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Abstract

Prediction of drug-target interactions (DTIs) is a crucial step
in drug discovery, and deep learning methods have shown
great promise on various DTI datasets. However, existing ap-
proaches still face several challenges, including limited la-
beled data, hidden bias issue, and a lack of generalization
ability to out-of-domain data. These challenges hinder the
model’s capacity to learn truly informative interaction fea-
tures, leading to shortcut learning and inferior predictive per-
formance on novel drug-target pairs. To address these is-
sues, we propose MlanDTI, a semi-supervised domain adap-
tive multilevel attention network (Mlan) for DTI prediction.
We utilize two pre-trained BERT models to acquire bidirec-
tional representations enriched with information from unla-
beled data. Then, we introduce a multilevel attention mech-
anism, enabling the model to learn domain-invariant DTIs at
different hierarchical levels. Moreover, we present a simple
yet effective semi-supervised pseudo-labeling method to fur-
ther enhance our model’s predictive ability in cross-domain
scenarios. Experiments on four datasets show that MlanDTI
achieves state-of-the-art performances over other methods
under intra-domain settings and outperforms all other ap-
proaches under cross-domain settings. The source code is
available at https://github.com/CMACH508/MlanDTI.

Introduction
The process of drug discovery and development is charac-
terized by its high costs and time-intensive nature. Bring-
ing a first-in-class drug to the market typically requires sev-
eral decades and substantial investments amounting to bil-
lions of dollars. Predicting drug-target interactions (DTIs)
is an essential task in drug discovery and drug repurposing
(Paul et al. 2010), which hold significant value in the field of
biomedicine (Agamah et al. 2020; Ezzat et al. 2019). While
traditional techniques like high-throughput screening, pro-
teomics, and genomics remain prevalent, they suffer from
time and cost constraints due to the vast chemical space
involved (Broach, Thorner et al. 1996; Bakheet and Doig
2009).

In order to expedite the drug discovery process and re-
duce costs, virtual screening (VS) techniques have been de-
veloped to aid in silico (Rifaioglu et al. 2019). Molecular
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docking and molecular simulations have shown great suc-
cess in drug discovery (Cheng et al. 2012), but they are lim-
ited for being computationally resource-intensive and rely-
ing on the availability of 3D structure data. Methods includ-
ing machine learning approaches (Faulon et al. 2008; Wang
et al. 2021; Meng et al. 2017) perform well in predicting
DTIs for known drug-target pairs, while their performance
tends to deteriorate when applied to unknown structures.

With the accumulation of a large volume of labeled DTI
data in recent years, numerous end-to-end deep learning
methods have been employed for predicting DTIs. From
the perspective of the input data, DTI prediction models
can be categorized into three groups. The first category
is sequence-based models, where drugs are represented as
Simplified Molecular Input Line Entry System (SMILES)
or Extended-Connectivity Fingerprints (ECFP) and pro-
teins are treated as amino acid sequences. These models
commonly utilize 1D-CNN (Öztürk, Özgür, and Ozkirimli
2018; Lee, Keum, and Nam 2019; Zhao et al. 2022; Bai
et al. 2023) or transformer architectures (Chen et al. 2020;
Huang et al. 2022). Secondly, drug molecules can be repre-
sented as graphs (Nguyen et al. 2021; Tsubaki, Tomii, and
Sese 2019; Huang et al. 2022) or images (Qian, Wu, and
Zhang 2022). Similarly, protein distance maps can serve as
a 2D abstraction of their 3D structural information (Zheng
et al. 2020), enabling the use of Graph Neural Networks
(GNNs) (Scarselli et al. 2008), Graph Convolutional Net-
works (GCNs) (Kipf and Welling 2016), and Convolutional
Neural Networks (CNNs). Thirdly, the incorporation of 3D
structural data such as protein pockets (Yazdani-Jahromi
et al. 2022) or molecular dynamics simulation data (Wu et al.
2022) undoubtedly improves model performance and re-
duces computational complexity compared to those directly
using the whole 3D data as input (Wallach, Dzamba, and
Heifets 2015; Stepniewska-Dziubinska, Zielenkiewicz, and
Siedlecki 2018). Nonetheless, they are still constrained by
the limited availability of 3D structural data.

Despite these remarkable development, deep learning
methods still face several challenges. The first challenge is
the restriction of limited labeled data. Previous works have
primarily concentrated on utilizing the available labeled data
and learn interactions on a few thousands labeled drug-target
pairs (Öztürk, Özgür, and Ozkirimli 2018; Lee, Keum, and
Nam 2019; Tsubaki, Tomii, and Sese 2019; Nguyen et al.
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2021; Huang et al. 2022; Zhao et al. 2022; Bai et al. 2023).
However, these approaches often overlook the enormous
amount of unlabeled biomedical data, which hinders the
models from fully leveraging the chemical structures and
interactions of drugs and proteins. Consequently, the mod-
els struggle to extract truly informative features, leading to
limited generalization ability.

The second challenge is the hidden bias and shortcut
learning. The issue of hidden bias has been reported on the
DUD-E and MUV datasets (Sieg, Flachsenberg, and Rarey
2019). It has been observed that models trained on the DUD-
E dataset (Chen et al. 2019) and other datasets (Chen et al.
2020), tend to rely predominantly on drug patterns when
making predictions, rather than capturing the comprehen-
sive interaction between drugs and targets. This lead to a gap
between theoretical modeling and practical application. We
further identify two main reasons for this issue: 1) The pres-
ence of a greater variety and quantity of drug molecules in
datasets than proteins; 2) The inherent ease of feature extrac-
tion for drug molecules compared to proteins. These factors
result in shortcut learning, where the model tends to priori-
tize learning features from the larger and easier-to-learn drug
molecule data, rather than focusing on the features of pro-
teins. Consequently, the model struggles to effectively cap-
ture the interaction features between drugs and proteins.

The third challenge lies in the model’s ability to gener-
alize and make predictions on out-of-domain data, which is
closely related to the previous two challenges. Developing a
first-in-class drug often involves predicting interactions with
a completely new target using novel compounds, which may
have a distribution that differs significantly from the data on
which the model was trained. Thus, the model needs to be
capable of cross-domain generalization (Abbasi et al. 2020;
Bai et al. 2023; Kao et al. 2021). Currently, most models are
trained on limited labeled data and fail to address the issue
of shortcut learning, resulting in limited ability to predict in-
teractions between completely new drugs and proteins.

To tackle the three challenges, we propose MlanDTI, a
semi-supervised domain adaptive multilevel attention net-
work for DTI prediction. We utilize two pre-trained BERT
models to acquire bidirectional embeddings of protein and
SMILES (drug) sequences from millions of unlabeled data.
Inspired by the least mean squared error reconstruction
(Lmser) network (Xu 1993; Huang, Tu, and Xu 2022), we
then devise a variant of transformer with a multi-level atten-
tion mechanism with drug and protein embeddings as input.
It enables the joint extraction of both drug and target fea-
tures with reduced hidden bias and facilitates the learning of
multi-level interactions. Moreover, we incorporates a sim-
ple yet effective semi-supervised pseudo-labeling method
to further enhance our model’s predictive ability in cross-
domain scenarios. Experiments on four datasets demonstrate
that MlanDTI achieves state-of-the-art performances over
other methods under intra-domain settings and outperforms
all other approaches under cross-domain settings.

The main contributions are three-fold as follows:

• To leverage massive unlabeled biomedical data, we em-
ployed two pre-trained BERT models to acquire repre-

sentations that possess better robustness and generaliza-
tion capabilities. We observed that the representations
obtained by the BERT models significantly enhance the
accuracy of pseudo-labeling.

• We propose a novel multi-level attention mechanism
which enables effective feature extraction by allowing
the model to dynamically focus on different aspects of
proteins and drugs during the learning process. The atten-
tion mechanism mitigates the shortcut learning problem
and reduces the impact of hidden bias on predictions.

• We propose a simple yet effective pseudo-label domain
adaptation method, which significantly reduces the noise
of pseudo-labels.

Related Work
Leveraging Additional Data
One of the key to DTI prediction is how to represent drug
molecules and proteins that allows the model to learn use-
ful features. Learning from 3D structural information (Wal-
lach, Dzamba, and Heifets 2015; Stepniewska-Dziubinska,
Zielenkiewicz, and Siedlecki 2018) is undoubtedly the most
direct approach, but it is limited by the high computational
costs and model complexity. Another indirect approach is
to provide additional data containing 3D structural infor-
mation, such as molecular dynamics simulations (Wu et al.
2022) and protein pocket data (Yazdani-Jahromi et al. 2022).
While the aforementioned methods are limited by the avail-
ability of a finite amount of 3D structural data, Moltrans
(Huang et al. 2021), in contrast, leverages a vast amount
of unlabeled protein and drug sequences by using Frequent
Consecutive Sub-sequence (FCS) algorithm to extract high-
quality substructures and enhances the representations us-
ing transformers. However, FCS has certain limitations in
its ability to comprehensively extract information from se-
quence data, and the quantity of unlabeled data utilized is
also insufficient. In this paper, we utilize two pre-trained
BERT (Devlin et al. 2018) models learned on a large amount
of unlabeled data to obtain rich representations of proteins
and drug sequences with powerful generalization abilities.

Learning Interactions
Proteins and drugs are two fundamentally different types
of data, and the task of DTI prediction requires the model
to learn their interaction features. The simplest approach
is to concatenate the features (Öztürk, Özgür, and Ozkir-
imli 2018; Lee, Keum, and Nam 2019; Zheng et al. 2020;
Nguyen et al. 2021) and pass them through a Fully-
Connected Network (FCN) to obtain the prediction results.
Another approach (Qian, Wu, and Zhang 2022) is to over-
lap the feature maps and use CNN to extract interaction
features. However, these methods lack interpretability and
overlook the inherent structure of interactions. Recently, at-
tention mechanisms have been demonstrated effective in
capturing intricate interactions between proteins and drugs.
Multi-head attention (Bian et al. 2023; Chen et al. 2020) and
other attention variations (Bai et al. 2023; Zhao et al. 2022)
have been widely applied in DTI prediction. However, (Chen
et al. 2020) found that the hidden bias in some datasets that
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led models to rely mainly on drug patterns rather than the
interactions for prediction. We further observed that this is-
sue was prevalent in existing models. To address this issue,
we proposed a multi-level attention mechanism.

Domain Generalization in DTI Predictions
In previous works (Huang et al. 2021; Yazdani-Jahromi et al.
2022; Zhao et al. 2022), the evaluation of model generaliza-
tion was often conducted through the partitioning of datasets
into “unseen drug” or “unseen protein” scenarios, where
drugs or proteins were only present in the test set. However,
such evaluations still fall into the intra-domain setting, dif-
ferent from real-world applications. Currently, there is lim-
ited research on domain generalization in DTI prediction.
DrugBAN (Bai et al. 2023) addresses this challenge by uti-
lizing Conditional Domain Adversarial Network (CDAN) to
transfer the learned knowledge from the source domain to
the target domain, thereby enhancing the model’s perfor-
mance in cross-domain settings. Here, we leverage pseudo-
labeling techniques to mitigate the distribution discrepancy
between the target and source domains. Through the integra-
tion of an auxiliary classifier and the powerful representa-
tional capacity of BERT models, our approach significantly
improves the accuracy of pseudo-labeling. Under the cross-
domain setting, our method demonstrates remarkable per-
formance surpassing that of DrugBAN.

Method
Problem Formulation
The task of DTI prediction aims to determine whether a
drug compound and a target protein will interact. For drug
compounds, most existing deep learning methods utilize the
SMILES strings to represent the drugs. Specifically, a drug
is represented as D = (d1, ..., dm), where di is a SMILES
symbol with chemical meanings such as atoms, m is the
length. As for target proteins, each protein sequence is rep-
resented as T = (a1, ..., an), where ai corresponds to one of
the 23 amino acids, n is the length of the protein sequence.

Given a drug SMILES sequence D and a protein sequence
T, the objective is to train a model to assign an interaction
probability score P ∈ [0, 1] by mapping the joint feature
representation space D×T.

The Proposed Framework
An overview of MlanDTI is depicted in Figure 1. It
commences by encoding the drug and target sequences
into vector embeddings via pre-trained BERT models, i.e.,
ChemBERTa-2 (Ahmad et al. 2022) and ProtTrans (Elnag-
gar et al. 2021). Subsequently, these embeddings are passed
through the encoder and decoder of a modified transformer
architecture with a multi-level attention module to extract in-
teraction features. The classifier comprises a bilinear atten-
tion module and a max pooling layer, followed by a FCN for
prediction. For cross-domain prediction, we employ an aux-
iliary classifier that directly accepts BERT outputs. It aids
in learning implicit distributional information from BERT
representations, thereby enhancing pseudo-label accuracy.
After training the two classifiers on labeled source domain

data, the model predicts on unlabeled target domain data
to obtain pseudo-labels. The pseudo-label learning process
consists learning high-confidence pseudo-labels and mini-
mizing conflicting predictions.

Encoder for Protein Sequence We build the encoder by
adopting a modification on the transformer similar to Trans-
formerCPI (Chen et al. 2020). Instead of using the self-
attention module, we utilize a 1D-CNN and GLU (gated lin-
ear unit) (Dauphin et al. 2017) as alternatives. The hidden
layers h0, ..., hL in the encoder are computed as:

hi(XT ) = (XTWi1 + s)⊗ σ(XTWi2 + t), (1)

where XT ∈ Rn×m1 is the input of layer hi, Wi1 ∈
Rk×m1×m2 , s ∈ Rm2 ,Wi2 ∈ Rk×m1×m2 , t ∈ Rm2 are pa-
rameters, n is the input sequence length, k is the patch size,
m1,m2 are the dimensions of input and hidden vectors, σ is
the sigmoid function, and ⊗ is the element-wise product.

Since the length of a protein sequence may range in the
thousands or even tens of thousands, the self-attention mod-
ule in transformers poses a significant computational and
memory burden with O(n2) time and space complexity, and
is prone to overfitting when working on small datasets. The
above modification by Eq. (1) mitigates the computational
and storage burden on long protein sequences and remedies
overfitting on small datasets.

Multilevel Cross-Attention For the task of DTI predic-
tion, the most crucial ability for the model is to learn the
interaction patterns between drugs and targets. It involves
aligning the features of proteins with the features of drugs in
a shared feature subspace. However, extracting multi-level
features from proteins is more challenging than extracting
features from drugs, because protein sequences are notably
long, with intricate multi-level structures, while drugs are
often small chemical molecules. This difference contributes
to the hidden bias in DTI models (another is inherent dataset
bias). Aligning protein features with drug features also re-
quires a multi-level process, but the model may not capture
the multi-level features of proteins well and effectively align
them with drug features. Thus, the existing models tend to
learn a shortcut by relying on the features of drug molecules
to predict drug-target interactions.

In an early literature (Xu 1993), Lmser network was pro-
posed to enhance the representation learning by building
bidirectional skip connections on every levels of layers be-
tween encoder and decoder. It was first demonstrated in a
deep CNN implementation to be robust and effective on
image processing (Huang, Tu, and Xu 2022; Xu 2019),
and then Lmser-transformer was developed to improve the
molecular representation learning by adding hierarchical
connections to the original transformer (Qian et al. 2022).
Inspired by these works, we propose a multi-level cross-
attention mechanism to address this issue, as illustrated in
Figure 1(a). In the vanilla transformer, the encoder uses the
protein features from the last layer of the encoder as the Key
and Value for the cross-attention layer of the decoder, align-
ing them with the drug features in the decoder. However,
the protein features obtained from the encoder’s output do
not fully capture the expression of the multi-level structural
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Figure 1: (a). The overall framework of MlanDTI, it consists of two pre-trained BERT models that convert SMILES and amino
acid sequences into vector embeddings. The Encoder and Decoder are connected by a multilevel attention module, and the final
output is processed through the classifier with a bilinear attention module and a max pooling layer before being fed into FCN
to generate the prediction results. (b). The detail of Multilevel attention. (c). Training with pseudo labeling with an auxiliary
classifier.

information of proteins, and they do not align with drug fea-
tures at different levels in the decoder.

Here, we develop the multi-level attention mechanism by
two steps: 1) the multi-level feature fusing step and 2) the
cross-attention feature aligning step. Suppose the protein
feature matrices of each encoder layers are T0, ..., Tn ∈
Rm×d, where n is the number of transformer layers, m is
the size of the protein sequence and d is the vector dimen-
sion. For the ℓ-th decoder layer, we concatenate the pro-
tein feature matrices from the preceding ℓ layers to form
Tcatℓ = [T0, ..., Tℓ] ∈ Rℓ×m×d. Then, we perform a cross-
layer feature aggregation by applying a fusion matrix Fℓ ∈
Rℓ×1. This results in multi-level fused protein feature matrix
T ′
ℓ = FT

ℓ Tcatℓ . To summarize, we compute all T ′
ℓ as:

diag(T ′
0, ..., T

′
n) = F · diag(Tcat0 , ..., Tcatn), (2)

where F is a learnable diagonal matrix with each diagonal
element being Fℓ from each layer, i.e., ℓ = 0, ..., n. Then,
the query, key, and value for the multi-level cross-attention
mechanism at the ℓ-th layer are respectively computed by

Q = DℓWq, K = T ′
ℓWk, V = T ′

ℓWv, (3)

where Dℓ is the drug feature matrix which has passed the
self-attention module, and T ′

ℓ the multi-level protein feature
matrix given by Eq. (2).

To enhance the extraction capabilities of attention heads
for multi-level interactions, we incorporate the talking-heads
attention mechanism (Shazeer et al. 2020) for feature align-
ment. This variation of multi-head attention in the trans-
former introduces two additional linear projections. These
projections transform the attention logits and the atten-
tion weights, respectively, allowing the flow of information

across different attention heads and improving the overall
performance of the model, i.e.,

Attention(Q,K, V ) = softmax
(
Pℓ

QKT

√
dk

)
PwV, (4)

where Q,K, V are given by Eq. (3), and Pℓ ∈
Rhk×hk , Pw ∈ Rhk×hv are the two additional linear projec-
tions. hk represents the number of attention heads for keys
and queries, and hv denotes the number of attention heads
for values, and they can optionally differ in size.

The advantages of the proposed multi-level attention
mechanism are briefly summarized below.

• Encourage multi-level feature learning: By fusing pro-
tein features, drug features are derived to interact with
relevant characteristics, which thereby captures multi-
level interaction features, leading to a more comprehen-
sive understanding of drug-target interactions.

• Alleviate hidden bias and reduce overfitting: Multi-
level attention encourages the model to focus more on
hierarchical interaction features, the model becomes less
prone to biased representations that might emerge from
focusing solely on specific patterns, and thus the model
is less likely to overfit to noisy patterns of the data.

• Improve generalization abilities: Multi-level attention
enables the model to learn domain-invariant interaction
features. These representations exhibit robustness and
enhance transferability across different data domains.

The Classifier The classifier consists of the bilinear at-
tention module from hyperattentionDTI (Zhao et al. 2022)
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to further extract bidirectional interaction features. Subse-
quently, we utilize a multi-layer FCN with each layer fol-
lowed by a leaky ReLU activation function (He et al. 2015)
to combine these features and generate prediction results.
Since it is a binary classification problem, we utilize the bi-
nary cross-entropy loss function to train the model.

LCE = −[y log ŷ + (1− y) log(1− ŷ)], (5)

where y is the ground truth label, ŷ is the classifier’s output.

Pseudo Label Learning for Domain Adaptation
Pseudo-labeling (Lee et al. 2013) is a semi-supervised
learning (SSL) method that utilizes a model trained on
labeled source domain data to generate pseudo-labels
for unlabeled target domain data. By incorporating these
pseudo-labels into the training process, the model can
adapt to target domain, which is particularly suitable
for DTI predictions where labeled data are limited and
unlabeled data are massive. However, in other domains,
pseudo-labeling based SSL methods often suffer from poor
model performance due to the presence of noisy pseudo-
labels (Rizve et al. 2021). Here, we propose a simple yet
effective approach that significantly improves the accuracy
of generated labels and reduces the impact of noisy labels
on the model.

Our method consists of two steps. In the first step, we per-
form the selection and learning of high-confidence pseudo-
labels. To achieve this, we introduce an auxiliary classi-
fier for co-training, which is essentially the classifier men-
tioned earlier but directly takes BERT representations as
input. Let P1 = {p(i)1 }Ni=1,P0 = {p(i)0 }Ni=1 and P1,aux =

{p(i)1,aux}Ni=1,P0,aux = {p(i)0,aux}Ni=1 be the probability out-
puts of the model and the auxiliary classifier for target do-
main data Xt={x(i)}Ni=1, respectively, such that p(i)0 , p

(i)
0,aux

is the probability of no interaction for sample x(i) and
p
(i)
1 , p

(i)
1,aux is the probability the sample interact. Rather

than selecting thresholds, which we observed may lead
to unbalanced pseudo-labels, we sort (P1 +P1,aux) and
(P0+P0,aux) in descending order and select the top M pos-
itive and negative sample pairs based on their probabilities
to assign pseudo-labels:

Y1 = {ŷ(i)1 = 1|p(i)1 + p
(i)
1,aux ∈ topM (P1 +P1,aux)}, (6)

Y0 = {ŷ(i)0 = 0|p(i)0 + p
(i)
0,aux ∈ topM (P0 +P0,aux)}, (7)

where Y1, Y0 represent the sets of pseudo-labels for positive
and negative samples, respectively, and M is the number of
selected samples which grows with the number of iterations.

The auxiliary classifier focuses on learning the latent re-
lationships between target domain and source domain data
within the BERT representations, while the main model pri-
oritizes learning domain-invariant DT interaction features.
This leads classifier discrepancy in nature, enabling higher
accuracy for pseudo-label with high confidence on both clas-
sifiers. After generating pseudo-labels, we employ the cross-
entropy loss to train model, i.e.,

Lpseudo = − 1

2M

2M∑
i=1

[y log ŷ(i)+(1−y) log(1−ŷ(i))]. (8)

The second step is to penalize conflict predictions. Let Xd

be the set of samples for which the two classifiers exhibit
conflicting classifications, i.e.,

Xd={x(i)|x(i) ∈ Xt, argmaxp(i) ̸=argmaxp(i)
aux}, (9)

where p(i) = (p
(i)
0 , p

(i)
1 ),p

(i)
aux = (p

(i)
0,aux, p

(i)
1,aux).

We randomly select a subset, X ′
d, of size M ′, from Xd,

where the value of M ′ increases with the number of model
iterations. We utilize a modified binary cross entropy loss to
augment the prediction uncertainty for conflicting samples
between the two classifiers, i.e.,

Lconf = − 1

M ′

M ′∑
i=1

[y log 0.5+ (1− y) log(1− 0.5)]. (10)

Both steps enable the model to acquire pseudo-labels
with reduced noise for training, consequently enhancing the
model’s performance in the target domain.

Experiments
Datasets
We evaluated our model on the human dataset, Caenorhab-
ditis elegans dataset (Tsubaki, Tomii, and Sese 2019), bind-
ingdb dataset (Liu et al. 2007), and Biosnap dataset (Huang
et al. 2021). Specifically, we conducted both intra-domain
and cross-domain tests on the BindingDB and Biosnap
datasets. For the intra-domain evaluation, we randomly split
the dataset into training, validation, and test sets with a ratio
of 8:1:1 in smaller human and C.elegans datasets, and 7:1:2
in larger BindingDB and Biosnap datasets. We also con-
ducted cold pair split experiments on BindingDB and Bios-
nap datasets. We select 70% of drugs/proteins randomly, and
all related DT pairs were collected as the training set. Sub-
sequently, DT pairs in the remaining 30% were split into a
3:7 ratio, as validation set and test set. This ensures that all
drugs and proteins in the test set are unseen to model.

For the cross-domain evaluation, we followed the
clustering-based split strategy used in DrugBAN. We ap-
plied the ECFP4 and PSC algorithms to cluster drugs and
proteins, respectively. Then, we randomly selected 60% of
the drug and protein clusters and used all drug-protein pairs
belonging to these clusters as the source domain data. The
drug-protein pairs in the remaining 40% clusters were used
as the target domain data. This data partitioning ensured that
the target domain and source domain data were from dis-
joint distributions, making the evaluation more challenging
and enabling a true assessment of the model’s ability to pre-
dict interactions for unknown proteins and molecules.

For the domain adaptation setting, we used all labeled
source domain data and 80% of the unlabeled target domain
data as the training set. This 80% of the target domain data
was also used as the validation set, while the remaining 20%
of labeled data from the target domain served as the test set.

Baselines and Implementation Details
We conducted a comparison between our proposed method
and eight baseline approaches: Support Vector Machine
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methods human C.elegans BindingDB BioSNAP
AUC AUPR F1 AUC AUPR F1 AUC AUPR F1 AUC AUPR F1

SVM 0.910 – 0.967 0.894 – 0.801 0.939 0.928 0.787 0.862 0.864 0.762
RF 0.940 – 0.878 0.902 – 0.832 0.942 0.921 0.858 0.860 0.886 0.808
GraphDTA 0.960 0.959 0.897 0.974 0.975 0.919 0.951 0.934 0.867 0.887 0.890 0.789
DeepConvDTI 0.967 0.964 0.922 0.983 0.985 0.944 0.945 0.925 0.859 0.886 0.890 0.797
MolTrans 0.974 0.976 0.944 0.982 0.985 0.966 0.952 0.936 0.865 0.895 0.897 0.824
TransformerCPI 0.973 0.975 0.920 0.988 0.986 0.952 0.943 0.925 0.855 0.889 0.893 0.798
HyperAttDTI 0.984 0.984 0.946 0.989 0.990 0.958 0.959 0.948 0.887 0.901 0.902 0.838
DrugBAN 0.981 0.983 0.940 0.986 0.988 0.949 0.959 0.947 0.881 0.903 0.902 0.832
Ours 0.988 0.990 0.961 0.990 0.992 0.962 0.945 0.926 0.857 0.909 0.912 0.841

Table 1: The results of the proposed model and baslines on four datasets (5 random runs), Metric: AUROC (AUC), AUPRC
(AUPR), F1-score (F1), The best results are indicated by bold. ”–” means no result for this metric.

methods
cold cross-domain

BindingDB BioSNAP BindingDB BioSNAP
AUC AUPR F1 AUC AUPR F1 AUC AUPR F1 AUC AUPR F1

Moltrans 0.595 0.522 0.511 0.672 0.697 0.437 0.537 0.476 0.389 0.632 0.635 0.401
TransformerCPI 0.656 0.594 0.566 0.680 0.708 0.523 0.568 0.450 0.410 0.656 0.693 0.432
HyperAttDTI 0.661 0.598 0.582 0.732 0.760 0.539 0.545 0.462 0.376 0.654 0.685 0.395
DrugBAN 0.655 0.600 0.542 0.651 0.667 0.449 0.578 0.471 0.484 0.608 0.606 0.438
DrugBANCDAN NA NA NA NA NA NA 0.616 0.512 0.426 0.673 0.706 0.542
Ours 0.671 0.594 0.601 0.782 0.801 0.653 0.657 0.537 0.489 0.728 0.759 0.604
Ours (with PL) NA NA NA NA NA NA 0.687 0.579 0.564 0.749 0.770 0.629

Table 2: In-domain (cold pair split: unseen drugs & proteins) and cross-domain (clustering-based split) comparison on the Bind-
ingDB and BioSNAP datasets (5 random runs). 1) Underlined values explanation: We chose a threshold of 0.5 (the same one as
in MolTrans) to calculate the F1-score of DrugBAN. This is to ensure a fair comparison and to avoid ineffective classification
caused by overly low thresholds in DrugBAN. Further information is provided in the appendix. 2) NA, not applicable to this
study. 3) The term “with PL” within parentheses refers to our method that incorporates the pseudo-labeling module.

(SVM) (Cortes and Vapnik 1995), Random Forest (RF)
(Ho 1995), GraphDTA (Nguyen et al. 2021), DeepConv-
DTI (Lee, Keum, and Nam 2019), MolTrans (Huang et al.
2021), TransformerCPI (Chen et al. 2020), Hyperatten-
tionDTI (Zhao et al. 2022), and DrugBAN (Bai et al. 2023).
These baselines encompass both classic machine learning
methods and the current state-of-the-art deep learning ap-
proaches, ensuring a comprehensive comparison. All deep
learning methods were employed with their default configu-
rations as provided by their respective authors. Our proposed
method in implemented in PyTorch, utilizing the Adam op-
timizer with an initial learning rate of 0.001. Detailed hyper-
parameter settings are provided in the appendix.

Intra-domain Experiments
Table 1 displays the comparison on the human and C.elegans
datasets. These two datasets are relatively small, with bal-
anced positive and negative samples, enabling us to evalu-
ate the model’s predictive ability within the same distribu-
tion. Our method outperforms all deep learning baselines in
terms of AUROC and AUPRC, and it also exhibits competi-
tive performance in terms of F1-score.

We also conducted comparisons on the larger datasets,
BindingDB and BioSNAP. In the random split tests, our
model achieved state-of-the-art performance on the BioS-
NAP dataset, but its performance on the BindingDB dataset

was not particularly competitive. This discrepancy was due
to the hidden bias issue present in the BindingDB dataset.

The BindingDB dataset contains 14643 drugs and 2623
proteins, which results in an extremely imbalanced drug-to-
protein ratio compared to the other datasets (BioSNAP: 4510
/ 2181, human: 2726 / 2001, C.elegans: 1767 / 1876). Com-
pared to the other three datasets, deep learning models even
struggle to outperform traditional machine learning meth-
ods (AUC: RF 0.942, deepConv-DTI 0.945) on the Bind-
ingDB dataset. Previous studies (Bai et al. 2023) have also
reported that the performance in the BindingDB dataset un-
der unseen-drug setting shows minimal decline compared to
random splits. This phenomenon is attributed to the presence
of a large number of highly similar molecules in the dataset,
which makes it challenging for the naive unseen-drug set-
ting to distinguish between them. The excessive number
of highly similar drug samples causes baseline models to
lean towards learning drug patterns rather than drug-target
interactions for prediction. As a result, deep learning and
machine learning methods exhibit similar performance lev-
els. However, this shortcut learning approach contradicts the
original intent of DTI prediction and cannot be considered
reliable in practical applications.

However, our model focuses more on learning the multi-
level interactions between proteins and drugs. In the cold
split setting in Table 2, the model can only learn drug-target
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Ablation BindingDB BioSNAP
AUC AUPR F1 AUC AUPR F1
0.687 0.579 0.564 0.749 0.770 0.629

-BERT 0.573 0.455 0.413 0.648 0.671 0.499
-MLA 0.628 0.511 0.523 0.731 0.753 0.585
-PL 0.657 0.537 0.489 0.728 0.759 0.604
-Aux Cls 0.626 0.486 0.503 0.739 0.776 0.633

Table 3: Ablation study on BindingDB and BioSNAP
datasets (cross-domain,five random runs)

interaction features, due to the lack of sufficiently similar
drug and protein molecules as references. Our model out-
performs other baselines on the BindingDB dataset, while
on the more balanced BioSNAP dataset, our model achieves
a superior performance compared to the baselines.

Overall, the challenges posed by the hidden bias issue
on the BindingDB dataset highlight the importance of our
model’s ability to capture multi-level drug-target interac-
tions, which allows it to perform well in scenarios where
other baselines struggle to maintain effectiveness.

Cross-Domain Experiments
Table 2 presents a comparison of model performance on the
BindingDB and BioSNAP datasets under the cross-domain
setting. Compared to the intra-domain setting, the major-
ity of models experience significant performance drop due
to the differences in data distributions. Particularly, for the
BindingDB dataset, the clustering-based strategy ensures
that there are no similar drugs or proteins between the train-
ing and testing sets, preventing the models from relying
on drug patterns. This breaks the false high-performance
illusion observed in the intra-domain scenario, and some
models even show no better performances than random
guessing (AUC: 0.5). Among all baselines, DrugBANCDAN ,
which leveraged a conditional domain adversarial network
(CDAN) for domain adaptation, achieved the best perfor-
mance. However, DrugBANCDAN did not surpass our vanilla
model with out pseudo labeling, and our model with pseudo
labeling significantly outperformed all state-of-the-art mod-
els, including DrugBAN with domain adaptation module.
Specifically, our model outperformed DrugBANCDAN by
11.52% and 11.29% (AUROC) on the BindingDB and BioS-
NAP datasets, respectively.

Ablation Studies
We conducted ablation studies in Table 3 under the cross-
domain setting on the BindingDB and BioSNAP datasets to
analyze the effectiveness of modules in our proposed model.

Effectiveness of BERT Embeddings We replaced BERT
with Word2Vec and GCN as used in TransformerCPI (Chen
et al. 2020) to obtain embeddings for drugs and proteins. As
shown in Table 3, the performance of the model experienced
a notable decline. This outcome can be attributed to the aux-
iliary classifier’s inability to effectively capture the implicit
relationship between the source and target domains through
the representations. As a result, in Figure 2 the accuracy
of pseudo-labels exhibited a significant drop, introducing a

(a) (b)

Figure 2: Ablation experiments of Pseudo labeling accuracy
on (a) BindingDB dataset (b) BioSNAP dataset

substantial amount of noisy pseudo-labels that deteriorated
the model’s performance.

Effectiveness of Multilevel Attention We replaced the
multilevel attention (MLA) mechanism with the origi-
nal Transformer multi-head attention. However, on both
datasets, the model exhibited performance drop in varying
degrees. With an increase in training iterations, a significant
decline in the accuracy of pseudo-labels was observed. It
turns out that the multilevel attention mechanism is better
equipped to capture domain-invariant drug-target interaction
features, thereby enhancing the model’s performance in the
target domain.

Effectiveness of Pseudo Labeling and Auxiliary Classi-
fier Pseudo-labeling (PL) proves effective in enhancing
the model’s performance within the target domain. Concur-
rently, auxiliary classifiers contribute to reducing the noise
within these pseudo-labels. This effect is particularly pro-
nounced in BindingDB dataset, which exhibits substantial
disparities in domain distributions. The absence of auxiliary
classifiers exacerbates the noise present within the pseudo-
labels, leading to the insufficiency of the pseudo-labeling ap-
proach in enhancing the model’s performance.

Conclusion

In this paper, we proposed MlanDTI, a semi-supervised
domain adaptive multilevel attention network that lever-
ages a large amount of unlabeled data to obtain enriched
bidirectional representations of drugs and proteins from a
pre-trained BERT model. Additionally, we introduced the
multilevel-attention mechanism to capture domain-invariant
interaction features between proteins and drugs at differ-
ent levels and depths. Finally, we incorporated a simple
yet effective pseudo labeling method to further enhance our
model’s generalization ability. Our model demonstrated ex-
cellent domain generalization capabilities, making it well-
suited for predicting interactions between new drugs and tar-
gets in drug development. Through comprehensive compar-
isons with state-of-the-art models, we establish a substantial
performance superiority over prior methodologies.
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