further analysis and im-
provement. (c) Using local descriptors, which are preferable
since local patterns are relatively simple and easy to predict.
Constructing lanes from local descriptors has long been re-
searched in keypoint-based methods. Unlike them, we draw
on the local continuity of lanes to eliminate the complicated
post-clustering procedure and simplify the overall detection
pipeline. There are several choices of local descriptors, such
as offsets to three neighboring keypoints described in (Qu
et al. 2021). For simplicity, we use the coordinates and local
direction of the point together to build lane proposals.
Local direction estimation. Given an image I ∈
RH×W×3, the feature map can be derived from the back-
bone as Fs ∈ R(H/s)×(W/s)×ds , where s is the down-
sampling stride and ds is the channel dimension. We further
encode F to obtain a direction map Θ ∈ R(H/s)×(W/s)×1,
wherein the value of each point represents the local angle of
the closest lane, which ranges between [0◦, 180◦). We argue
that predicting the overall angle of a lane is inadvisable as it
necessitates the global receptive field, and the definition of
overall angle is ambiguous if the curvature varies along the
lane. Instead, the local direction is semantically simple and
clear, allowing it to be estimated even by a single convolu-
tional layer.

During the training phase, we apply direction supervision
on feature maps of all scales, which is expected to enrich
spatial details of the context features. Each annotated lane
line is split into K segments, with each segment yielding
ground-truth value for its neighboring points. The value of
K is given by K = H/s to accommodate different receptive
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fields. During inference, only the results of the feature map
with the lowest resolution are computed and kept to initialize
lane proposals, hence the slight computational cost.
Global lane construction. Our goal is to build global lane
proposals using estimated local geometry descriptors. For
point p in the y-th row and the x-th column of the direc-
tion map Θ, the respective proposal can be formulated as
a straight line passing through p with an angle of Θxy ,
as shown in the upper middle part of Fig. 2. Following
(Tabelini et al. 2021a), a lane is represented by a series of
lane points. Given a fixed yi, the corresponding xi of the
line point can be inferred by

xi =
yi − y

tan(Θxy)
+ x. (1)

In this way, we can get (H ×W )/(s× s) lane proposals.
Unlike what is commonly applied in keypoint-based meth-
ods (Qu et al. 2021; Xu et al. 2022), we do not estimate a
binary classification map to filter out foreground samples ,
since the current point’s classification result is inadequate
for deciding whether its proposal belongs to the foreground.
Also, it is worth noting that the number of proposals can
be scaled via the interpolation of Θ. Despite the size of Θ,
the derived proposals are always distributed across the entire
image plane, each indicating the direction of a potential lane
nearby. Therefore, a small number of proposals (e.g., 40) is
sufficient to cover all potential lanes, rather than hundreds
of thousands of ones in other works (Li et al. 2019; Su et al.
2021; Tabelini et al. 2021a; Zheng et al. 2022).

Lane Refinement
To accommodate complex shapes of lanes, we develop a re-
finement head that can adjust lane proposals adaptively. It
takes the coarse location of the lane proposal as input and
integrates multi-level lane features dynamically. The gath-
ered lane features are then projected into 1D feature vectors.
The feature vector is decomposed into groups, each attend-
ing to different lane segments. Afterward, we impose Lane
Segment Association Module (LSAM) to enhance lane fea-
tures and feed the updated features into classification and
regression branches to generate predictions.
Multi-level feature integration. Feature integration at
multiple feature levels is critical in detection task
(Bochkovskiy, Wang, and Liao 2020). Compared to objects
represented by rectangular boxes, lane lines are thin and ex-
tended with a large span, thus requiring more comprehen-
sive multi-level features. However, how to leverage differ-
ent feature levels efficiently remains a challenge. In previ-
ous research, Feature Pyramid Network (FPN) (Lin et al.
2017a) and its variants (Liu et al. 2018) are developed to
mix low-level and high-level features. Despite their effec-
tiveness, these approaches bring increased complexity.

To this end, we forego the heavy FPN in favor of sam-
pling multi-level features directly and adaptively. As shown
in Fig. 3, we sample features of Np points in the lane and ex-
pand the sampling coordinate of i-th point from (xi, yi) to
(xi, yi, zi), where the scalar zi represents the feature scale
of greater significance. The sampling process is completed

Conv

Weighted sum
(with learned 𝑧)

𝑑𝑑𝑑

𝑁𝑝 × 𝑑 𝑐𝑁𝑝

Proj.

𝐅

𝐅
―

Proj.

· · ·

Low-level

High-level

Lane proposal Proposal feature

Figure 3: Illustration of multi-level feature integration. Be-
fore sampling, all feature maps are first transformed by a
single convolutional layer to be of the same channel dimen-
sion d. Np denotes the number of sample points. The sam-
pled features are finally projected to a 1D feature vector with
channel c.

softly, with the sampled features being a Gaussian weighted
sum over scales:

x = Proj

{∑
s

F
s

xiyi
· Exp(−|2zi − s|)∑

s′ Exp(−|2zi − s′ |)

}Np−1

i=0

 .

(2)

Here F
s

is the feature map with stride s. Zero values will
be padded if (xi, yi) falls outside the feature map. Large zi
implies that high-level features are desired while low-level
features are suppressed, and vice versa. Proj(·) is the pro-
jection function, and x ∈ Rc is the projected feature of the
lane proposal. We divide sample points into G groups along
the vertical axis and map features of the same group to the
corresponding channel group of x.

Unlike traditional sampling strategies, adaptive sampling
over scales can reduce redundant features and exploit more
valuable information. As a result, the output lane features
where multi-level clues co-exist serve as a solid foundation
for the following segment association module. It is also de-
sirable for classification and localization, as it requires high-
level semantic information and low-level location details.

In practice, we make the vector z =
[
z0, · · · , zNp−1

]
learnable, which is known as embedding. We discover that
the convergence of z is insensitive to the initial state, which
indicates the successful modeling of underlying sampling
patterns.
Lane segment association. The sketch stage provides a
set of lane proposals that roughly depict the actual lane,
while certain positions may need to be adjusted. For this pur-
pose, we propose a novel Lane Segment Association Mod-
ule (LSAM) for segment-level refinement. Given features
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Method Year Backbone Latency Normal Crowd Dazzle Shadow No line Arrow Cross Night Curve Total
keypoint-based
LaneAF 2021 DLA34 - 91.8 75.6 71.8 79.1 51.4 86.9 1360 73.0 72.0 77.4
FOLOLane 2021 ERFNet 40⊤ 92.7 77.8 75.2 79.3 52.1 89.0 1569 74.5 69.4 78.8
RCLane 2022 SegB0 22⊤ 93.4 77.9 73.3 80.3 53.8 89.0 1298 74.3 75.7 79.5
GANet 2022 Res18 7.5 93.2 77.2 71.2 77.9 53.6 89.6 1240 72.8 75.9 78.8
proposal-based
SGNet 2021 Res18 8.5⊤ 91.4 74.0 66.9 72.2 50.2 87.1 1164 70.7 67.0 76.1
CLRNet 2022 Res18 8.0 93.3 78.3 73.7 79.7 53.1 90.3 1321 75.1 71.6 79.6
UFLDv2 2022 Res18 6.5 91.8 73.3 65.3 75.1 47.6 87.9 2075 70.7 68.5 75.0
CondLane 2021 Res18 6.1 92.9 75.8 70.7 80.0 52.4 89.4 1364 73.2 72.4 78.1
LaneATT 2021 Res18 3.7 91.2 72.7 65.8 68.0 49.1 87.8 1020 68.6 63.8 75.1
BézierLane 2022 Res18 3.6 90.2 71.6 62.5 70.9 45.3 84.1 996 68.7 59.0 73.8
Ours Res18 3.6 93.5 77.8 71.6 78.8 52.1 90.2 1365 74.7 74.7 78.9

Table 1: Comparison of F1-measure and inference latency on CULane test set with state-of-the-art methods. The unit of
latency is “ms”. For the “Cross” category, the number of false positives is recorded. Superscript “⊤” indicates the latency is not
re-measured under the same conditions since the source codes are unavailable, and we use the data reported in the paper. The
best results are marked bold.
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Figure 4: Illustration of Lane Segment Association Module.
G denotes the number of groups and L is the number of lane
proposals. FFN is the Feed Forward Network (Carion et al.
2020). For simplicity, the batch dimension is ignored.

Method Latency↓
(ms)

Acc↑
(%)

F1↑
(%)

FP↓
(%)

FN↓
(%)

keypoint-based
LaneAF-DLA34 - 95.62 96.49 2.80 4.18
FOLOLane-ERFNet 40⊤ 96.92 96.59 4.47 2.28
RCLane-SegB0 22⊤ 96.58 97.64 2.21 2.57
GANet-Res18 7.5 95.95 97.71 1.97 2.62
proposal-based
CLRNet-Res18 8.0 96.84 97.89 2.28 1.92
CondLane-Res18 6.1 95.48 97.01 2.18 3.80
UFLDv2-Res18 4.0 95.65 96.16 3.06 4.61
LaneATT-Res18 3.7 95.57 96.71 3.56 3.01
Ours-Res18 3.6 96.85 97.66 2.80 1.85

Table 2: Comparison with state-of-the-art methods on
Tusimple test set. Acc is the abbreviation of accuracy. ↓ in
the head row indicates that the lower the metric is, the better
the performance is, and vice versa.

of L lane proposals X = [x0, · · · ,xL−1] ∈ RL×c, each
xi ∈ Rc represents the entire lane feature. Meanwhile, it
can also be regarded as an ordered collection of G lane seg-
ment features: xi = [x0

i , · · · ,x
G−1
i ], where xg

i ∈ Rc/G.
As shown in Fig. 4, each proposal feature xi acts as a
query to gather information from all L × G segment fea-
tures adaptively by cross-attention mechanism. It is expected
that the foreground-like proposals could collect hints from
foreground-like segments, obtaining a high tolerance for
lane variations. The proposed LSAM is de-facto computa-
tionally friendly thanks to the small number of proposals.

Although LSAM reinforces the communication between
semantically similar (e.g., both foreground-like) instances, it
may fall into a suboptimal process without explicit supervi-
sion. To mitigate this issue, we use bipartite matched ground
truth (GT) to supervise the attention weights in LSAM.
Given any pair of proposals denoted as (li, lj), their target
attention weight of g-th group Wg

(i,j) is defined as:

Wg
(i,j) =

1 if j = argmin
k

d
(
lgk, l̂

g
i

)
0 otherwise

, (3)

where l̂i is the matched GT of li, and d (·, ·) measures the ge-
ometry distance between two lane segments. Supervised by
the cross entropy loss of attention weights, each proposal is
forced to attend to its target segment and learn better feature
representation.
Classification and regression. Taking proposal features as
input, the classification branch predicts the probability of
the proposal being a foreground, while the regression branch
yields a more precise location. The location of a lane is de-
scribed by a series of x-coordinates of lane points with equal
vertical intervals, which is denoted as {xi}N−1

0 , where N
represents the total number of points. The y-coordinate cor-
responds to xi is given by yi = i· H

N−1 , where H is the height
of image. Besides, the regression branch also predicts the
maximum and minimum y-coordinate values to determine
the endpoints of the lane.
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Experiment
Datasets and Evaluation Metrics
Experiments are conducted on three popular lane datasets
in the literature: Tusimple (TuSimple 2017), CULane (Pan
et al. 2018), and Curvelanes (Xu et al. 2020). Tusimple
contains 3,626 images for training and 2,782 images for
testing, all collected in highway scenes. CULane is one of
the largest lane detection datasets, which comprises 88,880
frames, 9,675 frames, 34,680 frames for training, validation,
and testing, respectively. CurveLanes is a recently released
benchmark with dense curve lanes, and we use it’s subset for
hyperparameter tuning and ablation experiments.

In line with the official metric used in (TuSimple 2017)
and (Pan et al. 2018), we use accuracy for Tusimple and F1
for CULane as the main evaluation metrics. F1 is a holistic
metric that combines true positive (TP), false positive (FP),
and false negative (FN). Besides accuracy, we also report F1,
FP, and FN ratios on Tusimple.

Implementation Details
Architecture. We adopt a standard ResNet18 (He et al.
2016) as the pre-trained backbone and use multi-scale fea-
ture maps from the last three stages. Currently, the local di-
rection map is resized to 4 × 10 regardless of the input res-
olution, which means the number of proposals L is fixed as
40. The groups of lane segments is set to 6 by default. In the
current implementation, all operators in the model are based
on PyTorch (Paszke et al. 2019).
Loss. Training loss encompasses l1 loss for direction esti-
mation, cross entropy loss for attention weights, focal loss
(Lin et al. 2017b) for lane classification, and iou loss (Zheng
et al. 2022) for lane regression. The overall loss is given by:

L = wclsLcls + wregLreg + wdirLdir + wattnLattn, (4)

where the loss weights are set as wcls = 2.0, wreg = 1.0,
wdir = 0.05, and wattn = 0.05. The direction loss is only
performed on points adjacent to ground truth within a cer-
tain range. The lane regression loss is performed on the pos-
itive samples which have the highest matching degree with
ground truth.
Training. We use AdamW (Loshchilov and Hutter 2017)
as the optimizer in conjunction with a cosine learning rate
scheduler. The initial learning rate is set to 10−3 with 800
iterations of linear warm-up. The batch size is set to 40 and
images are resized to 800×320. Data augmentation for train-
ing includes random flipping, affine transformation, color
jittering and JPEG compression. All models can be trained
on a single GPU with 12GB memory.

Main Results
We primarily focus on the comparison with cutting-edge
methods (Abualsaud et al. 2021; Feng et al. 2022; Liu et al.
2021; Qin, Zhang, and Li 2022; Qu et al. 2021; Tabelini et al.
2021a; Wang et al. 2022; Xu et al. 2022; Zheng et al. 2022),
which are summarized into two categories: keypoint-based
methods and proposal-based methods. For a fair compari-
son, the inference latency is measured on our machine with
an AMD EPYC 7232P CPU and an NVIDIA Titan Xp GPU.

20 40 60 80 100 120 140 160
Number of Proposals

85.2

85.8

86.4

87.0

87.6

F1

direction-based
anchor-based

Figure 5: Performance comparison with different number of
proposals.

CLRNet UFLDv2 SRLane
Param. (M) 0.4 85.2 0.4
MACs (M) 2450 85 13

Table 3: Model head parameters and MACs. The input im-
age size for MACs is 800× 320.

CULane. The performance of SRLane on the CULane
dataset is compared against other methods in Tab. 1. We can
see that SRLane could run extremely fast and get superior re-
sults in total compared to those of similar speed, e.g., 3.8%
F1 gain vs. LaneATT and 5.1% F1 gain vs. BézierLane. In
curve scenarios, the benchmarks are dominated by keypoint-
based detectors, e.g., GANet achieves 75.92% F1. Notably,
SRLane obtains a competitive 74.7% F1 on the curve set,
narrowing the gap between state-of-the-art keypoint-based
detectors and surpassing the previous highest curve score
of proposal-based detectors by 2.3%. It demonstrates the
promising ability of SRLane to fit curve lanes.
Tusimple. We also run experiments on the Tusimple
dataset. As listed in Tab. 2, our SRLane achieves the fastest
speed, which is 2.2 times faster than CLRNet and 11.1 times
faster than FOLOLane. Meanwhile, SRLane maintains high
accuracy, which demonstrates the superiority of our method.
Visualization of detection results. Fig. 6 exemplifies the
qualitative results of our method. It can be observed that SR-
Lane achieves a smoother fit to lane curves, especially curve
segments near the vanishing point. In addition, SRLane is
robust to different lighting conditions, such as dim and daz-
zling.
Parameters and MACs. Tab. 3 compares parameters and
multiply accumulate operations (MACs) of our SRLane to
those of two other prominent models: CLRNet (Zheng et al.
2022) and UFLDv2 (Qin, Zhang, and Li 2022). The back-
bones of all models are ResNet18, and only the data of
head are displayed for clearer comparison. It is shown that
SRLane has a significant edge considering both aspects,
demonstrating the great practical value in constrained ve-
hicle computing devices.

Ablation Study
Proposal initialization. We first verify the necessity of
the direction-based proposal initialization. We use the same
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Figure 6: Qualitative comparison between our SRLane and other lane detection methods (Best viewed in colors).

Adaptive Sampling Segment Association F1
85.7

✓ 86.3
✓ 86.5

✓ ✓ 87.2

Table 4: Effects of each component in the proposed SRLane.

number of line anchors to initialize lane proposals as the
counterpart. The anchor setting is in accord with (Zheng
et al. 2022). As illustrated in Fig. 5, the proposed direction-
based initialization approach achieves excellent perfor-
mance with 40 proposals, outperforming the correspond-
ing anchor-based one, which needs far more proposals to
compensate for the performance gap. These findings suggest
that the proposed direction-based initialization method can
achieve high performance with sparse proposals.
Multi-level feature integration. To ablate the effective-
ness of our proposed feature sampling strategy, we set the
single-level feature sampling method as the baseline. For a
fair comparison, we equip the baseline model with Feature
Pyramid Network (FPN) to compensate for multi-level in-
formation. As shown in Tab. 4, using single-level features
leads to inferior performance (See row 1 vs. row 2, row 3 vs.
row 4), indicating the benefit of sampling multi-level fea-
tures adaptively. We refer readers to the Appendix for more
ablations about it.
Lane segment association module. We also validate the
effectiveness of our proposed Lane Segment Association
Module (LSAM) in Tab. 4. It can be seen that LSAM gives
an improvement by up to 0.9% F1 (See row 2 vs. row 4).
To further validate the effectiveness of LSAM, we visualize
the attention map in Fig. 7. LSAM successfully learns to re-
fine segment features by assigning higher attention values to
the segment of interest, e.g., the segment closest to the exact
foreground, which is enclosed by a red dotted box in the fig-
ure. These results demonstrate that LSAM enables a better
fit for lanes with significant curvature variations.

Figure 7: Attention weight w.r.t. the red-colored line pro-
posal. For better visualization, we spread the original
segment-level attention weight onto the image plane based
on the position of segments. The original image is shown in
the upper left.

Conclusion
In this paper, we have presented a novel method for the task
of 2D lane detection, which allows us to locate lanes ac-
curately and efficiently. It is achieved by roughly sketching
the shape of the lane conditioned on local geometry descrip-
tors and refining it progressively. Benchmarking on different
datasets demonstrates the outstanding speed, accuracy, and
robustness of our SRLane to diverse scenarios. We believe
that such a design is transferable to 3D lane detection. How-
ever, it is beyond the purpose of this work.
Limitations. Although SRLane performs better than other
proposal-based detectors in curve scenarios, it still lags be-
hind cutting-edge keypoint-based detectors. We anticipate a
more effective way to fill this gap.
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