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Abstract
Numerous solutions are proposed for the Traffic Signal Con-
trol (TSC) tasks aiming to provide efficient transportation
and alleviate traffic congestion. Recently, promising results
have been attained by Reinforcement Learning (RL) methods
through trial and error in simulators, bringing confidence in
solving cities’ congestion problems. However, performance
gaps still exist when simulator-trained policies are deployed
to the real world. This issue is mainly introduced by the sys-
tem dynamic difference between the training simulators and
the real-world environments. In this work, we leverage the
knowledge of Large Language Models (LLMs) to understand
and profile the system dynamics by a prompt-based grounded
action transformation to bridge the performance gap. Specifi-
cally, this paper exploits the pre-trained LLM’s inference abil-
ity to understand how traffic dynamics change with weather
conditions, traffic states, and road types. Being aware of the
changes, the policies’ action is taken and grounded based on
realistic dynamics, thus helping the agent learn a more realistic
policy. We conduct experiments on four different scenarios to
show the effectiveness of the proposed PromptGAT’s ability to
mitigate the performance gap of reinforcement learning from
simulation to reality (sim-to-real).

Introduction
Traffic Signal Control (TSC) is a critical task aimed at im-
proving transportation efficiency and alleviating congestion
in urban areas (Wei et al. 2021). Reinforcement Learning
(RL) methods have shown promising results in tackling TSC
challenges through trial and error in simulators (Ghanadbashi
and Golpayegani 2022; Mei et al. 2023; Noaeen et al. 2022;
Ducrocq and Farhi 2023; Zang et al. 2020; Wu et al. 2020;
Haydari and Yılmaz 2020; Du et al. 2023; Vlachogiannis et al.
2023), bringing hope for solving cities’ traffic congestion is-
sues. While simulation is a valuable tool for control tasks in
the real world with low cost, notable performance gaps arise
when deploying simulator-trained policies to real-world en-
vironments (Da et al. 2023b,c), mainly due to differences in
system dynamics between training simulators and the actual
road conditions.

Grounded Action Transformation (GAT) is a framework
designed to address the performance gaps that arise when
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How does snowy weather 
influence the acc. and 
dece. for the vehicles?

When it snows, road 
surface is slippery, traction 
is reduced. Vehicles have 
difficulty gaining traction, 
resulting in smaller acc. 
and dece. rates.

(a) Knowledge about dynamic 
changes from LLMs

(b) Comparison between vanilla 
GAT and our proposed method

Figure 1: Integrating knowledge from LLMs into Grouned
Action Transformation (GAT). (a) LLMs have implicit human
knowledge about the change in dynamics. (b) Comparisons
between vanilla GAT and our proposed PromptGAT, with
GAT integrating a prompt-based dynamics modeling module.

transferring policies learned in simulation to real-world
scenarios (sim-to-real) (Hanna and Stone 2017; Da et al.
2023b,c). The key idea behind GAT is to induce simulator
dynamics to resemble those of the real world, where policy
learning takes place in simulation, and dynamics learning
relies on real-world data.

In the GAT framework, the dynamics model, also known as
the forward model fϕ+ , plays a crucial role. It takes the cur-
rent state st and action at as inputs and predicts the possible
next state st+1 in the real world. Traditional GAT methods
focus on learning fϕ+ solely based on real-world data, while
these approaches enable the forward model to be accurately
fitted to real-world dynamics, it requires a substantial amount
of real-world data covering the entire state distribution to
achieve accurate predictions.

One limitation of conventional GAT methods is their strug-
gle to handle unobserved states in the real world. When the
policy encounters states that have not been previously ob-
served in the real-world data, the learned forward model may
predict st+1 with significant errors. This is particularly evi-
dent under extreme weather conditions or rare events that are
infrequently represented in the training data. In contrast, hu-
man knowledge allows us to infer the behavior of the system
under such unique conditions. For example, we as humans
understand that during extreme weather, vehicles tend to
move slower with smaller acceleration and deceleration rates,
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and the same duration of a green traffic signal may result
in a smaller throughput. Moreover, humans can reason that
adjusting the duration of green lights from the policy might
be necessary to achieve a similar performance as observed in
the simulation.

To leverage this implicit human knowledge for more ac-
curate forward models, we propose a prompt-based GAT
method, known as PromptGAT by introducing Large Lan-
guage Models (LLMs) (Da et al. 2023a) into the GAT frame-
work. Specifically, as is shown in Figure 1(b), in the learning
of the forward model, we design a prompt-based dynamics
modeling module to better understand the real-world dy-
namic by asking LLMs how weather conditions, traffic states,
and road types influence traffic dynamics. Through the in-
ference ability of LLMs in profiling the system dynamics,
the agent can learn the grounded action in GAT based on a
more accurate and general forward model. This process facil-
itates the learning of more realistic policies and enhances the
transferability of RL models from simulation to reality.

In summary, the contributions of this paper are as follows:
• This paper proposes a novel method, PromptGAT, to miti-
gate the sim-to-real transfer problem in the context of traffic
signal control by incorporating human knowledge with LLMs.
To the best of our knowledge, this is the first paper bridging
the performance gap between simulation and real-world set-
tings in traffic signal control with LLMs.
• This paper provides the design of prompt generation and
dynamics modeling module to understand the change of dy-
namics in the sim-to-real transfer. Leveraging LLMs with
prompt and chain-of-thought (Wei et al. 2022b), PromptGAT
provides valuable insights into the system dynamics, which
enhances the agent’s understanding of real-world scenarios.
• We conduct extensive experiments and case studies to vali-
date the performance of our approach and showcase its po-
tential impact on traffic signal control. All the experiments
are conducted under a simulation-to-simulation setting with
reproducible experiment settings.

Related Work
This section will introduce the related work from three as-
pects, regarding the traffic signal control (TSC) methods,
simulation-transfer methods, and prompt learning techniques.

Traffic Signal Control Methods Optimizing traffic signal
policies to mitigate traffic congestion has posed a significant
challenge. Diverse methodologies are proposed, encompass-
ing rule-based methods (Dion and Hellinga 2002; Chen et al.
2020) as well as RL-based methods (Wei et al. 2019b,a, 2018)
for enhancing vehicle travel time or reducing delays, most of
which yielded notable enhancements over pre-existing time
control techniques. Although most of the current RL-based
TSC methods do not consider the sim-to-real gap problem,
a few recent studies start to tackle the sim-to-real gap by
modifying the simulator directly (Müller et al. 2021; Mei
et al. 2022), requiring the parameters of the simulator can
be easily modified to perfectly match the real world. Rather
than modify the simulator, this paper proposes to modify the
output actions of the policies learned in the traffic simulator.

Sim-to-real Transfer Mainly three categorized groups of
literature exist in the sim-to-real transfer domain (Zhao, Quer-
alta, and Westerlund 2020). The first group is domain ran-
domization (Tobin 2019; Andrychowicz et al. 2020; Wei
et al. 2022a), with the objective of training policies capa-
ble of adapting to environmental variations. This strategy
primarily relies on simulated data and proves advantageous
when dealing with uncertain or evolving target domains. The
second group is domain adaptation (Tzeng et al. 2019; Han
et al. 2019), which is dedicated to addressing the challenge
of domain distribution shift by aligning features between
the source and target domains. Many domain adaptation
techniques focus on narrowing the gap in robotic percep-
tion (Tzeng et al. 2015; Fang et al. 2018; Bousmalis et al.
2018; James et al. 2019), whereas in traffic signal control
domain, the gap is mainly from the dynamics rather than per-
ception because most TSC methods directly take vectorized
representations like lane-level number of vehicles or delays
as observations. The third group of approaches, known as
grounding methods, intends to improve the accuracy of the
simulator concerning the real world by correcting for simu-
lator bias. Unlike system identification approaches (Cutler,
Walsh, and How 2014; Cully et al. 2015) that try to learn
the precise physical parameters, Grounded Action Trans-
formation (GAT) (Hanna and Stone 2017) does not require
a parameterized simulator that can be modified. It induces
the dynamics of the simulator to match the real world with
grounded action, which has shown promising results for sim-
to-real transfer in robotics. Following works (Desai et al.
2020b; Karnan et al. 2020; Desai et al. 2020a) further ex-
plore modeling the stochasticity when grounding, applying
RL, and imitating from observation techniques to advance
grounding. Our PromptGAT is based on GAT, with novel de-
signs on leveraging LLMs to enhance action transformation
by better dynamics profiling.

Prompt Learning Prompt learning, first introduced
by (Petroni et al. 2019), has been widely studied in NLP
with the development of Large Language Models (Jiang et al.
2020; Shin et al. 2020). Prompting means prepending instruc-
tions to the input and pre-training the language model so that
the downstream tasks can be promoted. (Poerner, Waltinger,
and Schütze 2019) use manually defined prompts to improve
the performance of language models. To adapt LLMs for
specific applications, developers often send prompts (aka,
queries) to the model, which can be appended with domain-
specific examples for obtaining higher-quality answers. A
collection of prompt management tools, such as ChatGPT
Plugin, GPT function API call, LangChain, AutoGPT, and
BabyAGI, have been designed to help engineers integrate
LLMs in applications and services. As far as we know, there
is no exploration for prompt learning in sim-to-real transfer
or traffic signal control tasks.

Method
Preliminaries
RL-based Traffic Signal Control In Traffic Signal Control
(TSC), controllers determine intersection phases. Each phase
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If for a lane with 20 vehicles,  in {rainy weather} and on a normal road please think step by step and estimate 
the four indicators (average acceleration, average deceleration, average emergency deceleration and average 
delay) in the format of: 
[average acceleration: {value}], 
[average deceleration: {value}], 
[average startup delay: {value}],
[average emergency deceleration: {value}]

Prompt query

Depiction for real world dynamics

Answer of rainy weather from LLM:

Average acceleration: 0.6 m/s2,
Average deceleration: 3.0 m/s2,
Average startup delay: 0.15 s,
Average emergency deceleration: 5.5 m/s2.

Answer of snowy weather from LLM:

Average acceleration: 0.4 m/s2,
Average deceleration: 1.7 m/s2,
Average startup delay: 0.65 s,
Average emergency deceleration: 3.0 m/s2.

Rainy Snowy

Figure 2: An example of using LLM with a prompt template for answers to depict real-world dynamics by providing traffic state
(vehicle number), weather type, and road type to induce the LLM to infer based on domain knowledge. Given the same vehicle
quantity and road type, we could observe that the answers under different weathers abide by the reality situation that snowy
weather is more severe than rainy weather.

comprises predefined, non-conflicting traffic movement com-
binations. Given the current condition of an intersection, the
traffic signal controller will choose a phase for the next time
interval ∆t to minimize the average queue length on lanes
around this intersection. Following existing work (Chen et al.
2020; Zheng et al. 2019; Wei et al. 2019b; Li et al. 2023),
an agent is assigned to each traffic signal, and the agent will
choose the phase as actions in the next ∆t. The TSC problem
is defined as a Markov Decision Process (MDP) characterized
by M = ⟨S,A, P, r, γ⟩ where S denotes the system state
space S , A denotes the set of action space, P denotes as the
transition dynamics describing the probability distribution
of next state st+1 ∈ S, r denotes the reward, and πθ as the
policy parameterized by θ and γ is the discount factor.

An RL approach solves this problem by maximizing the
long-term expectation of discounted accumulation reward
adjusted by discount factor γ. The discounted accumulated
reward is E(st,at)∼(πθ,M)[

∑T
t=0 γ

tr(st, at)]. We follow the
past work which defines A as discrete action spaces, and use
Deep Q-network (DQN) (Wei et al. 2018) to optimize the RL
policy. In the past RL-based TSC works, the above procedure
is conducted in the simulation environment Esim.

Grounded Action Transformation Grounded action trans-
formation (GAT) is a framework originally proposed in
robotics to improve robotic learning by using trajecto-
ries from the physical world Ereal to modify the actions
to take in Esim. Under the GAT framework, MDP in
Esim is imperfect and modifiable, and it can be param-
eterized as a transition dynamic Pϕ(·|s, a). Given real-
world dataset Dreal = {τ1, τ2, . . . , τ I}, where τ i =
(si0, a

i
0, s

i
1, a

i
1, . . . , s

i
T−1, a

i
T−1, s

i
T ) is a trajectory collected

by running a policy πθ in Ereal, GAT aims to minimize dif-
ferences between transition dynamics by finding ϕ∗ as shown
in Eq. 1. The d(·) is the distance between two dynamics, P ∗

is the real world transition dynamics, and Pϕ is the simulation
transition dynamics.

ϕ∗ = argmin
ϕ

∑
τi∈Dreal

T−1∑
t=0

d(P ∗(sit+1|sit, ai
t), Pϕ(s

i
t+1|sit, ai

t))

(1)
To find ϕ efficiently, GAT takes the agent’s state st and

action at predicted by policy πθ as input and generates a
grounded action ât as output. Specifically, it uses an action
transformation function parameterized with ϕ:

ât = gϕ(st, at) = hϕ−(st, fϕ+(st, at)) (2)
which includes two specific functions: a forward model fϕ+ ,
and an inverse model hϕ− , as is shown in Figure 1.
• The forward model fϕ+ is trained with the data from Ereal,
aiming to predict the next possible state ŝt+1 given current
state st and action at:

ŝt+1 = fϕ+(st, at) (3)
• The inverse model hϕ− is trained with the data from Esim,
aiming to predict the possible action ât that could lead the
current state st to the given next state. Specifically, the inverse
model in GAT takes ŝt+1, the output from the forward model,
as its input for the next state:

ât = hϕ−(ŝt+1, st) (4)
Given current state st and the action at predicted by

the policy πθ, the grounded action ât takes place in Esim

will make the resulted st+1 in Esim closer to the pre-
dicted next state ŝt+1 in Ereal, which makes the dynamics
Pϕ(st+1|st, ât) in simulation closer to the real-world dynam-
ics P ∗(ŝt+1|st, at). Therefore, the policy πθ learned inEsim

with Pϕ closer to P ∗ will lead to a smaller performance gap
when transferred to Ereal with P ∗.
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Prompt-based dynamics modeling

(a) The structure of PromptGAT (b) Details of prompt-based dynamics modeling module

Figure 3: The overall framework of our proposed PromptGAT. (a) The structure of PromptGAT, with a prompt0based dynamics
modeling integrating the knowledge of LLMs into the learning of forward model fϕ+ . (b) Details of prompt-based dynamics
modeling module that infer and integrate the change of dynamics with traffic states.

Prompt-based GAT
In-context Learning for Dynamics Knowledge LLMs
are known to be capable of in-context zero-shot or few-shot
inference, which adapt these models to diverse tasks without
gradient-based parameter updates (Alayrac et al. 2022). This
allows them to rapidly generalize to unseen tasks and even
exhibit apparent reasoning abilities with appropriate prompt-
ing strategies. Here is a set of system dynamic descriptions
in the natural language as in Equation (5), provided to LLMs
(GPT-4.0) as context. They stand for the weather information,
road condition, and lane-level traffic state respectively:

Context : ⟨Weather⟩⟨Road Type⟩⟨Traffic State⟩ (5)

These contexts are organized and filled into the designed
prompt template as below:

⟨Task⟩⟨[Context]⟩⟨Output Restriction⟩ (6)

where ⟨Task⟩ provides task intention explanation to LLMs,
and ⟨Output Restriction⟩ induces the LLMs to infer the pos-
sible dynamics change based on the ⟨[Context]⟩ provided in
Equation (5) for the language model to understand the current
perceptible information. As shown in Figure 2, the resulting
output of dynamics knowledge could be then utilized by the
forward model fϕ+ .

Prompt-based Dynamics Modeling In GAT, the learning
of the forward model fϕ+ and inverse model hϕ− is crucial.
The forward model fϕ+(st, at) in GAT predicts the next RL
state ŝt+1 in the real world given taken action at and the cur-
rent state st as in Equation (3), however, the prediction only
using (st, at), and omits the consideration of domain knowl-
edge Kd, such as weather or road conditions, but the state
transition st+1 = Tr(st, at) in the real world is a joint con-
sequence related to this perceptible domain knowledge and
real-time traffic states (vehicle quantities), e.g., In the snowy
days, vehicles normally act with larger startup delay than in
fine weather time, and for heavily loaded vehicles on the high

loading allowed roads, the acceleration and emergency decel-
eration will be lower than those on the low loading allowed
roads, which is mainly decided by the vehicles’ standard
machine characteristics. Therefore, we propose leveraging
the Kd to provide a hint on the concrete real-world system
dynamics Dr such as acceleration, deceleration, emergency
deceleration and startup delay reflected by transition Tr. For
∀ st ∈ S on lane l, we employ LLMs (GPT-4.0) to realize
inference by the prompt organized in Equation (6):

Dl
rt = LLM(Prompt(Kl

dt
, N l

vt)) (7)

where Kl
dt

= (weather, road) and N l
vt is the number of vehi-

cles. Based on this, we incorporate the current lane state, lane
level the domain knowledge Kl

dt
and dynamics knowledge

Dl
rt from LLM together into the forward model through a

fusion module of the model’s network design as in Figure 3.
Please note that the road description in Kl

dt
can vary for

lanes but keep the same for the whole complete trajectory,
and weather holds on same for one complete trajectory as
well.

ẋt
l = ⊕{slt, Dl

rt ,K
l
dt
} (8)

xt
l = ReLU(Linear(ẋt

l)) (9)

where ẋ is a temporary calculation step after the operation ⊕,
which is implemented as Concatenate(·), the derived xtl
represents the feature space for specific lane l at time step t.
The input for fϕ+ is an integrated information X from all n
lanes: Xt = (x1t , x

2
t , . . . , x

n
t ). Now we could represent the

forward model into:

ŝt+1 = fϕ+(st, at,Xt) (10)

We approximate fϕ+ with a neural network and optimize
ϕ+ by minimizing the Mean Squared Error (MSE) loss:

L(ϕ+) =MSE(ŝit+1, s
i
t+1) =MSE(fϕ+(sit, a

i
t), s

i
t+1)

(11)

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

85



where sit, a
i
t, s

i
t+1 are sampled from the trajectories collected

from Ereal.
Different from fϕ+ , the inverse model hϕ−(ŝt+1, st) pre-

dicts the grounded action âit that can lead to the same traffic
states ŝt+1 in simulation Esim. The hϕ− could be learned
through the interactions within simulation with lower cost
than fϕ+ , therefore in this paper, we did not incorporate the
dynamics knowledge in the inverse model for a more accurate
model. We approximate hϕ− with a deep neural network and
optimize ϕ− by minimizing the Categorical Cross-Entropy
(CE) loss since the target ait is a discrete value in traffic signal
control problem defined by existing work (Wei et al. 2018):

L(ϕ−) = CE(âit, a
i
t) = CE(hϕ−(sit+1, s

i
t), a

i
t) (12)

where sit, a
i
t, s

i
t+1 are sampled from the trajectories collected

from Esim.

Overall Algorithm In this part, we will provide the pseudo-
code to show how the process is implemented.

Algorithm 1: Algorithm for PromptGAT
Input: Initial policy πθ, forward model fϕ+ , inverse

model hϕ− , domain info set Kd, real-world
dataset Dreal, simulation dataset Dsim

Output: Policy πθ, fϕ+ , hϕ−

1 Pre-train policy πθ for M iterations in Esim

2 for i = 1,2, . . . , I do
3 Rollout policy πθ in Esim and add data to Dsim

4 Load corresponding Ki
d (weather, road condition)

5 Rollout policy πθ in Ereal and add data to Dreal

6 # Forward model update
7 for l = 1, 2, . . . , n do
8 Acquire Dl

r dynamics by Equation (7)
9 Feature fusion xlt follow Equation (8), (9)

10 Construct Xt = (x1t , x
2
t , . . . , x

n
t )

11 Predict ŝt+1 by fϕ+ as Equation (10)
12 end
13 Update fϕ+ with Equation (11)
14 # Inverse model update
15 Update hϕ− with Equation (12)
16 # Policy training
17 for e = 1, 2, . . . , E do
18 # Policy update step
19 Improve policy πθ with reinforcement learning
20 end
21 end

Experiments
In this section, we introduce the experimental setup and anal-
ysis results of PromptGAT. The implementation is based on
a cross-simulator platform, LibSignal 1 and Pytorch.

1https://darl-libsignal.github.io/

Setting
accel

(m/s2)
decel

(m/s2)
eDecel
(m/s2)

sDelay
(s) Description

V0 2.60 4.50 9.00 0.00 Default setting
V1 1.00 2.50 6.00 0.50 Lighter loaded vehicles
V2 1.00 2.50 6.00 0.75 Heavier loaded vehicles
V3 0.75 3.50 6.00 0.25 Rainy weather
V4 0.50 1.50 2.00 0.50 Snowy weather

Table 1: Real-world Configurations for Ereal

Experiment Settings
In this section, we introduce the overall environment setup
for our experiments, commonly used metrics, important
hyperparameters and model structures.

Environment Setup In our study, we leverage LibSig-
nal (Mei et al. 2022), an open-source framework that in-
corporates multiple simulation environments. Our implemen-
tation involves using Cityflow (Zhang et al. 2019) as the
simulation environment Esim and SUMO (Lopez et al. 2018)
as the real-world environment Ereal. Throughout the pa-
per, we refer to Esim and Ereal as our default simulation
and real-world environments, respectively. Note that this
simulation-to-simulation setting not only serves as a repre-
sentative sim-to-real scenario but also allows for replicable
and reproducible results in our experiments. All the hyperpa-
rameters, prompts, and codes can be found in repository2.

To simulate real-world scenarios, we consider four differ-
ent configurations in SUMO, representing two types of real-
world scenarios: heavy industry roads and special weather-
conditioned roads, with specific parameter settings detailed
in Table 1. The four configurations are as follows:
• V0: Default setting3. This represents the default parameters
for SUMO and CityFlow, capturing the normal settings of
vehicle movement in Esim.
• V1 & V2: Heavy industry roads. In this configuration, we
model areas where the majority of vehicles are heavy trucks.
In Table 1, for vehicles in V 1 and V 2, their accelerating,
decelerating, and emergency decelerating rates are set to be
slower than the default settings. We also consider a larger
average startup delay for the vehicles (greater than the de-
fault assumption of 0s). Additionally, V 1 describes roads
with lighter-loaded vehicles, while V 2 represents the same
roads with heavier-loaded vehicles, differing in startup delay.
• V3 & V4: Special weather-conditioned roads. For this con-
figuration, we consider areas with special weather conditions.
In Table 1, V 3 and V 4 represent rainy and snowy weather
conditions, respectively. In these settings, the vehicles’ ac-
celerating, decelerating, and emergency decelerating rates
are smaller than the default values, and the startup delays are
larger. In snowy weather, the first three rates are smaller than
in rainy conditions, and the discrepancy in startup delays for
snowy conditions is extended to emulate tire slip.

2https://github.com/DaRL-LibSignal/PromptGAT.git
3https://sumo.dlr.de/docs/Definition of Vehicles,

Vehicle Types, and Routes.html
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Evaluation Metrics The goal of this work is to mitigate
the performance gap of the trained policy πθ in the simula-
tion environment Esim and in the real-world environment
Ereal. We calculate the performance difference ∆ for com-
monly used traffic signal control metrics: average travel time,
throughput, reward, average queue length, and average delay
following work (Da et al. 2023c), and denote their differences
as ATT∆, TP∆, Reward∆, Queue∆, and Delay∆. For a given
metric ψ:

ψ∆ = ψreal − ψsim (13)

Since in real-world settings, policy πθ tends to perform worse
than in simulation, the values of ATT, Queue, and Delay in
Ereal are typically larger than those in Esim. Based on our
goal of mitigating the gap and improving the performance of
πθ in Esim, we expect that for ATT∆, Queue∆, and Delay∆,
smaller values are better, while for TP∆ and Reward∆, larger
values are better. For a fair comparison, ψsim of all methods
inEsim are trained to be similar and reported in Table 2: with
the similar ψsim, we can also compare ψreal from different
methods to know which method performs the best.

Experimental Results and Analysis
We analyze the proposed method in the following way: First,
we verify if the prompt result from the Large Language Model
is giving the rational inference based on the context descrip-
tion. Second, we compare to the Direct-Transfer to verify if
the PromptGAT can mitigate the performance. Then, we dis-
cuss the performance improvement competing with baseline
models. Furthermore, we demonstrate our method’s contribu-
tion to the forward model’s accuracy and how it is correlated
to the final Ereal performance gap mitigation.

Prompt Intention Analysis In this section, we conduct
an analysis on the verification of whether the LLM Prompt
infers the expected information following the practical
laws in reality. We construct prompts in the format of
⟨Task⟩⟨[Context]⟩⟨Output Restriction⟩ as defined in Equa-
tion (6). We first introduce the ⟨Task⟩ description below:

The indicators describing the traffic dynamics include the
average acceleration (AC) of the vehicles (m/s²), the average
deceleration (AD) (m/s²), the average emergency deceler-
ation (AED) (m/s²) and the average startup delay (ADL)
describing the average time needed for the waiting vehicles
to start moving with the unit (s), and the above might vary
based on weather or road type. Please assume the above
indicators based on the traffic perceptive information below:

Then specifically, for the ⟨[Context]⟩, we have the follow-
ing implementation (the colored content is replaceable based
on the actual situation, weather, road, and traffic state (vehi-
cle quantity) in correspondence with Equation (5):

V1: In sunny day, on a light industry road with 8 vehicles,
V2: In sunny day, on a heavy industry truck road, 5 vehicles,
V3: In rainy day, on a normal road with 10 vehicles,
V4: In snowy day, on a normal road with 7 vehicles.

And for ⟨Output Restriction⟩ we design as below:

Real
LLM

Acc           Dec        E_dec Start_delayAcc           Dec        E_dec Start_delay

Acc           Dec        E_dec Start_delay Acc           Dec        E_dec Start_delay

Figure 4: Comparison of LLM prompt answers and real-
world settings reflects the same tendency across four settings.

Please answer by replacing {value} in the format below:
[average acceleration: value],
[average deceleration: value],
[average emergency deceleration: value],
[average startup delay: value].

We take the real-world setting dynamics values as the
ground truth and compare the LLM inferred value outputs
to the ground truth to analyze their relationship, the results
are shown in Figure 4. We could observe that within each
sub-figure, LLM’s inference results show a similar curve
across metrics, and from v1 to v4, the LLM also reflects the
same tendency as shown by Real settings. This proves the
LLM’s ability to provide a realistic inference based on the
given information, thus guaranteeing the rationality to apply
Prompt in our task of approximating real-world dynamics.

Env ATT TP Reward Queue Delay

Esim 111.23±3.5 1978±5 -39.44±2.23 26.11±1.15 0.62±0.10

Table 2: Overall performance in Esim

Ability to Mitigate the Performance Gap We first train
policies using DQN in Esim to well-converged as in Table 2.
and apply to four Ereal settings described in Table 1. This is
taken as the ‘direct transfer’, which exists a large gap com-
pared to Esim training performance (Da et al. 2023c). Then
we leverage the proposed method PromptGAT to train poli-
cies under the same four settings. Following the metrics in
Section 21, we could show a comparison in Figure 5: the cen-
ter blue area is the metrics connection reported when policies
are well trained in Esim, these are the most ideal achieve-
ment that a policy could acquire. When the well-trained pol-
icy directly applies to Ereal, the performance is shown in
the orange area, we could obviously observe that large gaps
commonly exist in four different real-world settings. Even
though the severeness varies on settings, still none of the
gaps is trivial. The PromptGAT shows promising results by
effectively shrinking the gap to a much lower level (as shown
in the purple area).

Comparison to Baseline Models In this part, we analyze
how the proposed PromptGAT competes with other methods
at a quantity level, including Direct Transfer and VanillaGAT.
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Setting Methods Metrics

- ATT(∆ ↓) TP(∆ ↑) Reward(∆ ↑) Queue(∆ ↓) Delay(∆ ↓)

V 1
Direct-Transfer 158.93 (47.69)±55.02 1901 (-77)±52.21 -71.55 (-32.11)±22.51 47.71 (21.59)±14.98 0.73 (0.11)±0.03

Vanilla-GAT 156.10 (44.87)±4.81 1905 (-73)±13.00 -70.03 (-30.59)±3.80 46.61 (20.50)±1.97 0.71 (0.09)±0.01
PromptGAT 154.97 (43.74)±6.09 1918 (-60)±9.62 -66.88 (-27.44)±4.47 44.56 (18.45)±2.96 0.71 (0.09)±0.01

V 2
Direct-Transfer 177.27 (66.03)±82.63 1898 (-80)±102.25 -87.71 (-48.27)±26.18 58.59 (32.47)±17.46 0.76 (0.14)±0.02

Vanilla-GAT 180.58 (69.35)±11.72 1908 (-69)±12.00 -89.69 (-50.25)±9.13 59.93 (33.82)±8.01 0.74 (0.12)±0.07
PromptGAT 174.31 (63.08)±13.11 1904 (-73)±21.63 -84.71 (-45.27)±18.89 56.64 (30.53)±12.62 0.72 (0.10)±0.02

V 3
Direct-Transfer 205.86 (94.63)±64.49 1877 (-101)±100.86 -101.26 (-61.82)±20.10 67.62 (41.51)±13.37 0.76 (0.14)±0.03

Vanilla-GAT 214.29 (103.06)±40.59 1846 (-131)±56.74 -91.15 (-51.71)±15.13 60.93 (34.82)±10.10 0.73 (0.11)±0.02
PromptGAT 198.48 (87.25)±7.27 1879 (-98)±6.02 -89.25 (-49.81)±5.51 59.65 (33.54)±3.70 0.72(0.10)±0.01

V 4
Direct-Transfer 332.48 (221.25))±109.00 1735 (-252)±151.91 -126.71 (-87.23)±14.79 84.53 (58.42)±9.86 0.83 (0.21)±0.01

Vanilla-GAT 318.70 (207.47)±12.35 1750 (-227)±16.93 -115.01 (-75.57)±9.27 76.74 (50.63)±5.10 0.81 (0.19)±0.08
PromptGAT 310.29 (199.06)±22.57 1750 (-227)±16.47 -113.55 (-74.11)±6.68 75.77 (49.66)±4.48 0.81 (0.19)±0.01

Table 3: The performance using Direct-Transfer, Vanilla-GAT compared with using PromptGAT method. The (·) shows the
metric gap ψ∆ from Ereal to Esim and the ± shows the standard deviation with 5 runs. The ↑ means that the higher value for
the metric indicates a better performance and ↓ means that the lower value indicates a better performance.

Figure 5: The performance in theEreal using Direct-Transfer
and PromptGAT comparing to the performance in Esim.

We apply all three approaches in four settings and compare
their performance under five metrics. Each performance is
represented as mean value and standard deviation after con-
ducting five runs of tests. As shown in Table 3 that most of the
time, the PromptGAT performs better than other baselines
across various settings and metrics.

Correlation Analysis We conduct a case study on setting
V 4 to show the contribution of PromptGAT to the forward
model accuracy and its relation to the performance gap mit-
igation in Ereal. We first compare the prediction error of
our method to Vanilla GAT as in Figure 6 (left), proving our
method provides a better prediction of system dynamics. To
understand how would dynamic profiling ability influence the

Figure 6: Left: Prediction error from the forward model using
PromptGAT vs VanillaGAT, our method consistently approx-
imates the true system dynamics and reduces the loss. Right:
The correlation between improvement of accuracy and im-
provement of mitigated performance gap ∆ in Ereal.

model’s performance gap in Ereal, we conduct correlation
analysis across the metrics gap of throughput, and waiting
queue length. As shown in Figure 6 (right), the improvement
of the mitigated gap (absolute values) across multiple metrics
is positively correlated to the improvement of the forward
model’s accuracy. This indicates PromptGAT mitigates the
real-world gap by better profiling the realistic dynamics.

Conclusion
In this paper, we propose a prompt-based grounded action
transformation method, PromptGAT, for reinforcement learn-
ing paradigm to mitigate the sim-to-real performance gap. By
leveraging the inference ability of pre-trained LLMs, and in-
corporating the perceptible domain knowledge, PromptGAT
manages to better profile the system dynamics and increases
the forward model’s accuracy, further mitigating the sim-to-
real gap by rectifying the action through action grounding.
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