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Abstract

Accurate human shape recovery from a monocular RGB im-
age is a challenging task because humans come in different
shapes and sizes and wear different clothes. In this paper,
we propose ShapeBoost, a new human shape recovery frame-
work that achieves pixel-level alignment even for rare body
shapes and high accuracy for people wearing different types
of clothes. Unlike previous approaches that rely on the use of
PCA-based shape coefficients, we adopt a new human shape
parameterization that decomposes the human shape into bone
lengths and the mean width of each part slice. This part-
based parameterization technique achieves a balance between
flexibility and validity using a semi-analytical shape recon-
struction algorithm. Based on this new parameterization, a
clothing-preserving data augmentation module is proposed to
generate realistic images with diverse body shapes and accu-
rate annotations. Experimental results show that our method
outperforms other state-of-the-art methods in diverse body
shape situations as well as in varied clothing situations.

1 Introduction
Human pose and shape (HPS) recovery from monocular
RGB images is an essential task of computer vision. It serves
as a basis for human behavior understanding and has appli-
cations in various fields such as Virtual Reality, Augmented
Reality, and Autopilot. Recent methods (Zhang et al. 2022;
Li et al. 2022b,a, 2021) achieve high accuracy in human pose
estimation, but their results of human shape estimation are
often suboptimal.

Due to the scarcity of image datasets featuring diverse
body shapes, many existing methods for recovering human
pose and shape suffer from overfitting on body shape esti-
mation. Their results are particularly unsatisfactory for very
thin or plump people. Previous approaches have attempted to
solve the overfitting issue through two main strategies. The
first kind of methods (Varol et al. 2017; Sengupta, Budvytis,
and Cipolla 2020, 2021b,a) train on synthetic data and ex-
ploit proxy representations to reduce the domain gap, while
the second kind of methods (Dwivedi et al. 2021; Omran
et al. 2018; Agarwal and Triggs 2005) exploit shape cues
which are easy to annotate as weak supervision. However,
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for the first kind of methods, the synthetic images are un-
natural with unrealistic texture and clothing, and the ex-
tracted proxy representations may be ambiguous and inac-
curate. The situation is especially severe when the individ-
ual is wearing thick garments or is occluded in the image.
For the second kind of methods, since 2D clues such as
segmentations and silhouettes are highly correlated with the
human pose and clothing, supervising with 2D clues may
give wrong guidance of human shape in the case of in-
accurate pose estimation or thick clothing. Moreover, the
real-world images of extreme shapes are still insufficient.
SHAPY (Choutas et al. 2022) improves the second kind of
methods by using linguistic attributes and body measure-
ments as supervision, which allows it making better esti-
mates for clothed people. However, similar to other models
trained on real-world datasets, it still performs poorly on im-
ages of people with extreme body shapes because of the lack
of extreme body shapes in the training datasets. To sum up,
just as shown in Fig. 1, the first kind of methods often fail
on images with people in occlusion or thick clothing, while
the second kind of methods often fail on images containing
people with extreme body shapes.

To overcome the above limitations, we propose Shape-
Boost, a new shape recovery framework based on a novel
part-based shape parameterization. The new shape param-
eters are composed of bone lengths and mean widths of
body part slices. Using a novel semi-analytical algorithm,
the body shape can be accurately and robustly recovered
from these parameters. During training, the bone lengths can
be calculated from human keypoints, and the part widths
are regressed by the neural network. Compared to the orig-
inal shape parameters derived from PCA coefficients, our
new part-based parameterization has a clear local seman-
tic meaning, making it easier to regress and more flexible
in application. During training, ShapeBoost augments new
image-shape pairs by randomly transforming the raw image
and calculating the corresponding part-based parameters.
For image transformation, a clothing-preserving augmenta-
tion method is proposed: we first segment the human body
out of the image and randomly transform it into a different
shape. Then, the human segmentation is pasted back onto
the inpainted background image with the guidance of the ap-
pearance consistency heatmap (Fang et al. 2019). The corre-
sponding shape parameters can be analytically retrieved by
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(a) Input Image (b) Sengupta et al. (c) SHAPY (d) Ours (e) Sengupta et al. (f) SHAPY (g) Ours
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Figure 1: Previous SOTA methods for human shape estimation (Sengupta, Budvytis, and Cipolla 2021a; Choutas et al. 2022)
(b, c) either fail on images of people wearing thick clothes or fail on images of people with extreme body shapes, while our
method (d) achieves pixel-aligned results with high accuracy in both situations. Warmer colors on the human mesh represent
higher per-vertex error.

applying the equivalent transformation since each compo-
nent in the part-based representation is clearly defined.

Compared to previous approaches, ShapeBoost generates
realistic images of diverse human shapes in natural clothing
together with the corresponding faithful annotations. More-
over, our new parameterization accurately describes the ex-
treme body shapes and encourages pixel-level alignment. As
a result, our method overcomes the disadvantages of existing
methods and achieves high accuracy on images of people in
thick clothes as well as on images of people with extreme
body shapes. We benchmark our method on SSP-3D (Sen-
gupta, Budvytis, and Cipolla 2020) and HBW (Choutas et al.
2022) datasets. The results show that our method achieves
state-of-the-art performance in both thick clothes situations
and extreme body shape situations.

The main contributions of this paper are summarized as
follows:

• We present an accurate and robust human shape parame-
terization together with a semi-analytical shape recovery
algorithm, which is flexible and interpretable.

• We propose ShapeBoost, a human shape recovery frame-
work consisting of the a clothing-preserving data aug-
mentation module and a shape reconstruction module.

• Our approach outperforms previous approaches and can
handle diverse clothing as well as extreme body shapes.

2 Related Work
2.1 3D Human Pose and Shape (HPS)
Many algorithms have been proposed for reconstructing hu-
man pose and shape from RGB images, which are broadly
categorized into two types. Firstly, model-based methods
estimate parameters of a parameterized human model. Some
methods (Bogo et al. 2016; Pavlakos et al. 2019; Guan et al.
2009) estimate human pose and shape parameters by opti-
mization. Regression-based methods (Kanazawa et al. 2018;
Kocabas, Athanasiou, and Black 2020; Kocabas et al. 2021;

Li et al. 2022b, 2021), on the contrary, employ neural net-
works to estimate the parameters. To reduce the difficulty
of regression, many regression-based methods employ in-
termediate representations, including keypoints (Kanazawa
et al. 2018), silhouettes (Pavlakos et al. 2018), segmenta-
tion (Omran et al. 2018) and 2D/3D heatmaps (Tung et al.
2017), keypoints (Li et al. 2021, 2023b,a) etc. Some ap-
proaches (Kolotouros et al. 2019; Muller et al. 2021; Joo,
Neverova, and Vedaldi 2021) combine optimization and re-
gression. Secondly, model-free methods directly predict
free-form representations of the human body, with the po-
sition of body model vertices predicted based on image fea-
tures (Corona et al. 2022; Kolotouros, Pavlakos, and Dani-
ilidis 2019; Varol et al. 2018; Lin, Wang, and Liu 2021a,b;
Moon and Lee 2020), keypoints (Choi, Moon, and Lee
2020), or segmentations (Varol et al. 2018). These medth-
ods mostly focus on human pose estimation and their results
of human shape estimation are often unsatisfactory.

Our work belongs to the model-based category, and we
adopt inverse kinematics to estimate the human pose similar
to HybrIK (Li et al. 2021) for simplicity. However, instead of
directly regressing the shape parameters, we employ a flex-
ible and interpretable parameterization and a new shape re-
construction pipeline to achieve more accurate and robust
shape estimation. Our method can also be easily applied to
different pose estimation backbones.

2.2 Estimating 3D Body Shape
Most recent HPS estimation methods excel in precise pose
estimation but exhibit limitations in accurately estimating
the real human body shape under clothing. Some methods
have attempted to address this issue, and they mainly focus
on novel training datasets and the estimation framework.

Training datasets for human shape estimation. Accu-
rately annotating body shapes from 2D human datasets (Lin
et al. 2014) is hard, and commmonly-used 3D human
datasets (von Marcard et al. 2018; Ionescu et al. 2013) con-
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Figure 2: The overall pipeline. First, the input image is randomly transformed with the clothing-preserving image transforma-
tion, and a convolutional neural network (CNN) is employed to extract skeleton, part widths and twist rotations. Then, the pose
is obtained using inverse kinematics and the shape is obtained with our semi-analytical algorithm. The final mesh is retrieved
based on the pose and shape parameter. The ShapeBoost framework consists of the image augmentation module and the shape
reconstruction module.

tain limited number of people. To overcome this limitation,
some researchers have created synthetic image datasets by
rendering the mesh generated by parameterized human mod-
els (Hoffmann et al. 2019; Sengupta, Budvytis, and Cipolla
2020; Varol et al. 2017; Weitz et al. 2021). However, it is
difficult to obtain images with natural clothing and realis-
tic scenes using the naive rendering. Recently, more realis-
tic synthetic datasets (Bertiche, Madadi, and Escalera 2020;
Pumarola et al. 2019; Liang and Lin 2019; Patel et al. 2021;
Black et al. 2023) have been proposed, which contain peo-
ple in different clothing with the help of human scans, sim-
ulation or deep generative networks. Choutas et al. (Choutas
et al. 2022) have proposed the Model-Agency dataset, which
uses images from model agency websites labeled with lin-
guistic attributes and measurements. Although these new
datasets contain more diverse body shapes, most datasets
still lack people with extreme body shapes, and the authen-
ticity of synthetic images remains insufficient.

Estimation Framework. Several methods (Sengupta,
Budvytis, and Cipolla 2020, 2021b,a) train the network di-
rectly on synthetic data. To reduce the domain gap, they use
proxy representations (PRs) as input, such as part segmenta-
tion masks (Varol et al. 2017), silhouettes (Sengupta, Bud-
vytis, and Cipolla 2020; Ruiz et al. 2022), Canny edge detec-
tion results (Sengupta, Budvytis, and Cipolla 2021b,a) or 2D
keypoint heatmaps (Sengupta, Budvytis, and Cipolla 2020,
2021b,a). Other work (Dwivedi et al. 2021; Omran et al.
2018; Agarwal and Triggs 2005) uses real-world data for
training and exploits 2D shape cues as supervision. Body-
part segmentation masks (Dwivedi et al. 2021; Omran et al.
2018) and silhouettes (Agarwal and Triggs 2005) are widely
used among them. LVD (Corona et al. 2022) learns the ver-
tex descent direction based on image-aligned features, and
SHAPY (Choutas et al. 2022) uses linguistic attributes and
body measurements as supervision.

Unlike previous work, our method generates images with

diverse human body shapes without altering clothing, light-
ing, and background details. Therefore, the diversity is rich
and the domain gap is small. Since our framework utilizes
our new parameterization, there is no ambiguity even when
the human is in thick clothing and our method will not en-
large error even when the pose estimation is inaccurate.

3 Method
In this section, we present our solution for human shape re-
covery (Fig. 2). First, we give background knowledge of the
parameterization of SMPL model in Sec. 3.1. Considering
its drawbacks, a flexible and interpretable part-based human
shape parameterization is proposed in Sec. 3.2. Based on this
new parameterization, in Sec. 3.3, we design a new human
shape recovery framework called ShapeBoost. The training
pipeline and loss functions are described in Sec. 3.4.

3.1 Preliminary
SMPL Model. In this work, SMPL model (Loper et al.
2015) is employed to represent human body pose and shape.
SMPL provides a differentiable function V(θ,β) that maps
pose θ ∈ R3J and shape parameters β ∈ R10 to a human
mesh V, where J is the number of joints. The pose param-
eters θ represent the relative rotation of body joints, and the
shape parameters β are coefficients of a PCA body shape
basis. SMPL model is drived in two steps:

T = S(β), (1)
V = V(θ,β) = P(θ,S(β)). (2)

First, a rest-pose mesh T is constructed using function S .
Second, the rest-pose mesh is driven to the target pose by
function P . The shape of the mesh is determined only by β,
and the posing procedure does not change the body shape.
Most current methods regress shape parameters β directly.
However, since most available training datasets lack people
with diverse body shapes, these methods often overfit and
fail to generalize to unseen body shapes.
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Figure 3: Illustration of the shape decomposition procedure.
From left to right, the figure shows the part segmentation, the
definition of bone length and vertex width, and the slicing of
one body part.

3.2 Part-based Parameterization
In this work, we propose a novel parameterization of human
shape using bone lengths and widths of part slices. Com-
pared to the β representation which uses a global descriptor
of the body shape, this new representation allocates shape
descriptors to local body parts. This allows the network to
learn from local image features and thus alleviates the over-
fitting problem. Furthermore, our parameterization is more
flexible and interpretable, allowing compatibility with the
our data augmentation procedure discussed in Sec. 3.3.

In our parameterization, the SMPL mesh is divided into
J = 24 segments according to the linear blending weight,
and each segment has a corresponding central bone ended
with two joints. The distance of one vertex from its corre-
sponding bone is called the “width” of this vertex for short.
Each body part is further sliced into n components along the
bone, and the mean widths of the vertices in these n slices
are used to represent the thickness of that part. The segment-
ing and slicing technique is visually illustrated in Fig. 3. In
this way, the formula of SMPL model is converted to:

T = M(l,w), (3)
V = P(θ,M(l,w)), (4)

where l ∈ RJ−1 represents the bone lengths of the body
skeleton and w ∈ RnJ represents the mean widths of all
part slices. Under our new representation, the SMPL model
first derives a rest-pose mesh using M(l,w), and then uses
function P to drive the mesh to the target pose just like the
original SMPL model.

Deriving the function M directly by a neural network
is untrivial and can lead to overfitting. Therefore, a semi-
analytical algorithm is proposed that first solves a roughly
correct mesh using analytical methods and then uses a multi-
layer perceptron (MLP) to correct the result using error feed-
back techniques.

We can analytically retrieve a body shape that roughly
conforms to the target bone lengths and part slice widths
by (1) stretching the bones and broadening each part slice
of the template mesh according to the target values. (2) us-
ing linear blend weights (LBS weights) to assemble these
adjusted parts. (3) using the PCA-coefficients of SMPL to
retrieve the shape parameters from the deformed template
mesh. This mapping is referred to as M0.

Masked Body Reshaped Body

Background Inpainted BG.

mattin
g

Heatmap-based
Position Search

inpainting

random
transform

Figure 4: Illustration of clothing-preserving transformation.

Since the input bone lengths and part widths often contain
noise, the analytical algorithm sometimes produces subopti-
mal body shapes. Therefore, we use a 4-layer MLP to mod-
ify the analytically-retrieved shape parameters. The final for-
mula of M can be written as

T = M(l,w) = MLP(M0(l,w), l,w,∆l,∆w), (5)

where ∆l and ∆w are the difference between the target
bone lengths and part slice widths and the corresponding
values obtained by M0. In practice, instead of regressing the
bone lengths directly, we extract the bone lengths from hu-
man keypoints. This setting further encourages the network
to only focus on local, per-part image features and thus alle-
viate overfitting.

3.3 ShapeBoost
Armed with the part-based parameterization discussed in
Sec 3.2, we can manipulate the body shape in an intuitive
way by stretching the bone lengths and broadening the part
slice widths. These manipulations enable us to augment the
raw human images and retrieve the new ground truth body
shape which accurately explains the figure in the image af-
ter the transformation. This framework, named ShapeBoost,
generates diverse body shapes while preserving clothing,
lighting, and background details, and then takes use of our
new parameterization to reconstruct the body shape.

Clothing-preserving Image Transformation. An intu-
itive way to change the human shape in an image is to apply
the affine transformation to the input image. For example,
scaling an image with an aspect ratio unequal to 1 results in
a visually thinner or ampler human figure.

However, applying the affine transform to the entire im-
age results in a stretched background, which may leak the
scaling information and thus incur overfitting. To alleviate
this problem, we propose a silhouette-based augmentation
method inspired by Instaboost (Fang et al. 2019). Instead of
affine transforming the whole image, we first segment the
human body out using the ground truth segmentation. Then
we inpaint the background image, affine transform the seg-
mented human body, and paste the transformed human body
back onto the inpainted background image with the guidance
of the appearance consistency heatmap (Fang et al. 2019).
This method effectively avoids background stretching and
produces more natural-looking images. The process is visu-
ally illustrated in Fig. 4.
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To simplify the discussion, we assume that the affine
transformation consists of a rotation matrix and a scaling
matrix, which is written as

T = SR =

[
a 0
0 b

] [
cos θ − sin θ
sin θ cos θ

]
. (6)

Shape-parameter Derivation. People in different poses
are affected by the image transformation in different ways,
which poses a great challenge for the derivation of the
PCA-based shape parameters after the image transforma-
tion. However, with the part-based parameterization, we can
still accurately explain the new body shape by estimating
the widths and bone lengths of each body part. We use or-
thographic projection in our derivation.

Given the camera and pose parameters, the bone lengths
after transformation can be easily obtained by stretching the
bones to ensure a consistent 2D joint projection. Compared
to the derivation of bone lengths, the derivation of the part
slice widths after transformation is more complex. Suppose
a vertex indexed by k belongs to the j-th part. The distance
of the vertex from the part bone on the 2D image plane, de-
noted by w2D

k , is affected by the transformation according
to the following equations:

w̄2D
k =

ab · l2Dj
l̄2Dj

w2D
k , (7)

where l2Dj and l̄2Dj represent the bone lengths of part j on the
2D image plane before and after the transformation, respec-
tively; a and b are scaling factors mentioned in Eq. 6. A de-
tailed derivation is available in the supplementary materials.
It is noteworthy that Eq. 7 implies the 2D widths of vertices
on the same part are scaled by the same factor. Therefore,
the underlining 3D part width of part j is changed by

w̄j =
s̄

s
×

ab · l2Dj
l̄2Dj

× wj . (8)

In the equation, s and wj are the scale factor of the ortho-
graphic projection and the 3D part width of part j before the
image transformation, whereas s̄ and w̄j are the correspond-
ing values after the transformation. Due to scale ambiguity,
s̄ is an ambiguous scaling factor that is difficult to directly
derive. Therefore, in our training, we only supervise the pro-
jected results of the predicted part slice widths on the 2D im-
age plane, without directly supervising their actual values.
We hypothesize that the network can learn the best scaling
factor s̄ using the prior knowledge of human body shape.

3.4 Training Pipeline and Loss Function
The overall training pipeline is illustrated in Fig. 2. First,
the input image is transformed using the clothing-preserving
image transformation, and the convolutional neural network
(CNN) backbone is utilized to process the augmented im-
age and estimate the skeleton (3D keypoints extracted from
heatmaps), twist angles and part slice widths. Second, we
use these estimated values to reconstruct the pose and shape
of the individual. The pose parameters are obtained with in-
verse kinematics similar to HybrIK (Li et al. 2021), while

the shape parameters are retrieved using the semi-analytical
algorithm discussed in Sec. 3.2. The final mesh is obtained
based on the pose and refined shape parameters.

We employ end-to-end training for the pipeline, and the
loss function consists of three components: shape loss, pose
loss, and shape-decompose loss. The CNN backbone is su-
pervised by shape loss and pose loss, while the MLP used
in the shape reconstruction module is supervised by shape-
decompose loss.

Shape Loss. In shape loss, we supervise the predicted part
widths predicted by the CNN backbone. Specifically, we re-
quire the projection results of the part slice widths and the
vertex widths to be close to the target value after data aug-
mentation. K represents the number of vertices in the human
mesh model and J represents the number of joints.

Lshape =
J∑
j

∥ŵ2D
j − w̄2D

j ∥22 + µ0

K∑
k

∥ŵ2D
k − w̄2D

k ∥22.

(9)

Pose Loss. Pose loss is designed to supervise the predicted
skeleton and twist angle. We adopt the same loss function as
HybrIK (Li et al. 2021) and denote it as Lpose.

Shape-decompose Loss. Shape-decompose loss ensures
that the shape reconstruction module predicts a valid human
mesh while best preserving the part slice widths and bone
lengths predicted by the CNN backbone. It consists of three
loss functions

Ldecomp = Lbone + Lwidth + µ1Lreg, (10)

where

Lbone =
J∑
j

(
∥x̃j − x̂j∥1 + ∥l̃j − l̂j∥1

)
, (11)

Lwidth =
J∑
j

(
∥w̃j − ŵj∥22 + ∥ w̃j

l̃j
− ŵj

l̂j
∥22

)
, (12)

Lreg = ∥β̃∥22. (13)

In the equations, x̃j , l̃j , w̃j are the keypoint coordinates,
the bone length and the part slice widths of part j refined
by the MLP in the shape reconstruction module. Lbone and
Lwidth supervise the preservation of the bone length and part
slice widths respectively, and Lreg regularizes β̃ parameter.

Overall Loss. The overall loss of our pipeline is formu-
lated as

L = Lpose + µ2Ldecomp + µ3Lshape. (14)

4 Experiments
4.1 Datasets
We use 3DPW (von Marcard et al. 2018), Hu-
man3.6M (Ionescu et al. 2013), COCO (Lin et al.
2014), AGORA (Patel et al. 2021) and Model Agency
Dataset (Choutas et al. 2022) for training. The original
Model Agency Dataset contains 94, 620 images of 4, 419
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Method Model PVE-T-SC ↓
HMR (Kanazawa et al. 2018) SMPL 22.9
SPIN (Kolotouros et al. 2019) SMPL 22.2
(Sengupta et al. 2020) SMPL 15.9
(Sengupta et al. 2021b) † SMPL 13.3
(Sengupta et al. 2021a) SMPL 13.6
HybrIK (Li et al. 2021) SMPL 22.8
LVD (Corona et al. 2022) SMPL 26.1
CLIFF (Li et al. 2022b) SMPL 18.4
SHAPY (Choutas et al. 2022) SMPL-X 19.2
SoY (Sarkar et al. 2023) SMPL 15.8
(Ma et al. 2023) SMPL 18.8

(Sengupta et al. 2021a)∗ SMPL 15.4
SHAPY (Choutas et al. 2022)∗ SMPL 12.2

ShapeBoost (Ours) SMPL 11.4
ShapeBoost (Ours) SMPL-X 12.0

Table 1: Quantitative comparisons with state-of-the-art
methods on the SSP-3D test set in mm. Symbol † means
using multiple images as input, and symbol ∗ means retrain-
ing using the same training setting as our method.

models, but we only use about one-third of these images
in our training due to the unavailability of many images
on the Internet. To avoid data bias, the images are sampled
following previous work (Choutas et al. 2022). We also
follow previous work and use synthetic data to assist
network training. The rendering settings are identical to
(Sengupta, Budvytis, and Cipolla 2021a).

We evaluate our model on SSP-3D (Sengupta, Budvytis,
and Cipolla 2020) and HBW datasets (Choutas et al. 2022).
The results on SSP-3D dataset show the model’s perfor-
mance on diverse human body shapes, while the results on
HBW dataset indicate the model’s performance on images
of people wearing different clothing.

4.2 Comparison with the State-of-the-art
We evaluate the performance of different methods on SSP-
3D and HBW test and validation datasets. Following previ-
ous work, on SSP-3D dataset, we use PVE-T-SC, a scale-
normalized per-vertex error metric to evaluate the model
performance. On HBW dataset, we report the predicted
height (H), chest (C) , waist (W), and hip circumference
(HC) errors, and P2P20K errors of different models. All the
experiments of our method use part slicing number n = 1
by default unless otherwise stated. For a fair comparison, we
also retrain two best-performing networks (Sengupta, Bud-
vytis, and Cipolla 2021a; Choutas et al. 2022) with the same
datasets and settings as our method.

Tab. 1 shows that our method surpasses previous works
on SSP-3D dataset, which shows that our method can deal
with the diverse human body shape much better than previ-
ous methods. Tab. 3 and 2 shows the performance on HBW
validation and test dataset. On HBW test dataset, our method
achieves comparable results with previous SOTA methods
and predicts more accurate waist and hip circumferences.
On HBW validation set, our method outperforms previous
SOTA methods. These results prove that our method can

Method H C W HC P2P20K

SPIN 59 92 78 101 29
Sengupta et al. 2020 135 167 145 102 47
TUCH 58 89 75 57 26
Sengupta et al. 2021a 82 133 107 63 32
CLIFF - - - - 27
SHAPY 51 65 69 57 21
ShapeBoost (SMPL) 66 63 58 47 25
ShapeBoost (SMPL-X) 68 69 56 49 22

Table 2: Quantitative comparisons with state-of-the-art
methods on the HBW test set in mm.

Method H C W HC P2P20K

Sengupta et al. 2021a 68 89 111 71 30
HybrIK 88 82 74 51 33
LVD # - 89 131 87 31
SHAPY 63 59 85 54 25
Ma et al. 2023 112 87 133 59 41

Sengupta et al. 2021a∗ 72 66 74 49 29
SHAPY∗ 62 52 72 50 26

ShapeBoost (SMPL) 58 54 72 42 25
ShapeBoost (SMPL-X) 61 49 71 49 23

Table 3: Quantitative comparisons with state-of-the-art
methods on the HBW validation set in mm. Symbol #
means using ground truth scale and symbol ∗ means retrain-
ing using the same training setting as our method.

deal with diverse human clothing better than previous meth-
ods. Qualitative results are provided in Fig. 5.

4.3 Ablation Study
To demonstrate the effectiveness of different components in
our method, we conduct ablation studies on SSP-3D dataset
and HBW validation set.

Shape reconstruction. To analyze the effectiveness and
robustness of our new human shape parameterization, we
reconstruct body shapes using bone lengths and part slice
widths with different reconstruction algorithms under dif-
ferent noise ratios. The results are shown in Tab. 4. All the
model are trained on shape parameters sampled from Gaus-
sian distributions and tested on 500 different body shapes
obtained from AMASS dataset (Mahmood et al. 2019). “Hy-
brid” algorithm means using the semi-analytical algorithm,
“Analytical” algorithm means solely employing the analyti-
cal algorithm, and “NN” algorithm means directly using the
neural network without analytical steps. From the first three
lines in Tab. 4, we observe that our proposed semi-analytical
algorithm achieves the lowest error especially when the
noise ratio is small. Additionally, when the noise is sub-
tle, the parameterizations using different part slicing num-
ber (n = 1, 2, 3) all achieve an acceptable low error. When
the noise ratio is large, the error ratio decreases with larger
n. Thus, we can conclude that our semi-analytically method
accurately reconstructs human shape, and a larger n makes

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

833



(b) SHAPY(a) Sengupta et al. (c) Ours (b) SHAPY(a) Sengupta et al. (c) Ours

100

0

55

0

100

0

110

0

110

0

60

0

Figure 5: Qualitative results on SSP-3D and HBW datasets. From left to right: Input image, (a) Sengupta et al. (Sengupta,
Budvytis, and Cipolla 2021a) results, (b) SHAPY (Choutas et al. 2022) results, and (c) Our results. Warmer colors mean higher
per-vertex error. Experiments on SSP-3D dataset use PVE-T-SC metric, and experiments on HBW dataset use P2P20K metric.

V2V Error (mm) ↓
n Algo. 0%noise 1%noise 2%noise 5%noise
1 Hybrid 0.69 2.30 5.95 8.83
1 Analy. 6.14 6.59 8.99 12.34
1 NN 1.82 2.99 6.20 8.98

2 Hybrid 0.58 2.01 5.40 8.21
3 Hybrid 0.65 1.93 5.00 7.63

Table 4: Ablation experiments of reconstructing shape using
our new shape parameterization in mm.

it more robust to noise.

Shape estimation from images. We also experiment us-
ing different parameterizations for estimating human body
shapes from RGB images. Tab. 5 provides a comparison of
the results obtained using the direct shape parameterization
(β) (Li et al. 2021) with our novel parameterization utiliz-
ing n = 1 and n = 2. We use image augmentation in the
training. Since it is hard to find a ground truth β for aug-
mented images, we use the 2D coordinates of vertices as
supervision. We find that using our new parameterization
yields better results, but a larger n does not improve perfor-
mance. The reasons are (1) the parameterization with n = 1
already achieves a small shape reconstruction error (2) using
larger n complicates the regression task for the CNN back-
bone, resulting in a reduction in the accuracy of predicting
part slicing widths.

The effectiveness of data augmentation. We also make
ablation studies with different training data quantitatively.
The results are shown in Tab. 6. When the data augmenta-
tion module is not used, the performance of our model drops
on both HBW and SSP-3D dataset. This shows the effective-
ness of our data augmentation module.

Method PVE-T-SC P2P20K

β 12.3 26.0
n = 1 11.4 25.1
n = 2 11.6 26.2

Table 5: Ablation experiments of shape estimation from
RGB images using different shape parameterization on SSP-
3D and HBW validation set in mm.

Method PVE-T-SC P2P20K

ShapeBoost (Ours) 11.4 25.1
w/o Augment 12.1 26.5
w/o Augment, w/o Decompose 12.4 27.0

Table 6: Ablation experiments of data augmentation module
on SSP-3D and HBW validation set in mm.

5 Conclusion

In this paper, we present ShapeBoost, a new framework for
accurate human shape recovery that outperforms the current
state-of-the-art methods. This framework exploits a new hu-
man shape parameterization that decomposes human shape
into bone lengths and the mean width of each part slice.
Compared to the existing representation with PCA coeffi-
cients, our new method is more flexible and interpretable.
Based on the new shape parameterization, a new clothing-
preserving data augmentation module is proposed to gener-
ate realistic images of various human shapes and the corre-
sponding accurate annotations. Our method randomly aug-
ments the body shape without destructing the clothing de-
tails. Experiments show that our method achieves SOTA per-
formance for extreme body shapes as well as achieves high
accuracy for people under different types of clothing.
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