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Abstract

Flight Trajectory Prediction (FTP) is an essential task in
Air Traffic Control (ATC), which can assist air traffic con-
trollers in managing airspace more safely and efficiently. Ex-
isting approaches generally perform multi-horizon FTP tasks
in an autoregressive manner, thereby suffering from error
accumulation and low-efficiency problems. In this paper, a
novel framework, called FlightBERT++, is proposed to i)
forecast multi-horizon flight trajectories directly in a non-
autoregressive way, and ii) improve the limitation of the bi-
nary encoding (BE) representation in the FlightBERT. Specif-
ically, the FlightBERT++ is implemented by a generalized
encoder-decoder architecture, in which the encoder learns
the temporal-spatial patterns from historical observations and
the decoder predicts the flight status for the future hori-
zons. Compared with conventional architecture, an innovative
horizon-aware contexts generator is dedicatedly designed to
consider the prior horizon information, which further enables
non-autoregressive multi-horizon prediction. Moreover, a dif-
ferential prompted decoder is proposed to enhance the capa-
bility of the differential predictions by leveraging the station-
arity of the differential sequence. The experimental results
on a real-world dataset demonstrated that the FlightBERT++
outperformed the competitive baselines in both FTP perfor-
mance and computational efficiency.

Introduction
Flight Trajectory Prediction (FTP) is essential for Air Traffic
Management (ATM), enabling many critical applications to
help Air Traffic Controllers (ATCOs) manage airspace more
safely and efficiently, such as traffic flow prediction (Lin,
wei Zhang, and Liu 2019; Yan et al. 2023), conflict detec-
tion (Liu and Hwang 2011; Chen, Guo, and Lin 2020; Li
et al. 2019), and arrival time estimation (Wang, Liang, and
Delahaye 2018; Ma et al. 2023). In this context, the FTP
technique has gathered more attention from researchers and
achieved significant progress in the past decade.

In general, FTP in the Air Traffic Control (ATC) domain
aims to forecast the flight status in future time steps accord-
ing to the observed historical flight trajectories. Currently,
the short FTP tasks are commonly formulated as a time se-
ries forecasting problem, which predicts future flight trajec-
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tories based on real-time observations. According to mod-
eling approaches, the FTP methods can be classified into
three distinct categories: physical models, filter-based mod-
els, and data-driven models. Physical models typically es-
tablish a set of mathematical equations based on kinematics
and aerodynamics assumptions to estimate the future flight
status (Tang et al. 2015; Benavides et al. 2014; FAA 2010),
while the filter-based models estimate the flight trajectory it-
eratively via a predefined system model by considering real-
time measurements (Kalman 1960; Yan et al. 2013; Thip-
phavong et al. 2013). However, limited by the fixed infer-
ence rules, these approaches easily suffer from error ac-
cumulation problems and not be suitable for multi-horizon
FTP tasks. In contrast, data-driven models aim to learn flight
transition patterns from historical data, which have emerged
as the predominant approach in modern ATC applications
due to remarkable performance (Wang, Liang, and Delahaye
2017; Zeng et al. 2020).

Among the data-driven models, the FlightBERT is a pi-
oneering effort that proposes binary encoding (BE) repre-
sentation to encode the attributes of the trajectory points
into a set of binary vectors, further formulating the FTP
task as multiple binary classification (MBC) problem (Guo
et al. 2023). Benefiting from the innovative idea of BE rep-
resentation, the FlightBERT framework not only enhances
the semantic representation of the trajectory points, but also
avoids the vulnerability impacted by the normalization algo-
rithms. However, two primary limitations should be further
addressed to enhance the performance of the FTP task.
• A limitation of the BE representation is that the high-

bit prediction errors will lead to outliers in the predic-
tions. For instance, given the BE representation "0110
0100" (decimal 100), the absolute error is 128 (deci-
mal) if the misclassification occurs in the 8th bit ("1110
0100") while that is 1 (decimal) if the prediction error
occurs in 1st bit ("0110 0101").

• The FlightBERT performs multi-horizon prediction re-
cursively, i.e., predicts the flight status of the next time
step based on observation and iteratively applies the
predicted values as pseudo-observation to obtain multi-
horizon predictions. It is easy to suffer from larger accu-
mulative errors since the prediction errors in the pseudo-
observation will be accumulated during the recursive
inference process. Additionally, the computational effi-
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ciency is limited by the prediction horizon due to the
step-by-step prediction paradigm. As the prediction hori-
zon increases, the inference speed will experience a se-
vere reduction, leading to unacceptable delays for real-
time applications (e.g., conflict detection).

Focusing on the aforementioned challenges, in this paper,
a non-autoregressive multi-horizon FTP framework, named
FlightBERT++, is proposed to improve the performance of
the FTP task. Thanks to the superior trajectory represen-
tation ability of the FlightBERT, the proposed framework
inherits the BE representation from the FlightBERT, and is
also implemented based on the MBC paradigm.

In order to overcome the outlier predictions resulting from
the high-bit prediction errors in the BE representation, a dif-
ferential prediction paradigm is introduced into the Flight-
BERT++ framework. Specifically, instead of predicting the
absolute values, the differential values of the trajectory at-
tributes are formulated as the output objective in the pro-
posed framework, which can be encoded into BE representa-
tions in less bits. In this way, the FlightBERT++ framework
is able to effectively mitigate the occurrence of extremely
unreliable outliers in the predictions.

To achieve high-accuracy and -efficiency multi-horizon
FTP prediction, a novel sequence-to-sequence (Seq2Seq)
based encoder-decoder architecture is proposed to im-
plement the FlightBERT++ framework. Specifically, the
FlightBERT++ is constructed by a cascading trajectory
encoder, Horizon-aware Context Generator (HACG), and
Differential-prompted Decoder (DPD). The trajectory en-
coder encodes the observations into a trajectory-level rep-
resentation, while the HACG is designed to produce
multi-horizon context representations of the predicted hori-
zons. Benefiting from the proposed HACG module, un-
like conventional Seq2Seq architecture, the proposed frame-
work can generate multi-horizon predictions directly (non-
autoregressive) rather than perform recursive inference. In
succession, the differential-prompted decoder is innova-
tively proposed to perform the high-confidence predictions
based on the multi-horizon context representations, which
employ the differential sequence of the observations as the
prompting. The Transformer blocks are applied to build the
backbone network for both the trajectory encoder and DPD,
enabling non-autoregressive inference in the temporal mod-
eling process. In this way, the proposed framework can not
only mitigate the error accumulation but also yield a sub-
stantial improvement in computational efficiency for multi-
horizon FTP tasks.

The proposed framework is evaluated on a real-world
flight trajectory dataset from an industrial ATC system. To
validate the effectiveness and efficiency of the proposed
framework, several competitive baselines are selected to
conduct comprehensive comparisons. In addition, extensive
ablation studies and insightful analysis are also performed
to confirm all proposed technical improvements. The exper-
imental results consistently demonstrated that the proposed
framework efficiently addresses the outliers and error ac-
cumulation problems, outperforming the comparative base-
lines in both FTP accuracy and efficiency. In summary, the

contributions and novelty of this work are listed as follows:

• A flight trajectory prediction framework, called Flight-
BERT++, is innovatively proposed to perform high-
accuracy and -efficiency multi-horizon forecasting in a
non-autoregressive manner.

• The differential prediction paradigm is dedicatedly de-
signed to overcome the limitations of the high-bit predic-
tion errors in the BE representation.

• A HACG is innovatively proposed to generate multi-
horizon context representations by leveraging prior hori-
zon knowledge, which is the key to supporting non-
autoregressive predictions.

• Considering the stationarity of the differential sequence
in flight trajectory, a differential-prompted decoder is
proposed to facilitate the learning of transition patterns
in trajectory sequences, which further improves the per-
formance of the FlightBERT++.

Methodology
Problem Formulation
In general, the short-term FTP task can be formulated as a
multi-variable time-series forecasting problem, i.e., predict-
ing the aircraft status of several future horizons based on
historical observations. Let an observed trajectory point pt
in timestamp t, the multi-horizon FTP aims to forecast the
Pt+1:t+n = {pt+1, pt+2, ..., pt+n} based on the observation
sequence Ot−k+1:t = {pt−k+1, ..., pt−1, pt}, as Eq. (1):

Pt+1:t+n = {pt+1, pt+2, ..., pt+n} = F(Ot−k+1:t) (1)

where the n, k are the number of prediction horizons and
the observed sequence length, respectively. F(·) denotes the
learnable FTP model. Compared to the conventional itera-
tive multi-horizon FTP approaches, F(·) outputs the multi-
horizon predictions directly in the FlightBERT++.

In this work, the trajectory point pt is formulated as a col-
lection of six key attributes for aircraft status, as Eq. (2):

pt = [Lont, Latt, Altt, V xt, V yt, V zt] (2)

where the Lont, Latt, Altt, V xt, V yt, V zt represents the
longitude, latitude, altitude, and velocity in x, y, z dimen-
sions (corresponds to the longitudinal, latitudinal, and alti-
tudinal attributes), respectively.

The Proposed Framework
Overview The proposed framework is illustrated in Figure
1. The neural architecture of the proposed framework is cas-
caded by trajectory encoder, horizon-aware context genera-
tor, and differential-prompted decoder. Given the observed
trajectory sequence Ot−k+1:t, the object of the trajectory
encoder is to learn the temporal-spatial correlations of the
observations and abstract them to a high-dimensional repre-
sentation Trajenc, as Eq. (3).

Trajenc = TrajectoryEncoder(Ot−k+1:t) (3)

In succession, the HACG is designed to generate
the multi-horizon context representations Ct+1:t+n =
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Figure 1: Overview of the proposed FlightBERT++ framework.

{ct+1, ct+2, ..., ct+n} by both considering the prior predic-
tion horizon encodings H = {h1, h2, ..., hn, } and the high-
level representation Trajenc.

Ct+1:t+n = HACG([Trajenc,H]) (4)

The DPD receives two input vectors, i.e., the differential
embeddings Dt−k+2:t and multi-horizon context represen-
tations Ct+1:t+n. Specifically, the differential embeddings
Dt−k+2:t of the Ot−k+1:t are extracted by a Conv1D neural
network, which severs as the prompting to learn the tran-
sition patterns of the differential sequence. Then, the ex-
tracted Dt−k+2:t and multi-horizon context representations
Ct+1:t+n are jointly fed into the differential-prompted de-
coder to generate the final outputs as Eq. (5), where the
PBE

t+1:t+n is the BE representation of the predicted differ-
ential sequence of future trajectory. Finally, the PBE

t+1:t+n is
transformed into decimals to reconstruct the predicted tra-
jectory based on the Ot.

PBE
t+1:t+n = DPD([Dt−k+2:t,Ct+1:t+n]) (5)

Note that the inputs and the outputs of the FlightBERT++
are both the BE representation of the trajectory attributes.
Therefore, the optimizing objective of the FlightBERT++ is
also formulated as the MBC task. The FlightBERT++ frame-
work is trained using the Binary Cross Entropy (BCE) loss
function, as that in MBC tasks. More details of the BE rep-
resentations can be found in (Guo et al. 2023).

Compared with existing multi-horizon FTP approaches,
the proposed framework (i) innovatively design a HACG
to generate multi-horizon contexts directly, (ii) employ
the Transformer-based architecture to conduct the back-
bone network of the trajectory encoder and differential-
prompted decoder, which are the core ideas in enabling non-
autoregressive prediction.

Trajectory Encoder As illustrated in Figure 1, the tra-
jectory encoder is composed of three modules, including
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Figure 2: The detailed implementation of the channel-mix
trajectory point embedding and trajectory encoder.

the Conv1D-based Trajectory Point Embedding (TPE) mod-
ule, Transformer-based temporal modeling (TTM) module,
and Attention-based Sequence Aggregation (ASA) module.
Specifically, the Conv1D-based TPE module projects the BE
representation into high-dimensional embedding space to
learn discriminative spatial features of the trajectory points,
while the Transformer-based module is employed to capture
the temporal correlations of the observation sequence. In
succession, the outputs of the Transformer module are fur-
ther fed into the ASA module to generate the trajectory-level
embedding and extract the semantic representation over the
whole observation sequences.

To learn the informative spatial features of the trajectory
points, a Conv1D-based channel-mix trajectory point em-
bedding module is proposed to project the BE representa-
tions of trajectory points into embedding space. As illus-
trated in Figure 2, for a trajectory point, a joint embedding
is obtained by concatenating its attribute-wise BE represen-
tations, which is further fed into a Conv1D layer to learn tra-
jectory point embedding. The channel-mix strategy not only
retains the global correlations of the trajectory attributes, but
also is beneficial to learn the local features among the bits of
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the joint BE representation.
The TTM module is implemented by the stacked Trans-

former blocks. Compared with the RNN-based architec-
tures, the Transformer is primarily implemented by the
self-attention mechanism, which enables the model to
learn the temporal correlations of the observations in a
non-autoregressive manner. The ASA module performs a
weighted sum operation in the temporal dimension, in which
the attention weights of the trajectory points are generated
as Figure 2. In this way, the trajectory-level embedding
Trajenc can be obtained from the trajectory encoder, which
is expected to capture the temporal-spatial semantic repre-
sentation of the observations.

Horizon-Aware Context Generator In general, the au-
toregressive nature of conventional multi-horizon FTP ap-
proaches degrades the efficiency in the training and infer-
ence process, especially in high temporal resolution condi-
tions, which may be not suitable for real-time forecasting
scenarios. Towards this gap, a horizon-aware context gen-
erator is innovatively designed to support multi-horizon pre-
dictions in a non-autoregressive manner by generating multi-
horizon contexts directly.

The architecture of the HACG is illustrated in Figure 1.
Specifically, we conduct multi-horizon contexts by consider-
ing both the prior temporal specificities of the predicted hori-
zons and trajectory-level embeddings of the observations.
The inference rules of the proposed HACG can be shown
below. Firstly, the predicted horizons are represented by a
set of integer tokens, which are further encoded into corre-
sponding one-hot vectors H. Secondly, as shown in Eq. (6),
these one-hot vectors are projected into embedding space to
learn the horizon embeddings He1:n = {he1,he2, ...,hen}
by horizon embedding module.

He1:n = HorizonEmbedding(H) (6)

In succession, the horizon embeddings and the trajectory-
level embedding Trajenc are concatenated to generate the
context vector hct+i of horizon i.

hct+i = Concat[Trajenc,hei] (7)

Finally, the context vectors are further fed into an MLP
block to perform high-dimensional projection and generate
the final multi-horizon context representations Ct+1:t+n.

Ct+1:t+n = MLP([hct+1, ...,hct+i, ...,hct+n]) (8)

The core idea of the HACG is to leverage the trajectory-
level embedding Trajenc and horizon embeddings He1:n
to generate informative multi-horizon context representa-
tions. Specifically, the Trajenc can be regarded as a high-
dimensional representation that implies the global features
of the observations, while the horizon embeddings He1:n
provide the different semantic representations for each pre-
dicted horizon. Based on this assumption, the concatenation
operation and MLP block are employed to fuse these vectors
and generate the multi-horizon context representations. By
integrating the prior horizon knowledge, the HACG can be
aware of different horizons and generate the multi-horizon
context representations directly via only one-pass inference.

Differential-prompted Decoder To mitigate the high-bits
prediction errors of the BE representation, the differential
prediction paradigm is introduced into the FlightBERT++
framework, i.e., the objective of the decoder is to predict the
differential values instead of the raw absolute values. How-
ever, it is challenging to learn the transition patterns of dif-
ferential sequence from the observations sequence because
the differential operation may ignore some geographical and
kinematical features of the trajectory attributes. To this end,
as illustrated in Figure 1, a DPD is proposed to reduce the
learning difficulty of the network by integrating the differ-
ential prompted mechanism.

Specifically, the DPD consists of two modules, i.e.,
masked-Transformer, and predictor. Firstly, the differential
sequence is calculated from the observed sequence and
encoded into BE representations which can be consistent
with the form of the outputs. Similar to the TPE module,
these BE representations are further fed into a Conv1D-
based embedding layer to learn the high-dimensional dif-
ferential embeddings Dt−k+2:t. Secondly, the Dt−k+2:t is
concatenated with the multi-horizon context representations
Ct+1:t+n along the temporal dimension as a prompt to
learn the transition patterns of the predicted differential
sequence. In succession, the concatenated vectors further
fed into the masked-Transformer module to build the inter-
and intra-temporal correlations across observation and the
multi-horizon predictions. The architecture of the masked-
Transformer module is similar to the TTM module except
it employs the masked self-attention mechanism to ensure
the temporal specificities of the sequence. Finally, the pre-
dictor is composed of a Fully Connected (FC) layer and the
Sigmoid activation, which is applied to output BE represen-
tations for the multi-horizons.

Experiments
Experimental Settings
Dataset Preprocessing and Description To validate the
proposed framework, a real-world flight trajectory dataset
was collected from an ATC system. The dataset contains
a total of 9 days of trajectory data with 20-second inter-
vals, in which the range of the interested (ROI) longitude
and latitude are [94.616◦, 113.689◦] and [19.305◦, 37.275◦],
respectively. The key attributes of the flight trajectory are
extracted from the raw data to support the experiments, in-
cluding timestamps, call sign, longitude, latitude, altitude,
and velocity in x, y, z directions. After preprocessing, a to-
tal of 8643 flight trajectories in the dataset that further split
into train, validate, and test subsets. Specifically, the trajec-
tory of the first 7 days is used to train the FTP models while
8th and 9th are for validation and testing, respectively.

Comparison Baselines In this work, a total of 5 compet-
itive approaches serve as baselines to validate the effective-
ness of the proposed FlightBERT++. Moreover, the base-
lines are divided into two groups to conduct comparisons
by multi-horizon prediction styles. Group A performs it-
erative multi-horizon prediction, i.e., the model only pre-
dicts the result for the next time step that further serves as

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

130



a pseudo-observation for multi-horizon inference, includ-
ing LSTM (Shi et al. 2018), Transformer (Vaswani et al.
2017), Kalman-Filter (Kalman 1960), FlightBERT (Guo
et al. 2023). Group B is a direct multi-horizon prediction
approach, i.e., forecasts the results in a single inference
process for multiple time steps, which is implemented by
the LSTM+Attention model (Bahdanau, Cho, and Bengio
2015).

Experimental Configuration Based on ATC work, the
quantization precision 0.001◦ (about 110 meters) is selected
to adapt the transformation between BE representation and
the decimals. In this resolution, the input of the proposed
framework is a 78-dimensional vector (BE representation)
while the output is a 48-dimensional vector. The embedding
size of the trajectory points, horizons, and differentials is
set to 128, i.e., 128 channels for the Conv1D networks in
the proposed framework. The number of the Transformer
blocks in the trajectory encoder and differential-prompted
decoder are both set to 4. The number of hidden states of
the Transformer blocks is set to 768. An attention opera-
tor with 4 heads is applied to all Transformer blocks in the
proposed framework. In the experiments, we use the latest
3-minute observations to predict the flight status of the fu-
ture 5 minutes, i.e., predicting 15 trajectory points based on
9 observed trajectory points. The Adam optimizer with an
initial learning rate of 10−4 is applied to train all the above
deep learning-based models.

Evaluation Metrics
In this work, the Mean Absolute Error (MAE), Mean Ab-
solute Percentage Error (MAPE), and Root Mean Squared
Error (RMSE) are applied to evaluate the proposed meth-
ods and baselines, which are the common criteria for the
FTP tasks. In addition, to intuitively validate the FTP per-
formance in the three-dimensional (3D) airspace, the Mean
Distance Error (MDE) is proposed to evaluate the Euclidean
distance of the predictions and the actual trajectory points.
Specifically, the positional attributes of both predictions and
ground truth are projected to the earth-centered and earth-
fixed (ECEF) coordinate system, and the distance error is
measured to evaluate the model performance as below:

MDE =
1

N

1

h

N∑
i=1

h∑
j=1

Φ(pij − p′ij) (9)

where p, p′ are the transformed values of ground truth and
prediction in the ECEF coordinate system. Φ(·) is the calcu-
lation function of Euclidean distance in the 3D airspace.

Furthermore, the Mean Time Costs (MTC) metric is pro-
posed to evaluate the computational performance, which is
defined as follows:

MTC =
1

N

N∑
i=1

time_costshi (10)

where N is the number of samples in the test process,
time_costshi represents the time cost for h prediction hori-
zons of sample i. In this phase, the batch size of all evalua-
tion models is set to 1 to ensure comparison fairness.

Result and Discussions
Results and Quantitative Analysis
Overall Performance of FTP Table 1 reports the over-
all performance of the proposed framework and compari-
son baselines. To investigate the robustness of these models
with the horizons increase, the experimental results are di-
vided into four (1, 3, 9, 15) different horizons, correspond-
ing to 20 seconds, 1, 3, and 5 minutes trajectories in the
future. It is demonstrated that the proposed FlightBERT++
framework achieves significant performance improvements
against FlightBERT and outperforms other baselines in the
MAE metric across all predicted attributes. For the RMSE
metrics, thanks to the reduction of the BE representation
bits, great RMSE reductions of the longitude, latitude, and
altitude are obtained in the proposed framework. In addi-
tion, benefiting from the dedicated network design of the
proposed framework, the error accumulation of the multi-
horizon predictions is significantly decreased compared to
competitive baselines.

For the iterative multi-horizon prediction approaches, the
KF-based model-driven approach suffers from a huge per-
formance degradation with the increasing of prediction hori-
zon due to the lack of real observations. Compared with KF-
based approach, the data-driven based approaches achieved
better performance across all prediction horizons. How-
ever, these approaches also suffer from error accumula-
tion problems significantly in multi-horizon inference pro-
cedures. Benefiting from the capacity of the BE represen-
tation, the FlightBERT harvests comparable MAE perfor-
mance in all prediction horizons. However, the RMSE of the
FlightBERT is higher than other data-driven baselines due
to the outliers caused by high-bit errors in the prediction.
The LSTM+Attention achieves superior performance than
iterative multi-horizon prediction approaches for long-term
horizon predictions (in horizons 9 and 15). However, it also
suffers from the performance degradation of the short-term
horizons (horizon 1) in both the MAE and RMSE metrics.

In summary, the direct multi-horizon prediction ap-
proaches are superior to the iterative approaches in long-
term prediction steps since the global dependencies are
learned from the training process. Thanks to the robust
temporal-spatial dependencies obtained by the trajectory en-
coder and differential-promoted decoder, the FlightBERT++
framework achieves expected performance in both short-
and long-term prediction horizons, which further demon-
strates the effectiveness of the network design.

Computational Performance Evaluation The computa-
tional performance and the size of the model parameters are
presented in Table 2. In this experiment, the prediction hori-
zon is set to 15 for all models. As can be seen from the re-
sults, it is evident that the KF-based model achieves faster
prediction speed due to its lower computational complexity
and few parameters. Among the deep learning-based mod-
els, the direct multi-horizon approaches demonstrate sub-
stantial improvements in computational performance com-
pared to the iterative multi-horizon approaches. In addition,
it is worth noting that the model size of FlightBERT and
FlightBERT++ is larger than comparison models. It can be
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Style Methods Hor. MAE ↓ MAPE (%) ↓ RMSE ↓ MDE ↓Lon Lat Alt Lon Lat Alt Lon Lat Alt

Iterative

LSTM

1 0.0054 0.0055 1.71 0.0050 0.0202 0.29 0.0093 0.0124 6.04 0.91
3 0.0065 0.0065 3.01 0.0061 0.0238 0.50 0.0110 0.0151 7.63 1.08
9 0.0127 0.0121 10.33 0.0118 0.0443 1.48 0.0239 0.0270 18.48 2.05

15 0.0214 0.0194 20.74 0.0199 0.0714 2.74 0.0436 0.0427 33.06 3.38

Transformer

1 0.0038 0.0040 1.59 0.0036 0.0146 0.26 0.0071 0.0133 8.81 0.65
3 0.0073 0.0073 3.24 0.0068 0.0268 0.54 0.0127 0.0172 9.12 1.21
9 0.0173 0.0172 8.68 0.0161 0.0628 1.37 0.0305 0.0325 17.19 2.85

15 0.0274 0.0270 13.87 0.0256 0.0986 2.08 0.0496 0.0501 26.25 4.50

Kalman-Filter

1 0.0067 0.0032 1.50 0.0062 0.0120 0.28 0.0054 0.0171 8.50 0.82
3 0.0112 0.0059 2.97 0.0104 0.0220 0.54 0.0861 0.0272 11.48 1.41
9 0.0281 0.0168 8.73 0.0261 0.0624 25.83 0.1847 0.0619 25.83 3.69

15 0.0494 0.0313 15.63 0.0459 0.1162 2.53 0.2896 0.1016 42.39 6.62

FlightBERT

1 0.0024 0.0021 1.20 0.0023 0.0077 0.23 0.0387 0.0325 12.04 0.44
3 0.0039 0.0036 2.19 0.0035 0.0133 0.41 0.0486 0.0506 13.65 0.71
9 0.0091 0.0086 6.20 0.0085 0.0317 1.09 0.0608 0.0679 22.45 1.60

15 0.0159 0.0148 10.80 0.0148 0.0549 1.84 0.0742 0.0794 32.76 2.71

Direct

LSTM+Attention

1 0.0064 0.0068 1.98 0.0059 0.0249 0.30 0.0109 0.0138 5.96 1.09
3 0.0058 0.0060 2.75 0.0054 0.0221 0.43 0.0101 0.0144 7.36 0.98
9 0.0082 0.0083 6.07 0.0076 0.0305 0.94 0.0178 0.0221 14.03 1.37

15 0.0125 0.0122 9.05 0.0116 0.0450 1.38 0.0299 0.0327 20.01 2.04

FlightBERT++

1 0.0017 0.0017 1.15 0.0016 0.0066 0.20 0.0037 0.0115 12.07 0.31
3 0.0031 0.0031 2.23 0.0029 0.0117 0.41 0.0067 0.0131 12.46 0.55
9 0.0076 0.0074 5.30 0.0070 0.0277 0.96 0.0172 0.0232 17.92 1.29

15 0.0124 0.0117 7.43 0.0109 0.0425 1.37 0.0265 0.0326 22.89 1.97

Table 1: The experimental results of the proposed framework and baselines.

Methods Parameters (M) MTC (ms)
LSTM 0.55 48.96

Transformer 0.42 63.18
Kalman-Filter – 0.64
FlightBERT 56.85 201.41

LSTM+Attention 0.90 14.43
FlightBERT++ 44.13 6.81

Table 2: Comparison of the computational performance.

attributed that the BE representations extend the dimension
of the inputs and enable us to dedicatedly design the so-
phisticated neural architecture to capture the flight transi-
tion patterns. Moreover, the proposed FlightBERT++ har-
vests the fastest computational speed among deep learn-
ing based models, even with a tens larger model size than
other baselines. This significant improvement in compu-
tational efficiency is primarily attributed to the design of
the HACG module, enabling the FlightBERT++ to perform
multi-horizon prediction in a non-autoregressive manner.

Visualization and Qualitative Analysis
In this section, to better understand the learned flight tran-
sition patterns and qualitatively analyze the performance of
different approaches, a total of 4 typical flight scenarios in
the test set are selected to visualize the prediction results
in Figure 3, including common flight scenarios (descend-
ing, en-route) and complex flight patterns (turn, climbing
and turn right). Each sample is visualized with 9 observa-
tion trajectory points (inputs), ground truth, and 15 predicted
trajectory points generated by different methods.

As shown in Figure 3, the FlightBERT++ achieves supe-
rior performance over comparison baselines for both com-
mon flight scenarios and complex flight patterns. It is ob-
served that the proposed model also exhibits the ability to
estimate the flight intents in future horizons (Figure 3c, 3d).
This indicates that the FlightBERT++ not only captures the
flight dynamics from the observations but also learns typi-
cal flight patterns, such as fixed waypoints of turns or de-
scents, from a substantial amount of historical trajectories
in training samples. Moreover, the FlightBERT++ shows
lower error accumulation during the multi-horizon predic-
tion process, indicating significant reliability over compar-
ison approaches. Considering the enhancement of down-
stream tasks, such as conflict detection and airspace plan-
ning, FlightBERT++ can be regarded as a powerful tool to
improve the overall efficiency and safety of ATC operations.

Insights
Ablation study In this section, to better understand the
contributions of the designed components in the Flight-
BERT++ framework, an additional group C experiment is
presented to conduct the ablation study. In experiment C1, a
naive sum operator is applied to replace the ASA module in
the trajectory encoder, while the differential prompt mecha-
nism is removed from the DPD in experiment C2.

As can be seen in Table 3, all the designed network com-
ponents make expected contributions to the FlightBERT++
framework. In experiment C1, the model suffers from more
considerable error accumulation than the original Flight-
BERT++ with the increasing of prediction horizon. The
weighted sum operation of the ASA module is believed to
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Figure 3: Visualization of the FTP results in selective flight scenarios, in which the altitude is measured in 10 m.

Exp. Models Hor. MAE ↓ MAPE (%) ↓ RMSE ↓ MDE ↓Lon Lat Alt Lon Lat Alt Lon Lat Alt

C1
FlightBERT++
(without ASA

module)

1 0.0018 0.0018 1.18 0.0016 0.0067 0.21 0.0039 0.0119 12.10 0.32
3 0.0033 0.0032 2.28 0.0031 0.0119 0.42 0.0071 0.0138 12.56 0.57
9 0.0080 0.0077 5.25 0.0074 0.0285 0.94 0.0180 0.0243 17.89 1.34

15 0.0123 0.0118 7.16 0.0114 0.0439 1.31 0.0274 0.0339 22.38 2.05

C2
FlightBERT++

(without differential
prompted mechanism)

1 0.0019 0.0018 1.27 0.0018 0.0071 0.23 0.0044 0.0116 12.18 0.34
3 0.0035 0.0034 2.56 0.0033 0.0126 0.46 0.0084 0.0138 12.97 0.60
9 0.0091 0.0086 6.71 0.0085 0.0318 1.15 0.0227 0.0267 20.56 1.51

15 0.0153 0.0144 10.66 0.0143 0.0534 1.81 0.0386 0.0409 28.59 2.53

Table 3: The experimental results of the ablation study.

be more effective in capturing informative flight dynamics
and temporal correlations from the observation trajectory se-
quence. Furthermore, in experiment C2, it can be found that
the differential prompted mechanism is critical to the pro-
posed FlightBERT++, especially in the long horizon predic-
tion settings. It can be attributed that the differential predic-
tion paradigm may lose some geographical and kinemati-
cal features of the flight trajectory, which makes it difficult
to learn the differential transition patterns implicitly (with-
out prompting) for the long-horizon prediction conditions.
Therefore, the proposed differential prompted mechanism
significantly contributes to the overall performance of the
proposed FlightBERT++.
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Figure 4: The histogram of the distance error.

Error analysis (FlightBERT++ v.s. FlightBERT) To in-
vestigate the outliers caused by high-bit errors of BE repre-
sentation, the distribution of the distance errors between the
FlightBERT and FlightBERT++ is visualized by a histogram
in Figure 4. It is evident that the FlightBERT framework still
outputs larger distance error values in a certain number of
samples. In contrast, thanks to the design of the differential
prediction paradigm, the predictions of the FlightBERT++
show a significant reduction in outliers, which further sup-
ports our motivation to overcome the high-bit errors.

Conclusion

In this paper, we present a novel FlightBERT++ frame-
work to perform the multi-horizon FTP task in a non-
autoregressive manner. The proposed framework not only
inherits the superior representation ability of the BE in
the FlightBERT framework but also develops an innovative
multi-horizon FTP model. Benefiting from the proposed dif-
ferential prediction paradigm, the FlightBERT++ can miti-
gate the high-bit errors of the BE representation and achieve
a significant reduction in outliers than that of the Flight-
BERT. In addition, the proposed differential prompt mech-
anism is also confirmed to contribute to the performance
improvements of the FTP task. In summary, FlightBERT++
achieves significant performance improvements and outper-
forms the comparison baselines across all evaluation met-
rics, especially in multi-horizon prediction scenarios.
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