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Abstract

Machine learning-assisted retrosynthesis prediction models
have been gaining widespread adoption, though their perfor-
mances oftentimes degrade significantly when deployed in
real-world applications embracing out-of-distribution (OOD)
molecules or reactions. Despite steady progress on stan-
dard benchmarks, our understanding of existing retrosyn-
thesis prediction models under the premise of distribution
shifts remains stagnant. To this end, we first formally sort
out two types of distribution shifts in retrosynthesis predic-
tion and construct two groups of benchmark datasets. Next,
through comprehensive experiments, we systematically com-
pare state-of-the-art retrosynthesis prediction models on the
two groups of benchmarks, revealing the limitations of pre-
vious in-distribution evaluation and re-examining the advan-
tages of each model. More remarkably, we are motivated by
the above empirical insights to propose two model-agnostic
techniques that can improve the OOD generalization of arbi-
trary off-the-shelf retrosynthesis prediction algorithms. Our
preliminary experiments show their high potential with an av-
erage performance improvement of 4.6%, and the established
benchmarks serve as a foothold for further retrosynthesis pre-
diction research towards OOD generalization.

Introduction
Retrosynthesis is the fundamental step in the field of organic
synthesis (Corey 1991), which involves the application of
various strategies to break down a target molecule into sim-
pler building-block molecules. One of the biggest challenges
for the pharmaceutical industry is finding reliable and effec-
tive ways to make new compounds.

Recently, there has been growing interest in computer-
aided synthesis planning due to its potential to reduce the
effort required for manually designing retrosynthesis strate-
gies with chemical knowledge. Numerous machine learning
models have been developed to learn these strategies from
a fixed training dataset and to generalize this knowledge to
new molecules. The training process involves either learn-
ing an explicit set of hard-coded templates as fixed rules
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in a template-based manner or learning an implicit high-
dimensional mapping from the product to the precursors in a
template-free approach. Under the standard independent and
identically distributed (i.i.d.) train-test data split, both lines
of approaches have yielded promising results.

However, all retrosynthesis models exhibit a performance
discrepancy between an in-distribution (ID) and an out-of-
distribution (OOD) test set, which is a common issue when
deploying the retrosynthesis model to a real-world environ-
ment. In general, we conclude that this discrepancy can be
essentially attributed to the two different types of distri-
butional shifts: the label shift of the retrosynthesis strate-
gies (retro-strategy) and the covariate shift of the target
molecules. Our research is aimed to analyze this discrep-
ancy caused by the distributional shifts under various ret-
rosynthesis prediction baselines. By understanding the dis-
tributional shifts that occur, we hope to mitigate their effects
and gain a deeper understanding of the behaviors of various
types of retrosynthesis models under different distributional
shifts. To the best of our knowledge, no study has been con-
ducted to investigate this topic rigorously.

To systematically analyze these two distributional shifts,
we create and conduct experiments on multi-dimensional
OOD dataset splits using various types of single-step ret-
rosynthesis prediction baseline models. For each type of dis-
tributional shift, we propose a model-agnostic approach to
alleviate the performance degradation. Our paper contributes
to this field in three ways:
• We systematically define the distributional shifts under

the context of retrosynthesis prediction.
• We construct multi-dimensional out-of-distribution

datasets benchmarks and analyze the degree of per-
formance discrepancies on a comprehensive set of
baselines.

• We propose model-agnostic invariant learning and con-
cept enhancement techniques to reduce performance
degradations and provide our insights.

Related Work
Single-step retrosynthesis prediction The role of machine
learning in retrosynthesis prediction is becoming increas-
ingly pronounced (Jiang et al. 2023), especially in the piv-
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otal stage of single-step retrosynthesis prediction. Single-
step retrosynthesis aims to predict the set of molecules that
chemically react to form a given product, towards which ex-
isting approaches fall into three major categories, including
template-based (TB), semi-template-based (semi-TB), and
template-free (TF) ones. Templates (Szymkuć et al. 2016)
encode the changes in atom connectivity during the reac-
tion, thereby applicable in converting a product back into
the corresponding precursors. TB approaches such as Neu-
ralSym (Segler and Waller 2017), Retrosim (Coley et al.
2017), and GLN (Dai et al. 2019) learn to select a standard
reaction template to apply to the specified product for de-
riving the resulting precursors with subgraph isomorphism.
However, TB methods have been criticized for their poor
generalization capability to reactions outside the underly-
ing training template set (Schwaller et al. 2022; Segler and
Waller 2017; Jin et al. 2017). Semi-TB models alleviate the
generalization problem via either constructing a more flex-
ible template database with subgraph extraction (Chen and
Jung 2021; Yan et al. 2022) or decomposing retrosynthesis
into two sub-tasks of i) center identification and ii) synthon
completion (Yan et al. 2020; Somnath et al. 2021). On the
other hand, TF approaches completely eliminate using re-
action templates and instead learn chemical transformations
implicitly. Using various molecule representations, existing
TF solutions formulate retrosynthesis as a string (Liu et al.
2017; Schwaller et al. 2019a; Sun et al. 2021; Yu et al. 2022)
or a graph (Shi et al. 2020; Sacha et al. 2021) translation
problem.

OOD generalization for molecule-related tasks
Notwithstanding extensive literature on the evaluation
of ID generalization, some attempts have been made to
explore the frequent distributional shifts in real-world
molecule-related tasks, including retrosynthesis prediction.
The works (Ji et al. 2022; Bender and Cortés-Ciriano
2021; Deng et al. 2022) systematically study the shift in
molecular size and structure as well as labels, and present
several OOD benchmark datasets. However, they set their
sights on molecular property prediction for drug discovery,
which substantially differs from retrosynthesis prediction
as a molecular generation task. Molecular generation also
introduces additional complexity in the definition of label
space, which is more complicated than a single value
in conventional regression and classification in property
prediction. As a matter of fact, there have been some works
devoted to investigating the factors that cause label shift in
retrosynthesis prediction, including the change in template
radius, size, and subgraph isomorphism (Heid et al. 2021;
Tu et al. 2022; Schwaller et al. 2021) between training and
testing reactions. Unfortunately, the influence of such label
shift on the performance of existing single-step retrosynthe-
sis prediction approaches remains largely unknown, though
the two approaches in (Seidl et al. 2022) and (Su et al.
2022) as a TB and TF approach respectively attempt to
evaluate the “zero-shot” reaction prediction performances.
However, the definitions of “zero-shot" used are arbitrary
and lack consistency, with (Seidl et al. 2022) considering
new reaction templates as "zero-shot", while (Su et al.
2022) defines "zero-shot" samples as new reaction types.

Besides the lack of comprehensive performance evaluation
under label shift, benchmark datasets that support such
evaluation are also in urgent demand. Existing dataset splits
for distribution shift in retrosynthesis prediction, either by
reaction type bias (Kovács, McCorkindale, and Lee 2021)
or by time period (Segler, Preuss, and Waller 2018), struggle
to explicitly disentangle label shift from covariate shift.
These early exploratory studies motivate a more rigorous
and systematic analysis of the impact of distribution shift
on retrosynthesis prediction, covering (1) the disentan-
glement of two types of shift, (2) benchmark datasets for
each type of shift, (3) extensive empirical evaluation of
state-of-the-art retrosynthesis prediction algorithms, and (4)
two model-agnostic techniques to handle both shifts.

Preliminaries
In this section, we formally define the distributional shift in
single-step retrosynthesis prediction and establish the nota-
tion used throughout the paper.

Out-Of-Distribution Retrosynthesis Prediction
Single-step retrosynthesis prediction is a task where the
model receives a target molecule m ∈ M as input and
predicts a set of precursor source precursors r ∈ R that
can synthesize m. The model can use different molecu-
lar transformation rules to generate various precursors for
target molecules. Depending on the definitions of these
transformation rules, retrosynthesis models can be classi-
fied into two main categories: template-based and template-
free. Template-based approaches utilize reaction templates
to predict the precursors required for synthesizing a prod-
uct. These templates encode the changes in atom connec-
tivity during the reaction that represent a specific type of
molecular transformation. On the other hand, template-free
models use a generative model to generate the precursors
for a given target directly. These models typically use the
SMILES (Weininger 1988) string or a graph structure to
represent molecules and implicitly learn high-dimensional
transformation rules between the hidden representations of
precursors and molecules. However, such transformation
rules can always be mapped back to reaction templates after
the reaction generation.

Without loss of generality, we denote the retro-strategy
as t ∈ T to represent such transformation rules from tar-
get molecule m ∈ M to source precursors r ∈ R, which
are meant to be general and not specific to any particular
model or approach. T represents the space of transformation
rules applied to a target molecule to generate its precursors.
It’s crucial to note that our introduction of T is not merely
restricted to a template-based interpretation. In essence, all
retrosynthesis prediction models, in an end-to-end fashion,
intake a target product and output a set of precursors. While
the exact realization of these retro-strategies might differ
among models, our evaluation still remains model-agnostic
and is conducted solely on the exact matching of the output
precursors.

Subsequently, the training and testing datasets for ret-
rosynthesis are denoted as Dtr = {(mi, ti)}Ni=1 and
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Dtst = {(m∗
i , t

∗
i )}

N+N∗

i=N+1. The out-of-distribution retrosyn-
thesis prediction problem can be defined as follows:
Definition 1. Given the observational training reactions
Dtr = {(mi, ti) ∼ Ptr(M, T )}Ni=1 and testing data
Dtst = {(m∗

i , t
∗
i ) ∼ Ptst(M, T )}N∗

i=1 where Ptr(M, T ) ̸=
Ptst(M, T ) and N/N∗ is the sample sizes of train/test data,
the goal of out-of-distribution retrosynthesis prediction is to
learn a model in training distribution Ptr(M, T ) to general-
ize to the test distribution Ptst(M, T ) accurately.

OOD Retrosynthesis Prediction Benchmarks
In this section, we rigorously define and investigate two
types of distributional shifts in the context of retrosynthesis:
label shift of retro-strategies, P (T ), and covariate shift of
target molecules, P (M). Subsequently, we create two out-
of-distribution dataset splits for each shift on the benchmark
retrosynthesis prediction dataset under different domain set-
tings. These datasets are used in subsequent empirical stud-
ies to analyze performance gaps and evaluate the effective-
ness of our proposed OOD generalization approaches.

Label Shift in Retro-strategy P (T )
In the context of retrosynthesis prediction, we define the la-
bel space as the set of retro-strategies, denoted as T , that
map from the space of target molecules, M, to the space
of precursors, R. In general, the label shift refers to the
change of distribution of retro-strategy Ptr(T ) ̸= Ptst(T ).
However, the definition of the retro-strategy can vary sig-
nificantly among different types of retrosynthesis prediction
models. For template-based models, the retro-strategy is a
discrete set of reaction templates extracted from the train-
ing set during data pre-processing. On the other hand, for
template-free models, the retro-strategy is learned inherently
during training, which is a function space that maps M to R
in the latent space. It is widely acknowledged in studies (Tu
et al. 2022; Heid et al. 2021; Lin et al. 2020; Schwaller et al.
2019a) that template-free models can generalize to novel or
unseen reaction templates, whereas template-based models
are confined to the predefined set of extracted templates.

Nevertheless, our findings reveal that the claimed general-
ization ability of the template-free models highly depends on
the granularity of templates. As shown in Fig. 1, we focus on
two different granularity of templates: minimal-template (ra-
dius=0) and retro-template (radius=1+). The key difference
is that a reaction can only be mapped to one distinct min-
imal template, while it is possible to be mapped to multi-
ple retro-templates. Although almost all previous template-
based methods used retro-template as the template defini-
tion, we discover that the nuisance in retro-strategy granu-
larity will result in distinct performance differences in the
OOD label shift. We provide a more detailed investigation
of template granularity in the Appendix 1.

Covariate Shift in Target Molecule P (M)
In the context of retrosynthesis prediction, covariate shift
refers to the change in the distribution of the target

1Please refer to the Arxiv version https://arxiv.org/pdf/2312.
10900.pdf.

molecules as Ptr(M) ̸= Ptst(M). This phenomenon is
often studied in conjunction with the concept distribution
P (T |M), as the fundamental assumption for accurately
evaluating covariate shift is that the concept distribution re-
mains constant, Ptr(T |M) = Ptst(T |M). Typically, pre-
vious works(Peters, Bühlmann, and Meinshausen 2016; Ar-
jovsky et al. 2019) addressed the covariate shift by adopting
a causal perspective and dividing the input into two separate
parts: the invariant feature M_inv and the variant (spuri-
ous) feature M_var. The invariance property holds that us-
ing the invariant feature M_inv alone is sufficient to fully
recover the concept, such that P (T |M) = P (T |M_inv).
Therefore, a pure covariate shift dataset should be designed
in such a way that all shifts in the distribution occur on the
variant feature Mvar when Ptr(M) ̸= Ptst(M) to main-
tain the invariance properties.

Covariate shift in molecular structures is prevalent in
molecular property prediction and material design tasks.
Similarly, the invariance property assumes that specific pat-
terns inside a molecule, such as functional groups or scaf-
fold substructures, play a crucial role in predicting a specific
property. Generally, the substructure invariance rules that
govern these relationships are task-specific for each prop-
erty and have been validated through extensive study and ob-
servation as prior knowledge. (Phanus-umporn et al. 2018;
Klekota and Roth 2008; Zhu et al. 2022) Following the same
concept, we assume that certain features or substructures
M_inv in the target molecule are crucial for the model to
make an invariant prediction for different retro-strategies to
maintain P (T |M) = P (T |M_inv). Naturally, the reac-
tion center (radius=0) should always be included as part of
the invariant feature; otherwise, applying the templates to
the target molecule would result in automatic failure. In ad-
dition, other substructures not limited to the reaction cen-
ter can simultaneously impact the applicability of a particu-
lar template in terms of chemo-, regio-, or stereo-selectivity,
which are the features we aim to identify as additional parts
of Minv .

OOD Benchmark Dataset Split We introduce the bench-
mark dataset construction process for label shift and covari-
ate shift dataset split. The detailed construction process on
the benchmark is elaborated in the Appendix.

Label shift benchmark dataset To systematically evalu-
ate the generalizability of different models when facing la-
bel shift in retro-strategies, we generate two OOD dataset
splits as USPTO-50K_T, on the benchmark USPTO50K
dataset (Schneider, Stiefl, and Landrum 2016) using the dif-
ferent granularity of labels. As shown in Fig. 2, we extract
the minimal-templates and retro-templates for each reaction
and arrange them in descending order based on their occur-
rence frequency. We also deliberately ensured that the total
template set does not intersect between ID and OOD subsets
to investigate the ability of different models to generalize to
novel retro-strategies.

Covariate shift benchmark dataset We adopt the similar
definition of covariate split settings proposed in (Koh et al.
2021; Ji et al. 2022) by using the molecular size and scaf-
fold as criteria to construct the covariate OOD dataset split
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Figure 1: Minimal-templates and retro-templates. Left: In the image classification task, cats and dogs are typically regarded as
mutually exclusive, while ragdolls, bulldogs, and short-haired dogs are not. Though image D2 is only annotated as a bulldog, it
has the potential label of a short-haired dog. Right: In retrosynthesis, similar to the image D2, both labels B2 and B3 are viable
options for generating the correct reaction C2, but only one template B2 is exposed as the positive label in the training dataset
due to non-mutual exclusivity.

Figure 2: Retro-/minimal-template ID/OOD dataset split for
label shift dataset USPTO50K_T.

USPTO-50k_M. The approach involves arranging the sam-
ples based on the molecular size or scaffold differences of
the target molecule in ascending order and selecting larger
or more complex target molecules as the OOD subset. Gen-
erally, a target molecule with a larger size or a more com-
plex scaffold contains a larger proportion of variant features
M_var (Koh et al. 2021; Ji et al. 2022). As shown in Fig. 3,
to eliminate the irrelevant influence of label shift, we con-
duct the data split independently for each minimal-template
and then combine the results. This approach ensures that all
covariate shifts occur on the variant feature Mvar during
Ptr(M) ̸= Ptst(M), and guarantees that the ground-truth
disconnection site stays consistent among all samples within
a specific template class.

State-of-the-art Retrosynthesis Prediction
Models under Distributional Shift

In this section, we introduce five representative retrosynthe-
sis prediction models for empirical studies and analyze their
baseline performance under the two distributional shifts
mentioned above.

Baseline Methods
We select five representative models, namely GLN (Dai
et al. 2019), Molecular Transformer (MT) (Schwaller et al.

Figure 3: Molecular size and scaffold ID/OOD dataset split
for covariate shift dataset USPTO50K_M.

2019a), GraphRetro (G_Retro) (Somnath et al. 2021), Retro-
Composer (R_Composer) (Yan et al. 2022), and MHN (Seidl
et al. 2022), as our baseline methods for empirical stud-
ies. These models comprehensively cover SMILES-based
and graph-based representation under template-based, semi-
template-based, and template-free categories. All baseline
models are re-trained on each of the four OOD datasets sep-
arately for evaluation. We use the widely accepted top-k ac-
curacy as the evaluation metric, which is still the most ap-
propriate quantifiable metric for retrosynthesis prediction.

Baseline Results
The baseline results under covariate shift and label shift are
listed in Tab. 1 and Tab. 2, respectively, with subscript base.

Covariate shift In Tab. 1, we note a significant decline
in performance, specifically a reduction of 30-40% in top-1
accuracy when comparing the ID test set to the OOD set.
The present findings support our prior hypothesis that larger
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Mol-Size GLN_base(irm) MT_base(irm) G_Retro_base(irm) R_Composer_base(irm) MHN_base(irm)

ID Top-1 54.5%(54.9%) 52.5%(52.2%) 54.9%(55.8%) 55.1%(55.3%) 52.5%(52.2%)
ID Top-3 69.0%(70.5%) 75.7%(76.1%) 70.7%(71.1%) 79.7%(80.5%) 76.4%(76.6%)
ID Top-5 76.9%(77.6%) 80.1%(81.4%) 74.7%(75.4%) 86.0%(87.7%) 84.0%(84.2%)
ID Top-10 85.1%(85.7%) 83.6%(85.0%) 77.7%(78.2%) 90.0%(90.9%) 89.8%(90.2%)

OOD Top-1 37.6%(38.0%) 29.9%(30.3%) 38.5%(39.6%) 41.2%( 41.6%) 34.0%(33.8%)
OOD Top-3 50.7%(51.2%) 46.7%(47.7%) 57.2%(58.4%) 67.3%(68.2%) 57.3%(57.5%)
OOD Top-5 58.9%(59.4%) 53.8%(55.0%) 64.5%(65.9%) 75.1%(76.3%) 67.5%(67.9%)
OOD Top-10 70.7%(71.5%) 58.1%(60.1%) 70.9%(72.8%) 83.1%(84.9%) 78.9%(79.2%)

Mol-Scaffold GLN_base(irm) MT_base(irm) G_Retro_base(irm) R_Composer_base(irm) MHN_base(irm)

ID Top-1 55.7%(56.0%) 51.8%(51.4%) 56.2%(56.2%) 52.4%(52.8%) 52.3%(51.9%)
ID Top-3 69.8%(70.7%) 75.5%(76.0%) 70.2%(71.2%) 78.2%(79.2%) 76.6%(76.5%)
ID Top-5 77.2%(77.9%) 80.3%(81.6%) 73.8%(74.6%) 84.8%(86.4%) 84.0%(84.3%)
ID Top-10 85.5%(86.1%) 82.9%(84.7%) 76.6%(77.1%) 89.5%(90.3%) 90.1%(90.2%)

OOD Top-1 38.9%(39.5%) 37.9%(38.6%) 39.9%(40.1%) 40.7%(41.2%) 35.1%(34.8%)
OOD Top-3 53.3%(53.9%) 57.7%(59.0%) 57.8%(59.7%) 65.5%(66.4%) 60.3%(60.4%)
OOD Top-5 61.0%(61.7%) 64.0%(65.6%) 64.7%(66.5%) 75.1%(76.2%) 69.4%(69.7%)
OOD Top-10 72.4%(73.5%) 69.2%(70.2%) 71.2%(73.4%) 82.6%(84.5%) 79.9%(80.1%)

Table 1: The performance of five baselines and their IRM variants on covariate shift P (M). The best IRM result is reported with
center-token masking IRM for MT, center prediction IRM for GLN, graph edit IRM for GraphRetro, and template composer
IRM for R_Composer, respectively.

molecules introduce more complexity in predicting the cor-
rect retro-strategy, regardless of the model employed, and
these complexities are limited to specific feasible discon-
nection sites for a given target molecule. Among the five
baseline models, MT exhibits the most significant decline
in performance, since larger target molecules result in larger
precursors with longer sequences of SMILES tokens as error
accumulation, thereby intensifying the challenges associated
with the covariate shift. RetroComposer outperforms most
baselines in both splits, which can be attributed to its sub-
graph selection mechanism in discovering robust substruc-
ture invariance within the training samples.

Label shift In Tab. 2, the results are more varied be-
tween retro-template and minimal-template split. The aver-
age performance degradation is around 40-50% in the retro-
template split and almost 100% in the minimal-template
split. For retro-template split, we conclude that it’s not rigor-
ous to assume that template-based approaches cannot gener-
alize to new templates without specifying the radius bound-
ary, since our result shows that both GLN and MHN suc-
cessfully generalize to a portion of unseen retro-templates
due to their non-mutually exclusive nature. Additionally,
we discover that when facing the same label shift in retro-
templates, template-free models do not exhibit a clear ad-
vantage over template-based models in generalizability. On
the other hand, the results in minimal-template split align
with the previously held assumption that template-free mod-
els have only a limited ability to generalize to unseen tem-
plates when compared with template-based models.

Invariant Learning for Covariate Shift
In order to handle the covariate shift, our objective is to learn
a robust parametric representation Φ(·) that can accurately
capture the full invariant features in the target molecule

that satisfies the invariance property for predicting the retro-
strategy. Specifically, we adopt Invariant Risk Minimiza-
tion (IRM) to learn this invariant feature representation,
which requires that the feature representation is simulta-
neously optimal across different domains. While the IRM
regularizer is a known model-agnostic method, its precise
application and optimization in a retrosynthesis model is a
non-trivial problem and needs to be handled carefully in a
model-specific way. We elaborate on the detailed IRM im-
plementation for each baseline in the Appendix.

Performance Analysis
The best results are listed in Table 1 for the USPTO50k_M.
Overall, we discover that applying IRM regularization to the
specific reaction center identification stage improves the per-
formance of GLN, GraphRetro, and RetroComposer, but the
improvement is marginal for MT and MHN due to the na-
ture of sequence-to-sequence generation and entanglement
of center prediction and precursor generation, respectively.
The overall insignificant improvement using IRM can be at-
tributed to the uncontrollable concept drift on P (T |Minv)
presented within the dataset. The reason is that the collec-
tion of the reactions in USPTO50K is subject to the prior
selection bias of different chemists during distinct wet-lab
experiments under unobserved covariates (such as chemical
conditions, etc.). Therefore, the ideal assumption for the in-
variance property is often violated, resulting in incoherency
from the concept drift that hinders IRM from learning an
optimal invariant predictor. In addition, the improvement re-
sulting from the application of IRM could be more substan-
tial if the distribution of training data were less biased to-
wards specific retro-strategies.

Apart from the statistical result, we observe that using
IRM regularization reduces spurious correlation on variant
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Retro-template GLN_base(irm) MT_base(irm) G_Retro_base(irm) R_Composer_base(irm) MHN_base(irm)

ID Top-1 50.9%(51.8%) 47.1%(49.0%) 53.2%(53.9%) 53.0%(53.3%) 51.9%(52.2%)
ID Top-3 68.2%(70.3%) 64.6%(67.0%) 68.6%(69.4%) 78.1%(78.5%) 75.1%(75.8%)
ID Top-5 76.2%(78.4%) 68.1%(72.9%) 72.3%(73.5%) 85.2%(86.4%) 82.7%(83.4%)
ID Top-10 85.2%(87.8%) 71.2%(77.1%) 74.8%(75.7%) 90.2%(90.9%) 89.9%(90.7%)

OOD Top-1 22.9%(24.5%) 23.8%(25.2%) 27.0%(28.6%) 25.4%(26.9%) 18.7%(20.4%)
OOD Top-3 31.8%(36.6%) 35.8%(41.2%) 40.3%(42.5%) 41.7%(43.5%) 33.1%(36.1%)
OOD Top-5 38.8%(43.4%) 39.8%(48.7%) 44.3%(46.6%) 47.6%(49.8%) 40.5%(42.8%)
OOD Top-10 46.6%(52.6%) 43.9%(55.9%) 47.4%(49.4%) 52.9%(55.4%) 49.6%(52.4%)

Minimal-template GLN_base(irm) MT_base(irm) G_Retro_base(irm) R_Composer_base(irm) MHN_base(irm)

ID Top-1 51.9%(53.3%) 48.1%(49.5%) 53.6%(54.2%) 53.9%(54.2%) 52.9%(53.1%)
ID Top-3 68.9%(69.9%) 64.6%(67.2%) 68.3%(69.9%) 78.6%(79.3%) 74.2%(74.7%)
ID Top-5 76.5%(78.3%) 69.9%(73.3%) 74.8%(76.4%) 85.6%(86.7%) 83.2%(83.9%)
ID Top-10 86.6%(88.9%) 74.2%(80.2%) 76.4%(79.1%) 89.7%(90.5%) 90.6%(91.3%)

OOD Top-1 0%(0%) 2.8%(2.3%) 0%(0%) 0.1%(0.1%) 0.0%(0.1%)
OOD Top-3 0%(0%) 3.8%(4%) 0.1%(0.2%) 0.4%(0.4%) 0.1%(0.1%)
OOD Top-5 0%(0.2%) 4.2%(4.7%) 0.1%(0.3%) 0.7%(0.9%) 0.2%(0.2%)
OOD Top-10 0%(0.2%) 5.0%(5.7%) 0.1%(0.3%) 1.2%(1.2%) 0.3%(0.4%)

Table 2: The performance of five baselines and enhanced versions on label shift P (T ). The best-enhanced result is reported
with n = 5 for MT,GLN, and MHN, and n = 2 for GraphRetro and Retrocomposer.

substructures Mvar and an increased convergence towards
the invariant substructures Minv as shown in Fig. 7. We also
comprehensively evaluated the results of applying IRM reg-
ularizer to different loss components as an ablation study
presented in Tab. 3 in the Appendix.

Concept Enhancement for Label Shift
Besides covariate shift in molecular space, retrosynthesis
prediction suffers significantly from the label shift P (T ).
The reason behind the label shift is that the current bench-
mark dataset only includes reactions deemed most favor-
able by different chemists, thus manifesting a high preci-
sion. Still, it indiscriminately regards other unobserved po-
tentially feasible reactions as equally infeasible, resulting
in a low recall. Essentially, retrosynthesis is a many-to-
many problem (Thakkar et al. 2022; Schwaller et al. 2019b),
where the target molecule M can potentially be synthesized
through various distinct retro-strategies T , and vice versa. To
mitigate the low recall issue, we aim to enhance the concept
of template applicability by transforming the binary crite-
ria of the observed ground truth Pgt(M, T ) into a continu-
ous approximation using a probabilistic model. By utilizing
a probabilistic model, we have greater flexibility to evaluate
the boundary cases from the potentially feasible reactions,
thereby constructing a more robust training set and improv-
ing recall without compromising precision.

However, modeling such probability is non-trivial since
we need to perform counterfactual inference of unobserved
reactions. One intuitive approach is to assume the distribu-
tion P (M, T ) follows a Gaussian Process (GP) in order to
construct a posterior predictive distribution for the feasibil-
ity of unobserved reactions. However, this assumption has
limited expressiveness and may over-simplify the complex
probabilistic structure of the selection bias among chemists.

Inspired by the recent advancements of Energy-based
Model (EBM) (Grathwohl et al. 2019; Liu et al. 2020),

which offers greater flexibility and expressiveness compared
to traditional probabilistic models, we adopt the EBM ar-
chitecture to approximate P (M, T ). EBM represents the
likelihood of a probability distribution pD(x) for x ∈ RD

as pθ(x) = exp(−Fθ(x))
Z(θ) , where the function Fθ(x) :

RD → R is known as the energy function, and Z(θ) =∫
x
exp(−Fθ(x)) is known as the partition function. Typi-

cally, directly evaluating pθ(x) requires an intractable inte-
gration in partition function Z(θ) over all possible target-
template tuples. Fortunately, the gradient for training the
EBM, ∇θ log pθ(x), can be expressed in the alternative
form:

∇θ log pθ(x) = Epθ(x
′)

[
∇θFθ

(
x′)]−∇θFθ(x) (1)

Thus, the question left for us is finding a surrogate for
samples x′ from the distribution p(θ)(x

′) to approximate the
gradient of the training loss. In the next section, we elabo-
rate on using a k-hop subgraph extraction algorithm on a
bipartite graph to build the tractable EBM training loss.

Approach
The complete enhancement process is shown in Fig. 4.
To begin, we model the set of ground-truth reactions as
a target-template bipartite graph, where the ground-truth
graph Ggt = (M,T,Egt) contains all the target molecules
and template as nodes and the observed ground-truth re-
actions as edges. The complete bipartite graph Gfull =
(M,T,Efull) can be obtained by connecting all template
T nodes with the molecules node M . However, Gfull con-
tains a mixture of feasible, infeasible, and invalid reactions,
which should be further denoised. Naturally, our problem is
transformed into obtaining the best-enhanced graph Genh =
(M,T,Eenh) such that Egt ⊂ Eenh ⊂ Efull.

Stage A: In the first stage, we use domain knowledge and
a rule-based approach to filter out edges Efail that generate
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Figure 4: The process of acquiring the enhanced bipartite graph Genh between target molecules and templates.

invalid reactions from target-template subgraph mismatch or
syntactically illegal structures. We obtain a potentially en-
hanced graph G′

enh = (M,T,E′
enh), which contains all ob-

served ground-truth reactions and unobserved potential reac-
tions. However, G′

enh still contains edges that might produce
chemically infeasible reactions, creating a trade-off between
template diversity recall and observed selection bias preci-
sion. Naturally, this is the point where we can resort to EBM
to evaluate the deviation from the observed ground-truth re-
action to the unobserved enhanced reactions to obtain the
best-enhanced graph. However, directly using the full set
of the unobserved reaction (> 2 million) as the surrogate
for x′ in Eq. 1 is still computationally infeasible. To make
the training realizable and reliable, we designed a tractable
subgraph-aware EBM loss to realize the training.

Stage B: We design a subgraph-aware sampling method
to select the most informative subsets to build EBM loss.
Specifically, for each ground-truth reaction emt ∈ Egt, we
adopt a k-hop reaction subgraph extraction algorithm to ac-
quire a subgraph Gm,t

sub ∈ G′
enh. This algorithm aims to ex-

tract subgraphs that contain sufficient neighborhood infor-
mation in both the molecule and template dimensions to ap-
proximate the divergence of the unobserved potential reac-
tions from the ground truth reactions. The complete algo-
rithm is listed as Alg. 1 in the Appendix.

Within a selected subgraph, we can derive our EBM train-
ing objective. We omit the superscript m,t in the following
notations for simplicity. Each subgraph Gsub can be fur-
ther divided into two counterparts: G+

sub with edges E+
sub =

Esub ∩ Egt and G−
sub with edges E−

sub = Esub ∩ Eenh. We
define the tractable subgraph EBM loss in Eq. to push the
energy score lower for the positive edges E+

sub and higher
for the negative edges E−

sub. Specifically, for e+mt ∈ E+
sub,

we have:

L(θ) = − 1

|E+
sub|

log

(
exp(−Fθ(e

+
m, e+t )/τ)∑

e−mt∈E−
sub

exp(−Fθ(e
−
m, e−t )/τ)

)
Intuitively, each extracted subgraph Gsub contains a set

of similar reactions that reflect a selection bias towards cer-
tain types of retrosynthesis strategies. Therefore, we apply

1
|E+

sub|
as an importance weighting coefficient to alleviate the

selection bias that exists in the original ground-truth distri-
bution (Cortes et al. 2008).

Stage C: In the denoising stage, we similarly extract the
k-hop reaction subgraph for each ground-truth reaction in
Egt and select the top-n reactions En

enh ⊂ E−
sub with the

highest energy scores to form the enhanced set Eenh =
Egt

⋃
En

enh. Eventually, we can obtain the final enhanced
graph Eenh used for pre-training the downstream baseline
models. The complete architecture details of the EBM and
the ablation study on the different settings of n are elabo-
rated in the Appendix.

Performance Analysis
As shown in Table. 2, there is a significant performance
improvement for conceptually-enhanced models over the
baselines in both ID and OOD set for retro-templates and
ID set for minimal-templates, which proves that concept
enhancement is effective towards countering label shifts.
Nevertheless, this approach has minimal effect on the
minimal-template OOD set, as the algorithm can only use
retro-templates for enhancement. Among the five baselines,
we discover MT demonstrates the greatest improvements,
which mainly due to its “template assembly” capability with
the enhanced dataset to further derive novel implicit retro-
strategies. Specifically, we discover that MT is capable of
“assembling templates” from the training set to generate new
templates (Appx. Fig.8). Therefore, we claim that MT can
potentially learn to “invent” unseen minimal-templates from
the training data in such a manner.

Conclusion
In this study, we examined the distributional shifts in ret-
rosynthesis prediction and proposed two model-agnostic ap-
proaches, invariant learning, and concept enhancement, to
address these shifts. Furthermore, we gained insights into
the impact of covariate shift and label shift on multiple base-
line performances through empirical analysis and evaluation
of various baseline models. Future works can extend the
coverage of the reactions in the benchmark dataset by ex-
ploiting a larger private or licensed dataset to obtain a more
comprehensive outcome.
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G. K.; et al. 2020. Hopfield networks is all you need. arXiv
preprint arXiv:2008.02217.
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